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Abstract

We discuss two named-entity recognition mod-
els which use characters and character n-grams
either exclusively or as an important part of
their data representation. The first model
is a character-level HMM with minimal con-
text information, and the second model is a
maximume-entropy conditional markov model
with substantially richer context features. Our
best model achieves an overall F; of 86.07%
on the English test data (92.31% on the devel-
opment data). This number represents a 25%
error reduction over the same model without
word-internal (substring) features.

1 Introduction

For most sequence-modeling tasks with word-level eval-
uation, including named-entity recognition and part-of-
speech tagging, it has seemed natural to use entire words
as the basic input features. For example, the classic
HMM view of these two tasks is one in which the ob-
servations are words and the hidden states encode class
labels. However, because of data sparsity, sophisti-
cated unknown word models are generally required for
good performance. A common approach is to extract
word-internal features from unknown words, for example
suffix, capitalization, or punctuation features (Mikheev,
1997, Wacholder et al., 1997, Bikel et al., 1997). One
then treats the unknown word as a collection of such fea-
tures. Having such unknown-word models as an add-on
is perhaps a misplaced focus: in these tasks, providing
correct behavior on unknown words is typically the key
challenge.

Here, we examine the utility of taking character se-
quences as a primary representation. We present two
models in which the basic units are characters and char-
acter n-grams, instead of words and word phrases. Ear-
lier papers have taken a character-level approach to
named entity recognition (NER), notably Cucerzan and
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Yarowsky (1999), which used prefix and suffix tries,
though to our knowledge incorporating all character n-
grams is new. In section 2, we discuss a character-level
HMM, while in section 3 we discuss a sequence-free
maximum-entropy (maxent) classifier which uses n-gram
substring features. Finally, in section 4 we add additional
features to the maxent model, and chain these models
into a conditional markov model (CMM), as used for tag-
ging (Ratnaparkhi, 1996) or earlier NER work (Borth-
wick, 1999).

2 A Character-Level HMM

Figure 1 shows a graphical model representation of our
character-level HMM. Characters are emitted one at a
time, and there is one state per character. Each state’s
identity depends only on the previous state. Each char-
acter’s identity depends on both the current state and on
the previous n — 1 characters. In addition to this HMM
view, it may also be convenient to think of the local emis-
sion models as type-conditional n-gram models. Indeed,
the character emission model in this section is directly
based on the n-gram proper-name classification engine
described in (Smarr and Manning, 2002). The primary
addition is the state-transition chaining, which allows the
model to do segmentation as well as classification.
When using character-level models for word-evaluated
tasks, one would not want multiple characters inside a
single word to receive different labels. This can be
avoided in two ways: by explicitly locking state tran-
sitions inside words, or by careful choice of transition
topology. In our current implementation, we do the latter.
Each state is a pair (¢, k) where ¢ is an entity type (such
as PERSON, and including an other type) and & indicates
the length of time the system has been in state ¢. There-
fore, a state like (PERSON, 2) indicates the second letter
inside a person phrase. The final letter of a phrase is a fol-
lowing space (we insert one if there is none) and the state
is a special final state like (PERSON, F). Additionally,
once k reaches our n-gram history order, it stays there.
We then use empirical, unsmoothed estimates for state-



Description ALL | LOC MISC ORG PER
Offi cial Basdline 712| 805 835 664 552
Word-level HMM 745 |1 795 697 675 776
Char-level, noconx | 822 | 86.1 822 734 846
Char-level, context | 832 | 869 830 751 856

Table 1: HMM F, performance, English development set.

Figure 1: A character-level HMM. The ¢ nodes are char-
acter observations and s nodes are entity types.

state transitions. This annotation and estimation enforces
consistent labellings in practice. For example, (PERSON,
2) can only transition to the next state (PERSON, 3) or the
final state (PERSON, F). Final states can only transition
to beginning states, like (other, 1).

For emissions, we must estimate a quantity of
the form P(colc_(n—1),.-.,c-1,8), for example,
P(s|Thoma, PERSON, 6).1 We use an n-gram model of
order n = 6. The n-gram estimates are smoothed via
deleted interpolation.

Given this model, we can do Viterbi decoding in
the standard way. To be clear on what this model
does and does not capture, we consider a few exam-
ples (_ indicates a space). First, we might be asked for
P(e|to-Denv, LOC,5). In this case, we know both that
we are in the middle of a location that begins with Denv
and also that the preceding context was t 0. In essence,
encoding & into the state lets us distinguish the begin-
nings of phrases, which lets us model trends like named
entities (all the classes besides other) generally starting
with capital letters in English. Second, we may be asked
for quantities like P(_|Italy, LOC, F'), which allows us
to model the ends of phrases. Here we have a slight com-
plexity: by the notation, one would expect such emissions
to have probability 1, since nothing else can be emitted
from a final state. In practice, we have a special stop sym-
bol in our n-gram counts, and the probability of emitting
a space from a final state is the probability of the n-gram
having chosen the stop character.®

We index characters, and other vector elements by relative
location subscripts: co isthe current character, ¢; isthe follow-
ing character, and c_; isthe previous character.

2The smaller space of characters allows us to obtain dense
estimates for longer n-grams than is possible with word-level
models. Thevalue n = 6 was the empirically optimal order.

3This can be cleaned up conceptually by considering the en-
tire process to have been ahierarchical HMM (Fineet al., 1998),
where the n-gram model generates the entire phrase, followed
by atier pop up to the phrase transition tier.

Using this model, we tested two variants, one in
which preceding context was discarded (for example,
P(e|to_Denv, LOC,5) was turned into P(e|xx_Denv,
LOC,5)), and another where context was used as out-
lined above. For comparison, we also built a first-order
word-level HMM; the results are shown in table 1. We
give F; both per-category and overall. The word-level
model and the (context disabled) character-level model
are intended as a rough minimal pair, in that the only in-
formation crossing phrase boundaries was the entity type,
isolating the effects of character- vs word-level modeling
(a more precise minimal pair is examined in section 3).
Switching to the character model raised the overall score
greatly, from 74.5% to 82.2%. On top of this, context
helped, but substantially less, bringing the total to 83.2%.

We did also try to incorporate gazetteer information by
adding n-gram counts from gazetteer entries to the train-
ing counts that back the above character emission model.
However, this reduced performance (by 2.0% with con-
text on). The supplied gazetteers appear to have been
built from the training data and so do not increase cover-
age, and provide only a flat distribution of hame phrases
whose empirical distributions are very spiked.

3 A Character-Feature Based Classifier

Given the amount of improvement from using a model
backed by character n-grams instead of word n-grams,
the immediate question is whether this benefit is comple-
mentary to the benefit from features which have tradition-
ally been of use in word level systems, such as syntactic
context features, topic features, and so on.

To test this, we constructed a maxent classifier which
locally classifies single words, without modeling the en-
tity type sequences s.* These local classifiers map a fea-
ture representation of each word position to entity types,
such as PERSON.> We present a hill-climb over fea-
ture sets for the English development set data in table 2.
First, we tried only the local word as a feature; the result
was that each word was assigned its most common class
in the training data. The overall F-score was 52.29%,
well below the official CONLL baseline of 71.18%.% We
next added n-gram features; specifically, we framed each
word with special start and end symbols, and then added
every contiguous substring to the feature list. Note that
this subsumes the entire-word features. Using the sub-
string features alone scored 73.10%, already breaking the

4The classifi er wastrained using conjugate gradient descent,
used equal-scale gaussian priors for smoothing, and learned
models of over 800K features in approximately 2 hours.

5The B-/I- distinction in the data was collapsed, though see
section 4.

®The latter assigns phrases at once, which is generally supe-
rior, but is noticeably worse at multi-word person names, since
it cannot synthesize new fi rst-name/last-name pairs.



Description Added Features ALL | LOC MISC ORG PER
Words wWo 52.29 | 41.03 70.18 60.43 60.14
Official Baseline | — 71.18 | 80.52 83.52 66.43 55.20
NGrams n(wg) 73.10 | 80.95 71.67 59.06 77.23
Tags to 74.17 | 8127 7446 59.61 78.73
Simple Context w_1,we,t 1,1t 82.39 | 87.77 8291 70.62 85.77
More Context <w,]_, UJO), <’LU()7 11)1), <t,1 , to), <t0, tl) 83.09 | 89.13 8351 71.31 85.89
Simple Sequence | s_1,{(s_1,t_1,%0) 85.44 | 90.09 80.95 76.40 89.66
More Sequence (s-2,8-1),(s_2,8_1,t_2,t_1,t0) 87.21 | 90.76 81.01 81.71 90.80
Final (see text) 9227 | 9439 87.10 8844 9541

Table 2: CMM performance with incrementally added features on the English development set.

the phrase-based CoNLL baseline, though lower than the
no-context HMM, which better models the context inside
phrases. Adding a current tag feature gave a score of
74.17%. At this point, the bulk of outstanding errors were
plausibly attributable to insufficient context information.
Adding even just the previous and next words and tags
as (atomic) features raised performance to 82.39%. More
complex, joint context features which paired the current
word and tag with the previous and next words and tags
raised the score further to 83.09%, nearly to the level of
the HMM, still without actually having any model of pre-
vious classification decisions.

4 A Character-Based CMM

In order to include state sequence features, which al-
low the classifications at various positions to interact, we
have to abandon classifying each position independently.
Sequence-sensitive features can be included by chain-
ing our local classifiers together and performing joint
inference, i.e., by building a conditional markov model
(CMM), also known as a maximum entropy markov
model (McCallum et al., 2000).

Previous classification decisions are clearly relevant:
for example the sequence Gr ace Road is a single loca-
tion, not a person’s name adjacent to a location (which is
the erroneous output of the model in section 3). Adding
features representing the previous classification decision
(s_1) raised the score 2.35% to 85.44%. We found
knowing that the previous word was an other wasn’t par-
ticularly useful without also knowing its part-of-speech
(e.g., a preceding preposition might indicate a location).
Joint tag-sequence features, along with longer distance
sequence and tag-sequence features, gave 87.21%.

The remaining improvements involved a number of
other features which directly targetted observed error
types. These features included letter type pattern features
(for example 20- nont h would become d- x for digit-
lowercaseand | t al y would become Xx for mixed case).
This improved performance substantially, for example al-
lowing the system to detect ALL CAPS regions. Ta-
ble 3 shows an example of a local decision for G- ace in

the context at Grace Road, using all of the features
defined to date. Note that the evidence against Gr ace
as a name completely overwhelms the n-gram and word
preference for PERSON. Other features included second-
previous and second-next words (when the previous or
next words were very short) and a marker for capitalized
words whose lowercase forms had also been seen. The fi-
nal system also contained some simple error-driven post-
processing. In particular, repeated sub-elements (usually
last names) of multi-word person names were given type
PERSON, and a crude heuristic restoration of B- prefixes
was performed. In total, this final system had an F-score
of 92.31% on the English development set. Table 4 gives
a more detailed breakdown of this score, and also gives
the results of this system on the English test set, and both
German data sets.

5 Conclusion

The primary argument of this paper is that character sub-
strings are a valuable, and, we believe, underexploited
source of model features. In an HMM with an admittedly
very local sequence model, switching from a word model
to a character model gave an error reduction of about
30%. In the final, much richer chained maxent setting,
the reduction from the best model minus n-gram features
to the reported best model was about 25% — smaller, but
still substantial. This paper also again demonstrates how
the ease of incorporating features into a discriminative
maxent model allows for productive feature engineering.



PPREV PREV CUR NEXT English devel. | Precision | Recall | Fg=;
States | O 0] LOC LOC LOC 94.44 94.34 | 94.39
Words | morning at Grace Road MISC 90.62 83.84 | 87.10
Tags NN IN NNP NNP ORG 87.63 89.26 | 88.44
Types | x X:2 XX XX PER 93.86 97.01 | 95.41
Overall 92.15 92.39 | 92.27
[ O [ LOC [ MISC [ ORG | PER ] _
— WC-)(?:ILDSS B English test Precision | Recall | Fg—
CWORD:Grace 000 0 0 -002 003 LOC 90.04 89.93 | 89.98
WOROR e | 0% 0F 08 02 o MISC 8349 | 77.07 | 80.15
CWORD-NWORD:Grace-Road ] 0 ] 0 0 0 0 ORG 8249 7857 8048
(E NGRAMS(prEﬂ-é./;n ﬂx-%r.]g:th%) 026 004 045 PER 86.66 95.18 | 90.72
<, ou 4% on oy o Oveal 812 | 8549 | 8631
(Grac -0.01 0 0 -0.02 0.03
et oo o o oo oo German devel. [ Precision | Recall | Fp—;
Pl B S e LoC 7553 | 66.13 | 70.52
0.08 0.24 0.07 -0.30 -0.10
2‘;‘;) S A s e MISC 78.71 47.23 | 59.03
e) 038 -014 -018 -0.06 0 ORG 77.57 53.51 | 63.33
TAGS
PTAG:IN -0.40 0.24 0.16 0.08 -0.08 PER 7236 7102 7169
NTAGANP T 015 0. 01 008 Overall 7536 | 60.36 | 67.03
PTAG-CTAG:IN-NNP "0 014 003 -001 -0.10
CTAG-NTAG:NNP-NNP T{géé -0.05 0 038 -054 German test Precision | Recall | Fs—
e ou gE ox om0 Lo 7801 | 6057 | 7354
NTYPE:Xx 022 -042 019 029 054 MISC 75.90 47.01 | 58.06
PTYPE-CTYPE:x:2-X -0.20 0.08 0.10 010 -0.09
CTYPENTYPEX XXX 055 -013 055 -013 026 ORG 73.26 51.75 | 60.65
PTYPE-CTYPE-NTY PE:x:2-Xx-X! 0.10 0.37 0.10 0.12 -0.69
K2XXx | 010 PER 87.68 | 79.83 | 83.57
PWORD-CTYPEa-XX 021 057 021 041 05 Overall 80.38 65.04 | 71.90
CTY PE-NWORD:Xx-Road -0.01 0.27 -0.01 -0.23 -0.03
PSTATE.O STAzT.gls 092 072 058 070 Table 4: Final results obtained for the development and
POTATEPSTATEDD ooy 008 043 00 | test sets for each language on the shared task.
PSTATE-CWORD:O-Grace [ -0.01 0 0 -0.02 0.03
PSTATEFTAGCTAGOINRRP | 01 059070 —om~  Shai Fine, Yoram Singer, and Naftali Tishby. 1998. The
FPSTATESPTAGPSTATEFTAG- | 001 003 031 03l o0 hierarchical hidden markov model: Analysis and ap-
' TYPESSTATES plications. Machine Learning, 32:41-62.
AT a o O 0 0 o | Andrew McCallum, Dayne Freitag, and Fernando Pe-
PSTATEPTYPECTYPEOX2Xx | 028 082  -010 -026 -0 reira. 2000. Maximum entropy Markov models for in-
PTYPE-CTYPE:O-x-O-x:2-XX ' ' ' ' ' formation extraction and segmentation. In |CML-2000.
Totd: 140 208 1M 019 0% | Andrei Mikheev. 1997. Automatic rule induction for

Table 3: Example of the features and weights at a local
decision point: deciding the classification of Gr ace.
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