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Abstract

This paper presents a named entity classifica-
tion system that utilises both orthographic and
contextual information. The random subspace
method was employed to generate and refine at-
tribute models. Supervised and unsupervised
learning techniques used in the recombination
of models to produce the final results.

1 Introduction

There are commonly considered to be two main tasks in
named entity recognition, recognition (NER) and classi-
fication (NEC). As the features that best classify words
according to the two tasks are somewhat disparate, the
two are often separated. Attribute sets may be further
divided into subsets through sub-grouping of attributes,
sub-grouping of instances and/or the use of multiple clas-
sifying processes. While the use of multiple subsets can
increase overall accuracy, the recombination of models
has been shown to propagate errors (Carreras et al., 2002;
Patrick et al., 2002). More importantly, the decision re-
garding the separation of attributes into various subsets is
often a manual task. As it is reasonable to assume that the
same attributes will have different relative levels of sig-
nificance in different languages, using the same division
of attributes across languages will be less than optimal,
while a manual redistribution across different languages
is limited by the users knowledge of those languages. In
this paper, the division and subsequent recombination of
subgroups is treated as a meta-learning task.

2 Feature Representation

It has been our intention to create linguistically driven
model of named entity composition, and to search for
the attribute representations of these linguistic phenom-
ena that best suit inference by a machine learning algo-
rithm.

It is important to note that a named entity is a label
that has been consciously granted by some person or per-

sons, and as these names are chosen rather than assigned
randomly or evolved gradually, there are generalisations
that may be inferred about the words that may be used for
naming certain entity types (Allan, 2001; Kripke, 1972).

While generalisations relating to abstract connotations
of a word may be difficult to infer, generalisations about
the structure of the words are more emergent. As the
use of a name stretches back in time, it stretches back
to a different set of etymological constraints. It may
also stem from another language, with a different ortho-
graphic structure, possibly representing a different under-
lying phonology. Foreign words are frequently named
entities, especially in the domain of a newswire such as
Reuters. In language in general it is also reasonable to as-
sume that a foreign word is more likely to be an entity, as
people are more likely to migrate between countries than
prepositions. It is these generalisations of the structure of
words that we have attempted to represent in the n-gram
features.

Another emergent structural generalisation is that of
capitalisation, as named entities are commonly expressed
in title-case in European Languages. In this work it has
been investigated as a preprocessing step.

The other features used were contextual features, such
as observed trigger words, and the given part-of-speech
and chunking tags.

In total, we selected 402 attributes from which the
models were built.

2.1 Character N-Gram Modelling

The fundamental attribute of character n-gram modelling
is the observed probability of a collocation of characters
occurring as each of the category types. Individual n-
grams, or aggregations of them, may be used as attributes
in part of a larger data set for machine learning.

Modeling at the orthographic level has been shown
to be a successful method of named entity recogni-
tion. Orthographic Tries (Cucerzan and Yarowsky, 1999;
Whitelaw and Patrick, 2003; Whitelaw and Patrick, 2002)
and character n-gram modelling (Patrick et al., 2002) are



two methods for capturing orthographic features. While
Tries give a rich representation of a word, they are fixed to
one boundary of a word and cannot extend beyond unseen
character sequences. As they are also a classifying tool
in themselves, their integration with a machine learning
algorithm is problematic, as evidenced by reduction of
overall accuracy when processing a Trie output through a
machine learner in Patrick et al. (2002). As such, Tries
have not been used here. Although n-gram modelling has
not always been successful as a lone method of classifica-
tion (Burger et al., 2002), for the reasons outlined above
it is a more flexible modelling technique than Tries.

To capture affixal information, we used N-Grams mod-
elling to extract features for the suffixes and prefixes of all
words for all categories.

For general orthographic information we used the av-
erage probability of all bi-grams occurring in a word
for each category, and the value of the maximum and
minimum probability of all bi-grams in a word for each
category. To capture contextual information, these bi-
gram attributes was also extracted across word bound-
aries, both pre/post and exclusive/inclusive of the current
word, for different context windows.

All n-grams were extracted for the four entity types, lo-
cation, person, organisation and miscellaneous, with the
word level n-grams also extracted for NE recognition at-
tributes using a IOE2 model.

The aggregate n-gram attributes (for example, the av-
erage probability of all the n-grams in a word belonging
to a category), act as a memory based attribute, clustering
forms with less then random variance. These most bene-
fit agglutinative structures, such as the compound words
common to German, as well as morphologically disparate
forms, for example, ‘Australia’ and ‘Australian’. Here, of
all the n-grams, only the final one differs. While a stem-
ming algorithm would also match the two words, stem-
ming algorithms are usually based on language specific
affixal rules and are therefore inappropriate for a lan-
guage independent task. Furthermore, the difference be-
tween the words may be significant. The second of the
two words, used adjectively, would most likely belong
to the miscellaneous category, while the former is most
likely to be a location.

2.2 Contextual Features

Other than the contextual n-gram attributes, contextual
features used were: a bag of words, both pre and post
an entity, the relative sentence position of the word, com-
monly observed forms, and observed collocational trigger
words for each category.

2.3 Other Features

The part-of-speech and chunking tags were used with a
context window of three, both before and after each word.

For the German data, an attribute indicating whether
the word matched its lemma form or was unknown was
also included.

An attribute indicating both the individual and sequen-
tial existence of a words in the gazetteer was included for
both sets.

No external sources were used.

3 Normalising Case Information

As well as indicating a named entity, capitalisation may
indicate phenomenon such as the start of a sentence, a ti-
tle phrase or the start of reported speech. As orthographic
measures such as n-grams are case sensitive, both in the
building of the model and in classification, a preprocess-
ing step to correctly reassign the case information was
used to correct alternations caused by these phenomenon.
To the best knowledge of the authors, the only other at-
tempt to use computational inference methods for this
task is Whitelaw and Patrick (2003). Here we assumed
all words in the training and raw data sets that were not
sentence initial, did not occur in a title sentence, and did
not immediately follow punctuation were in the correct
case. This amounted to approximately 10,000,000 words.
From these, we extracted the observed probability of a
word occurring as lowercase, all capitals, initial capital,
or internal capital; the bi-gram distribution across these
four categories; and the part-of-speech and chunking tags
of the word. Using a decision graph (Patrick and Goyal,
2001), all words from the test and training sets were then
either recapitalised or decapitalised according to the out-
put. The results were 97.8% accurate, as indicated by the
number of elements in the training set that were correctly
re-assigned their original case.

The benefit of case-restoration for the English develop-
ment set was Fβ=1 1.56. Case-restoration was not under-
taken on the English test set or German sets. For consis-
tency, the English development results reported in table
1 are for processingwithoutcase restoration. We leave a
more thorough investigation of case restoration as future
work.

4 Processing

In order to make classifications, we employ a meta-
learning strategy that is a variant of stacking (Wolpert,
1992) and cascading (Gama and Brazdil, 2000) over an
ensemble of classifiers. This classifier is described in two
phases.

In the first phase, an ensemble of classifiers is produced
by combining both the random subspace method (Ho,
1998) and bootstrap aggregation or bagging (Breiman,
1996).

In the random subspace method, subspaces of the fea-
ture space are formed, with each subspace trained to pro-



duce a classifier. Given that withn features,2n differ-
ent subsets of features can be generated, not all possible
subsets are created. Ho (1998) suggests that the random
subspace method is best suited for problems with high
dimensionality. Furthermore, he finds that the method
works well where there exists a high degree of redun-
dancy across attributes, and where the prior knowledge
about the significance of various attributes is unknown.
It is also a useful method for limiting the impact of at-
tributes that may cause the learner to overfit the data. This
is especially important in the domain of newswires where
the division between training and test sets is temporal, as
topic shift is likely to occur.

From a different prespective, bagging produces differ-
ent subsets or bootstrap replicates by randomly drawing
with replacement,m instances from the original training
set. Once again, each bag is used to produce a different
classifier.

Both techniques share the same fundamental idea of
forming multiple training sets from a single original train-
ing set. An unweighted or weighted voting scheme is
then typically adopted to make the ultimate classifica-
tion. However, in this paper, as the second phase of our
classifier, an additional level of learning is performed.
For each training instance, the class or category proba-
bility distributions produced by the underlying ensemble
is used in conjunction with the correct classification to
train a new final classifier. The category probability dis-
tributions may be seen as meta-data that is used to train a
meta-learner.

Specifically, given n features A1, A2, ..., An and
m training instancesI1, I2, ..., Im,we may then ran-
domly form l different training subsetsS1, S2, ..., Sl,
with eachSi containing a random subset of both at-
tributes and training instances. Given a learning al-
gorithm L, each Si is used to trainL to produce
l different classifiersC1, C2, ..., Cl. When tested,
each Ci will produce a category probability distribu-
tion Ci(D1), Ci(D2), ..., Ci(Dg) where g is the to-
tal number of categories. Then for each training
instanceh, the unified category probability distribu-
tion

∑l
r=1 Cr(D1),

∑l
r=1 Cr(D2), ...,

∑l
r=1 Cr(Dg) in

conjunction with the correct category for that instance
CLh is used to trainL to produce the final classifierC ′.

In our experimentation, we divided each data set into
subsets containing approximately 65% of the original
training set (with replication) and with 50 of the total 402
attributes. In total, the meta-learner utilised data gen-
erated from the combined output of 150 sub-classifiers.
The choices regarding the number of subsets and their re-
spective attribute and instance populations were made in
consideration of both processing constraints and the min-
imum requirements in terms of the required original data.
While increasing the number of subsets will generally in-

crease the overall accuracy, obtaining an optimal subset
size through automated experimentation would have been
a preferable method, especially as the optimal size may
differ between languages.

To eliminate subsets that were unlikely to produce ac-
curate results across any language, we identified eight
subtypes of attributes, and considered only those sets with
at least one attribute from each. These were:

1. prefixal n-grams

2. suffixal n-grams

3. n-grams specifically modelling IOE2 categories

4. trigger forms occurring before a word

5. trigger forms occurring after a word

6. sentence and clausal positions

7. collocating common forms

8. the observed probability of the word and surround-
ing words belonging to each category type

To classify the various subsets generated as well as
to train the final meta-learner, a boosted decision graph
(Patrick and Goyal, 2001) is used.

5 Results

N-Grams, in various instances, were able to capture in-
formation about various structural phenomenon. For ex-
ample, the bi-gram ‘ae’ occurred in an entity in approx-
imately 96% of instances in the English training set and
91% in the German set, showing that the compulsion to
not assimilate old forms of names ‘Israel’ and ‘Michael’
to something like ‘Israil’ and ‘Michal’ is more emergent
than the constraint to maintain form. An example bi-gram
indicating a word from a foreign language with a dif-
ferent phonology is ‘cz’, representing the voiced palatal
fricative, which is not commonly used in English or Ger-
man. The fact two characters were needed to represent
one underlying phoneme in itself suggests this. Within
English, the suffix ‘gg’ always indicates a named entity,
with the exception of the word ‘egg’, which has retained
both g’s in accordance with the English constraint of con-
tent words being three or more letters long. All other
word’s with an etymological history of a ‘gg’ suffix such
as ‘beg’ have assimilated to the shorter form.

The meta-learning strategy improved the German test
set results by Fβ=1 9.06 over a vote across the classifiers.
For English test set, this improvement was Fβ=1 0.40.



6 Discussion

The methodology employed was significantly more suc-
cessful at identifying location and person entities (see ta-
ble 1). The recalls for these values for English are es-
pecially high considering that precision is typically the
higher value in named entity recognition. Although the
lower value for miscellaneous entities was expected, due
to the relatively smaller number of items and idiosyn-
crasies of the category membership, the significantly low
values for organisations was surprising. There are three
possible reasons for this: organisations are more likely
than people or places to take their names from the con-
temporary lexicon, and are therefore less likely to contain
orthographic structures able to be exploited by n-gram
modelling; in the training set, organisations were rela-
tively over represented in the errors made in the normal-
ising of case information, most likely due to the previous
reason; and organisations may be represented metonymi-
cally, creating ambiguity about the entity class.

As the difference that meta-learning made to German
was very large, but to English very small (see Results), it
is reasonable to assume that the individual English classi-
fiers were much more homogeneous, indicating both that
the attribute space for the individual classifiers for En-
glish were very successful, but only certain classifiers or
combinations of them were beneficial for German. The
flexibility of the strategy as a whole was successful when
generalising across languages
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