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Abstract

We consider the problem of how the mean-
ings of words can be grounded in sensor data.
A probabilistic representation for the mean-
ings of words is defined, a method for recov-
ering meanings from observational information
about word use in the face of referential uncer-
tainty is described, and empirical results with
real utterances and robot sensor data are pre-
sented.

1 Introduction

We are interested in how robots might learn language
given qualitatively the same inputs available to children -
natural language utterances paired with sensory access to
the environment. This paper focuses on the sub-problem
of learning word meanings. Suppose a robot has acquired
a set of sound patterns that may or may not correspond to
words. How is it possible to separate the words from the
non-words, and to learn the meanings of the words?

We assume the robot’s sensory access to its environ-
ment is through a collection of primitive sensors orga-
nized into sensor groups, where each sensor group is a
set of related sensors. For example, the sensor group
P, might return a single value representing the mean
grayscale intensity of a set of pixels corresponding to an
object in the visual field. The sensor group ¥ gy might
return two values representing the height and width of the
bounding box around the object.

Learning the meanings of words requires a represen-
tation for meaning. We use a representation that we call
a conditional probability field (CPF), which is a type of
scalar field. A scalar field is a map of the following form:

F R R

The mapping assigns to each vector x € R™ a scalar value
f(x). A conditional probability field assigns to each x,

which corresponds to a point in an n-dimensional sen-
sor group, a conditional probability of the form p(E|x),
where E denotes the occurrence of some event. Let
E(¥, x) denote the CPF defined over sensor group ¥ for
event E.

The semantics of a CPF clearly depend on the nature
of E. Two events that will be of particular importance in
learning the meanings of words are:

e utter- W- the event that word W is uttered, per-
haps as part of an utterance that refers to some fea-
ture of the world denoted by W

e hear - W- the event that word W is heard
The corresponding conditional probability fields are:

e utter-WU,x) - the probability that word W will
be uttered by a competent speaker of the language
to denote the feature of the physical world that ¥
is currently sensing (i.e. that results in the current
value of x)

e hear - W¥,x) - the probability that word W will
be heard given that x € ¥ is observed

In this framework, the meaning of word W is simply
utter- WP, x). The last plot in figure 3 shows a CPF
defined over ¥4 that might represent the meaning of the
word “gray”. Grayscale intensities near 128 will be called
gray with probability almost one, whereas intensities near
0 and 255 will never be called gray. Rather, they are
“black” and “white” respectively.

Learning the denotation of W involves determining the
identity of ¥ and then recovering ut t er - W¥,x). The
learner does not have direct access to ut t er - W, x).
Rather, the learner must gain information about
ut t er - WP, x) indirectly, by noticing the sensory con-
texts in which W is used and those in which it is not,
i.e. viahear - W¥, x).



This problem is difficult due to referential uncertainty.
Even if the utterances the learner hears are true state-
ments about aspects of its environment that are percep-
tually available, there are are usually many aspects of the
environment that might be a given word’s referent. This
is Quine’s “gavagai” problem (Quine, 1960). The algo-
rithm described in this paper solves a restricted version
of the gavagai problem, one in which the denotation of a
word must be representable as a CPF defined over one of
a set of pre-defined sensor groups.

2 A Simplified Learning Problem

Rather than starting with the full complexity of the prob-
lem facing the learner, consider the following highly sim-
plified version. Suppose an agent with a single sensor
group, ¥q, lives in a world with a single object, o,, that
periodically changes color. Each time the color changes,
a one word utterance is generated describing the new

color, which is one of “black”, “white” or “gray”.

In this scenario there is no need to identify ¥ because
there is only one possibility. Also, each time a word is
uttered there is perfect information about its denotation;
it is the current value produced by ¥(01). (The nota-
tion ¥ (o) indicates the value recorded by sensor group ¥
when it is applied to object o. This assumes an ability to
individuate objects in the environment.) Therefore, the
probability that a native speaker of our simple language
will utter T/ to refer to x is the same as the probability of
hearing W given x. This fact makes it possible to recover
the form of the CPF for each of the three words by notic-
ing which values of ¥ (o) co-occur with the words and
applying Bayes’ rule as follows:

utter-W¥q,x) = hear-W¥gq,x)
= p(hear - Wx)
p(x|hear - Wp(hear - W
p(x)

The maximum-likelihood estimate of the quantity
p(hear - W is simply the number of utterances contain-
ing W divided by the total number of utterances. The
quantities p(x) and p(x|hear - W can be estimated using
a number of standard techniques. We use kernel density
estimators with (multivariate) Gaussian kernels to esti-
mate probability densities such as these.

The simplified version of the word-learning problem
presented in this section can be made more realistic,
and thus more complex, by increasing either the num-
ber of objects in the environment or the number of sensor
groups available to the agent. Section 3 explores the for-
mer, and section 4 explores the latter.

3 Multiple Objects

When there is no ambiguity about the referent of a word,
it is possible to recover the conditional probability field
that represents the word’s denotational meaning by pas-
sive observation of the contexts in which it is used. Un-
fortunately, referential ambiguity is a feature of natural
languages that we contend with on a daily basis. This
ambiguity appears to be at its most extreme for young
children acquiring their first language who must deter-
mine for each newly identified word the referent of the
word from the infinitely many aspects of their environ-
ment that are perceptually available.

Consider what happens when we add a second object,
0-, to our example domain. If both objects change color
at exactly the same time, though not necessarily to the
same color, the learner has no way of knowing whether
an utterance refers to the value produced by ¥'(o;) or
T (02). In the absence of any exogenous information
about the referent, the best the learner can do is make
a guess, which will be right only 50% of the time. As
the number of objects in the environment increases, this
percentage decreases.

Referential ambiguity can also take the form of un-
certainty about the sensor group to which a word refers.
Given two objects, 0, and o2, and two sensor groups, ¥
and ¥,, a word can refer to any of the following: ¥, (o),
Uy(02), ¥s(01), Ta(02). Inthis section we make the un-
realistic assumption that the learner has a priori knowl-
edge about the sensor group to which a word refers. This
assumption will be relaxed in the following section.

Intuitively, referential ambiguity clouds the relation-
ship between the denotational meaning of a word and the
observable manifestations of its meaning, i.e. the contexts
in which the word is used. As we will now demonstrate,
it is possible to make the nature of this clouding precise,
leading to an understanding of the impact of referential
ambiguity on learnability.

Suppose an agent hears an utterance U containing
word W while its attention is focused on the output of
sensor group . (Recall that in this section we are mak-
ing the assumption that the agent knows that W refers
to ¥.) Why might U contain W? There are two mutu-
ally exclusive and exhaustive cases: U is (at least in part)
about ¥, and W is chosen to denote the current value pro-
duced by ¥; U is not about ¥, and U contains W despite
this fact. The latter case might occur if, for example, W
has multiple meanings and the utterance uses one of the
meanings of W that does not denote a value produced by
v,

Let about(U, ¥) denote the fact that U is (at least in
part) about ¥, and let contains(U, W) denote the fact
that W occurs in U. Then the conditional probability
of an utterance containing W given the current value, x,



hear - W, x)

p(about(U, ¥) A contains(U, W) V —about(U, ¥) A contains(U, W))
p(about(U, ¥) A contains(U, W)) + p(—about(U, ¥) A contains(U, W)) —
p(about(U, ¥) A contains(U, W) A —about(U, ¥) A contains(U, W))
p(about(U, ¥) A contains(U, W)) + p(—-about(U, ¥) A contains(U, W))
p(contains(U, W)|about(U, ¥))p(about(U, ¥)) +

p(contains(U, W)|—about(U, ¥))p(—about (U, ¥))
autter-WPo,x)+ (1 —-a)f

Figure 1: A derivation of the relationship between hear - W¥, x) and ut t er - W, x).
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produced by ¥ can be expressed via equation 1 in figure
1. Equation 1 is a more formal, probabilistic statement
of the conditions given above under which U will contain
W. It can be simplified as shown in the remainder of the
figure.

The first step in transforming equation 1 into equation
2 isto apply the fact that p(AVB) = p(A)+p(B)—p(AA
B). The resulting joint probability is the probability of a
conjunction of terms that contains both about(U, ¥) and
—about(U, ¥), and is therefore 0 and can be dropped.
The remaining two terms are then rewritten using Bayes’
rule. Finally, three substitutions are made:

o utter-WUo,x) =
p(contains(U, W)|about (U, ¥))

e a = p(about(U, ¥))
e 3 = p(contains(U, W)|-about(U, ¥))

Simplification then leads directly to equation 2.

Before discussing the implications of equation 2, con-
sider the import of « and 3. The probability that U is
about ¥ (i.e. ) is the probability that the speaker and
the hearer are attending to the same sensory information.
When o = 1, there is perfect shared attention, and the
speaker always refers to those aspects of the physical
environment to which the hearer is currently attending.
When o = 0, there is never shared attention, and the
speaker always refers to aspects of the environment other
than those to which the hearer is currently attending.

The probability that U contains W even when U is not
about ¥ (i.e. B) is the probability that W will be used to
refer to some feature of the environment other than that
measured by ¥. There are two reasons why W might
occur in a sentence that does not refer to ¥:

e W is polysemous and one of the meanings that does
not refer to ¥ is used in the utterance

e TV is used to refer to the value produced by ¥ for
some object other than the one that is the hearer’s
focus of attention (e.g. ¥ (o;) rather than ¥ (o2))

Note that 8 comes into play only when a < 1, i.e. when
there is less than perfect shared attention between the
speaker and the hearer.

The most significant aspect of equation 2 is from the
standpoint of learnability. In our original one-object,
one-sensor world there was never any doubt as to the
referent of a word, and it was therefore the case that
utter-WUo,x) = hear-WUP,x). This equivalence
becomes clear in equation 2 by setting o = 1 and simpli-
fying. Because it is possible to compute hear - W¥, x)
from observable information via Bayes’ rule, it was pos-
sible in that world to recover ut t er - W¥, x) rather di-
rectly. However, equation 2 tells us that even in the face
of imperfect shared attention (i.e. o < 1) and homonymy
(i.e. B > 0) it is the case that hear - W¥,x) is a linear
transform of ut t er - W¥, x). Moreover, the values of a
and 3 determine the precise nature of the transform.

To get a better handle on the effects of « and
B on the manifestation of utter-W®,x) through
hear - W%, x), consider figures 2 and 3. The last plot
in figure 2 shows an example of a conditional prob-
ability field utt er - W, x), which is also a plot of
hear - W¥,x) when o« = 1. Figures 2 and 3 demon-
strate the effects of varying a and g on hear - W¥, x).
That is, the figures show how varying « and g8 affect
the information about ut t er - W, x) available to the
learner.

Recall from equation 2 that the conditional probability
that word W will be heard given the current value pro-
duced by ¥ is a linear function of ut t er - W¥, x) which
has slope « and intercept (1 — «)3. When the slope is
zero (i.e. @ = 0) the speaker and the hearer never focus
on the same features of the environment, and the prob-
ability of hearing W is just the background probability
of hearing W, independent of the value of ¥. When the
slope is one (i.e. a = 1) the speaker and the hearer al-
ways focus on the same features of the environment and
so the effect of 3 vanishes. The observable manifestation
of utt er- W¥,x) and ut t er - WP, x) are equivalent.
These two case are shown in the first and last graphs in



figure 2, which contains plots of hear - W, x) over a
range of values of 3 for various fixed values of .

Figure 2 makes it clear that decreasing o preserves the
overall shape of utter-W%,x) as observed through
hear - W, x), while squashing it to fit in a smaller
range of values. Increasing a: diminishes the effect of 3,
which is to offset the entire curve vertically. That is, the
higher the level of shared attention between speaker and
hearer, the less the impact of the background frequency of
W on the observable manifestation of ut t er - W¥, x).

Figure 3, which shows plots of hear - W¥, x) given
a range of values of « for various fixed values of
B3, is another way of looking at the same data. The
role of « in squashing the observable manifestation of
utt er- WU, x) is apparent, as is the role of 3 in ver-
tically shifting the curves. Only when o = 0 is there
no information about the form of ut t er - W¥, x) in the
plot of hear - W¥, x).

What does all of this have to say about the impact of
a and B on the learnability of word meanings from sen-
sory information about the contexts in which they are ut-
tered? As we will demonstrate shortly, if the following
expression is true for a given conditional probability field,
ut t er - W, x), then it is possible to recover that CPF
from observable data (i.e. from hear - W, x)):

Ixgutter-WU,xg) =0AIxg utter-W¥,x;) =1

The claim is as follows. If there is both a value produced
by ¥ that is always referred to as W and a value that
is never referred to as W, one can recover the CPF that
represents the denotational meaning of W simply by ob-
serving the contexts in which W is used.

Intuitively, the above expression places two constraints
on word meanings. First, for a word W whose denotation
is defined over sensor group ¥, it must be the case that
some value produced by ¥ is (almost) universally agreed
to have no better descriptor than T; there is no other
word in the language that is more suitable for denoting
this value. Second, there must be some value produced
by W for which it is (almost) universally agreed that W' is
not the best descriptor. It is not necessarily the case that
W is the worst descriptor, only that some other word or
words are better.

As equation 2 indicates, hear - W¥,x) is a linear
transform of ut t er - W, x) with slope a and intercept
(1 — a)B. If we know two points on the line defined by
equation 2 we can determine its parameters, making it
possible to reverse the transform and compute the value
of ut t er - W, x) given the value of hear - W, x).

Because hear - W¥,x) is a linear transform of
ut t er - WP, x), any value of x that minimizes (maxi-
mizes) one minimizes (maximizes) the other. Recall that
conditional probability fields map from sensor vectors to
probabilities, which must lie in the range [0, 1]. Under

the assumption that ut t er - W, x) takes on the value
0 at some point, such as when x = x, hear - W, x)
must be at its minimum value at that point as well. Let
that value be p,,;,. Likewise, under the assumption that
ut t er - W, x) takes on the value 1 at some point, such
as when x = xj, hear - W%, x) must be at its maxi-
mum value at that point as well. Let that value be p,,qz.
These observations lead to the following system of two
equations:

Dmin axutter-WP, xq)+ (1—a)f
= ax0+(1-a)p
- (1-a)f

Pmaz axutter-WUP,x1)+ (1—a)s

axl+(1—a)s
= a+(1-0)8

Solving these equations for « and S yields the following:

@ = Pmaz — Pmin
Pmin

1- Pmaz + Pmin

Recall that the goal of this exercise is to re-
cover utt er- W¥,x) from its observable manifesta-
tion, hear - W¥,x). This can finally be accomplished
by substituting the values for o and § given above into
equation 2 and solving for ut t er - W¥, x) as shown in
figure 4.

That is, one can recover the CPF that represents the de-
notational meaning of a word by simply scaling the range
of conditional probabilities of the word given observa-
tions so that it completely spans the interval [0, 1].

4 Multiple Sensor Groups

This section considers a still more complex version of
the problem by allowing the learner to have more than
one sensor group. Suppose an agent has two sensor
groups, ¥, and ¥, and that word W refers to ¥,. The
agent can observe the values produced by both sensor
groups, note whether each value co-occurred with an
utterance containing W, compute both hear - W¥, x)
and hear - W¥,,x), and apply equation 2 to obtain
utter-WUP,,x)andutter-WTs,,x).

How is the agent to determine that ut t er - WP, x)
represents the meaning of W and ut t er - W, x) is
garbage? The key insight is that if the meaning of W is
grounded in ¥, there will be some values of x € ¥ for
which it is more likely that W will be uttered than for
others, and thus there will be some values for which it is
more likely that &/ will be heard than others. Indeed, our
ability to recover ut t er - W¥, x) from hear - W¥, x)
is founded on the assumption that there is some value of
x € ¥ for which the conditional probability of uttering
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Figure 4: How to derive the meaning of a word from observations of its use in the face of referential uncertainty.



W is zero and some other value for which that probabil-
ity is one. This is not necessarily the case for the con-
ditional probability of hearing W given x € ¥ because
the level of shared attention between the speaker and the
learner, «, influences the range of probabilities spanned
by hear - W%, x), with smaller values of « leading to
smaller ranges.

Note that in our simple example with two sensor
groups the speaker considers only the value of ¥; when
determining whether to utter T#/, and the learner considers
only the value of ¥'5 when constructing hear - WP, x).
Using the terminology and notation developed in section
3, there is no shared attention between the speaker and
the learner with respect to W and ¥,, and it is therefore
the case that « = 0 and hear - W¥,,x) = 8.

If the exact value of hear - W¥,, x) is known for all
x, an obviously unrealistic assumption, it is a simple
matter to determine that ut t er - W%, x) cannot rep-
resent the meaning of W by noting that it is constant.
If utt er - W¥,,x) is not constant, then the speaker is
more likely to utter T for some values of x € ¥, than
for others, and the meaning of W is therefore grounded in
P,. As indicated by figure 2, the height of the bumps in
the conditional probability field depend on «, the level of
shared attention, but if there are any bumps at all we know
that the meaning of TV is grounded in the corresponding
sensor group and we can recover the underlying condi-
tional probability field. Under the assumption that the
exact value of hear - W%, x) can be computed, an agent
can identify the sensor group in which the denotation of a
word is grounded by simply recovering ut t er - W¥, x)
for each of its sensor groups and looking for the one that
is not constant.

In practice, the exact value of hear - WP, x) will not
be known, and it must be estimated from a finite number
of observations. That is, an estimate of hear - W, x)
will be used to compute an estimate of ut t er - WP, x).
Even if there is no association between W and ¥, and
ut t er - WU, x) is therefore truly constant, an estimate
of this conditional probability based on finitely many data
will invariably not be constant. Therefore, the strategy of
identifying relevant sensor groups by looking for bumpy
conditional probability fields will not work.

The problem is that for any given word W and sen-
sor group ¥, it is difficult to distinguish between cases
in which W and ¥ are unrelated and cases in which the
meaning of W is grounded in ¥ but shared attention is
low. The solution to this problem has two parts, both
of which will be described in detail shortly. First, the
mutual information between occurrences of words and
sensor values will be used as a measure of the degree to
which hearing W depends on the value produced by ¥,
and vice versa. Second, a non-parametric statistical test
based on randomization testing will be used to convert

the real-valued mutual information into a binary decision
as to whether or not the denotation of W is grounded in
P,

4.1 Mutual Information

Let I(W; ¥) denote the mutual information between oc-
currences of word W and values produced by sensor
group ¥. The value of I(WW; ¥) is defined as follows:

p(hear - Wx)
p(hear - Wp(x)

p(=hear - Wx)
p(=hear - Wp(x)

Note that I(TW;¥) is the mutual information between
two different types of random variables, one discrete
(W) and one continuous (¥). In the expression above,
the summation over the two possible values of W,
i.e. hear - Wand —hear - Wis unpacked, yielding a sum
of two integrals over the values of x € ¥. Within each in-
tegral the value of W is held constant. Finally, recall that
x is a vector with the same dimensionality as the sensor
group from which it is drawn, so the integrals above are
actually defined to range over all of the dimensions of the
sensor group.

When I(W, ®) is zero, knowing whether W is uttered
provides no information about the value produced by ¥,
and vice versa. When I(W,¥) is large, knowing the
value of one random variable leads to a large reduction
in uncertainty about the value of the other. Larger val-
ues of mutual information reflect tighter concentrations
of the mass of the joint probability distribution and thus
higher certainty on the part of the agent about both the
circumstances in which it is appropriate to utter W and
the denotation of W when it is uttered.

Although mutual information provides a measure of
the degree to which W and ¥ are dependent, to under-
stand and generate utterances containing W the agent
must at some point make a decision as to whether or
not its meaning is in fact grounded in ¥. How is the
agent to make this determination based on a single scalar
value? The next section describes a way of converting
scalar mutual information values into binary decisions
as to whether a word’s meaning is grounded in a sen-
sor group that avoids all of the potential pitfalls just de-
scribed.

/ p(hear - Wx) log dzr +
xev

dz

/ p(=hear - Wx) log
xEW

4.2 Randomization Testing

Given word W, sensor group ¥, and their mutual infor-
mation I(W; ¥), the task facing the learner is to deter-
mine whether the meaning of T is grounded in ¥. This
can be phrased as a yes-or-no question in the following
two ways. Is it the case that occurrences of W and the
values produced by ¥ are dependent? Is it the case that



occurrences of W and the values produced by ¥ are not
independent?

The latter question is the form used in statistical hy-
pothesis testing. In this case the null hypothesis, Hy,
would be that occurrences of W and the values produced
by ¥ are independent. Given a distribution of mutual in-
formation values derived under Hy, it is possible to de-
termine the probability of getting a mutual information
value at least as large as I(W; ). If this probability is
small, then the null hypothesis can be rejected with a cor-
respondingly small probability of making an error in do-
ing so (i.e. the probability of committing a type-I error
is small). That is, the learner can determine that occur-
rences of W and the values produced by ¥ are not inde-
pendent, that the meaning of W is grounded in ¥, with a
bounded probability of being wrong.

We’ve now reduced the problem to that of obtaining
a distribution of values of I(W; ¥) under Ho. For most
exotic distributions, such as this one, there is no paramet-
ric form. However, in such cases it is often possible to
obtain an empirical distribution via a technique know as
randomization testing (Cohen, 1995; Edgington, 1995).

This approach can be applied to the current problem
as follows - each datum corresponds to an utterance and
indicates whether W occurred in the utterance and the
value produced by W at the time of the utterance; the test
statistic is I(W; ¥); and the null hypothesis is that oc-
currences of W and values produced by ¥ are indepen-
dent. If the null hypothesis is true, then whether or not
a particular value produced by ¥ co-occurred with W is
strictly a matter of random chance. It is therefore a sim-
ple matter to enforce the null hypothesis by splitting the
data into two lists, one containing each of the observed
sensor values and one containing each of the labels that
indicates whether or not W occurred, and creating a new
data set by repeatedly randomly selecting one item from
each list without replacement and pairing them together.
This gives us all of the elements required by the generic
randomization testing procedure described above.

Given a word and a set of sensor groups, randomiza-
tion testing can be applied independently to each group
to determine whether it is the one in which the meaning
of W is grounded. The answer may be in the affirmative
for zero, one or more sensor groups. None of these out-
comes is necessarily right or wrong. As noted previously,
it may be that the meaning of the word is too abstract to
ground out directly in sensory data. It may also be the
case that a word has multiple meanings, each of which is
grounded in a different sensor group, or a single meaning
that is grounded in multiple sensor groups.

5 Experiments

This section presents the results of experiments in which
word meanings are grounded in the sensor data of a mo-

bile robot. The domain of discourse was a set of blocks.
There were 32 individual blocks with one block for each
possible combination of two sizes (small and large), four
colors (red, blue, green and yellow) and four shapes
(cone, cube, sphere and rectangle).

To generate sensor data for the robot, one set of hu-
man subjects played with the blocks, repeatedly selecting
a subset of the blocks and placing them in some config-
uration in the robot’s visual field. The only restrictions
placed on this activity were that there could be no more
than three blocks visible at one time, two blocks of the
same color could not touch, and occlusion from the per-
spective of the robot was not allowed.

Given a configuration of blocks, the robot generated
a digital image of the configuration using a color CCD
camera and identified objects in the image as contiguous
regions of uniform color. Given a set of objects, i.e. a
set of regions of uniform color in the robot’s visual field,
virtual sensor groups implemented in software extracted
the following information about each object: ¥4 mea-
sured the area of the object in pixels; ¥ gy measured the
height and width of the bounding box around the object;
¥ xy measured the X and Y coordinates of the centroid
of the object in the visual field; ¥ rs; measured the hue,
saturation and intensity values averaged over all pixels
comprising the object; ¥ g returned a vector of three num-
bers that represented the shape of the object (Stollnitz et
al., 1996). In addition, the ¥ pop sensor group returned
the proximal orientation, center of mass orientation and
distance for the pair of objects as described in (Regier,
1996). These sensor groups constitute the entirety of the
robot’s sensorimotor experience of the configurations of
blocks created by the human subjects.

From the 120 block configurations created by the four
subjects, a random sample of 50 of configurations was
shown to a different set of subjects who were asked
to generate natural language utterances describing what
they saw. The only restriction placed on the utterances
was that they had to be truthful statements about the
scenes.

Recurring patterns were discovered in the audio wave-
forms corresponding to the utterances (Oates, 2001) and
these patterns were used as candidate words. Recall that a
sensor group is semantically associated with a word when
the mutual information between occurrences of the word
and values in the sensor groups are statistically signifi-
cant. Table 1 shows the p values for the mutual informa-
tion for a number of combinations of words and sensor
groups. Note from the first column that it is clear that the
meaning of the word “red” is grounded in the ¥ ¢, sen-
sor group. It is the only one with a statistically significant
mutual information value. As the second column indi-
cates, the mutual information between the word “small”
and the ¥ 4 sensor group is significant at the 0.05 level,



Table 1: For each sensor group and several words, the
cells of the table show the probability of making an error
in rejecting the null hypothesis that occurrences of the
word and values in the sensor group are independent.

Sensor Word

Group | “red” | “small” | “above”
Uy 0.76 0.05 0.47

Ugw | 0.86 0.09 0.31
Txy | 0.29 0.67 0.07

Uysr | 0.00 0.49 0.82
Tg 0.34 0.58 0.44

Upop | 057 0.97 0.00

and the mutual information between this word and the
¥ gy Sensor group is not significant but is rather small.
Both of these sensor groups return information about the
size of an object, but the ¥ gy sensor group overesti-
mates the area of non-rectangular objects because it re-
turns the height and width of a bounding box around an
object. Finally, note from the third column that the de-
notation of the word “above” is correctly determined to
lie in the ¥ pep sensor group, yet there appears to be
some relationship between this word and the ¥ xy sen-
sor group. The reason for this is that objects that are said
to be “above” tend to be much higher in the robot’s visual
field than all of the other objects.

How is it possible to determine the extent to which a
machine has discovered and represented the semantics of
a set of words? We are trying to capture semantic distinc-
tions made by humans in natural language communica-
tion, so it makes sense to ask a human how successful the
system has been. This was accomplished as follows. For
each word for which a semantic association was discov-
ered, each of the training utterances that used the word
were identified. For the scene associated with each utter-
ance, the CPF underlying the word was used to identify
the most probable referent of the word. For example, if
the word in question was “red”, then the mean HSI values
of all objects in the scene would be computed and the ob-
ject for which the underlying CPF defined over HSI space
yielded the highest probability would be deemed to be the
referent of that word in that scene. A human subject was
then asked if it made sense for that word to refer to that
object in that scene.

The percentage of content words (i.e. words like “red”
and “large” as opposed to “oh” and “there”) for which a
semantic association was discovered was 83.3%. Given a
semantic association, the two ways that it can be in error
are as follows: either the wrong sensor group is selected
or the conditional probability field defined over that sen-
sor group is wrong. Given all of the configurations for

which a particular word was used, the semantic accuracy
is the percentage of configurations that the meaning com-
ponent of the word selects an aspect of the configuration
that a native speaker of the language says is appropriate.
The semantic accuracy was 85.1%.

6 Discussion

This paper described a method for recovering the deno-
tational meaning of a word, i.e. ut t er - WP, x), given
a set of sensory observations, each labeled according
to whether it co-occurred with an utterance contain-
ing the word, i.e. hear - W¥,x). It was shown that
hear - W%, x) is a linear function of utt er - W¥,x)
where the parameters of the transform are determined
by the level of shared attention and the background fre-
quency of W. Given two weak assumptions about the
form of ut t er - W, x), these parameters can be recov-
ered and the transform inverted. The use of mutual in-
formation and randomization testing to identify the par-
ticular sensor group that captures a word’s meaning was
described. It is therefore possible to identify the denota-
tional meaning of a word by simply observing the con-
texts in which it is and is not used, even in the face of
imperfect shared attention and homonymy.
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