
Identifying Events using Similarity and Context

Dominic R. Jones and Cynthia A. Thompson
School of Computing

University of Utah
Salt Lake City, UT 84103

dominicj@cs.utah.edu, cindi@cs.utah.edu

Abstract

As part of our work on automatically build-
ing knowledge structures from text, we apply
machine learning to determine which clauses
from multiple narratives describing similar sit-
uations should be grouped together as descrip-
tions of the same type of occurrence. Our
approach to the problem uses textual similar-
ity and context from other clauses. Besides
training data, our system uses only a partial
parser as outside knowledge. We present re-
sults evaluating the cohesiveness of the aggre-
gated clauses and a brief overview of how this
work fits into our overall system.

1 Introduction

Early work in natural language processing included am-
bitious research on the representation and use of informa-
tion about commonly experienced situations (Schank and
Riesbeck, 1981). The concept of a script was introduced
in this research, to explain how people understand these
situations and make inferences about them. A script is
a stereotypical sequence of events that occur as part of
a larger situation and can be used to infer missing de-
tails from a partial description of the larger occurrence,
in essence providing a means for extracting information
that is not actually present in a text.

Research on scripts includes demonstrations of hand
built scripts (Cullingford, 1978) and sketchy scripts (De-
Jong, 1982) and the adjustment of hand-built scripts using
a genetic algorithm (Mauldin, 1989). Work on learning
schemata under constrained circumstances (Mooney and
DeJong, 1985) pursues similar goals.

Our research has indicated that scripts may not explic-
itly occur in common types of text, such as newspaper
stories or incident reports. Other research also appears to

support this conclusion (Clark and Porter, 1995). There-
fore, we are investigating event correlations as a more
appropriate and extractable knowledge structure. In gen-
eral, it appears that long event sequences do not reliably
recur in our data. We instead look for reliable correlations
between a small number of events.

Our goal is to automatically extract correlated events
from text, using only a partial parser as outside infor-
mation. To support this goal, we need to group clauses
from distinct texts into coherent events, handling several
sources of variety in descriptions of the same type of oc-
currence. Synonymy and abbreviations are two common
contributors. A more important phenomenon is the ex-
istence of semantic categories keyed to the events them-
selves. A number of different objects may participate in
an event, and yet have dissimilarities that place them in
different conventional semantic categories. For example,
a tree and a parked vehicle may both be collided with in
different aircraft crashes, yet it is difficult to conceive of a
reasonably specific semantic category that contains both.
Each is a physical object, yet there are a large number of
other physical objects that would not reasonably partici-
pate in a crash in the same way (books, hamburgers, and
moons are a few examples).

As a result of these phenomena, conventional semantic
lexicons, whether hand built or automatically generated,
differ from our work in two regards. First, they group
words, not clauses. Second, they use pre-defined seman-
tic categories instead of contextual relevance.

Our answer to this problem is a technique that uses
textual similarity and context from neighboring events to
decide when to group clauses. The only outside resource
we use is a partial parser. Our technique takes parsed
text and partially built event sequences and uses them to
group clauses that represent the same event.

In the remainder of this paper, we present a brief
overview of the sequence learning system before describ-
ing how we create events. We also evaluate our event

formation technique using human judges’ ratings of the
cohesiveness of the resulting events. Finally, we discuss
areas of related work before concluding the paper.

2 An Event Correlation Learning System

To understand the event formation process, some back-
ground on our larger system is useful. That sys-
tem, SPANIEL (Sequence Processing and ANalysis for
Inference Enhancement and Learning), attempts to learn
ordered correlations between events from a corpus of
parsed narratives.1 We assume that the narratives all de-
scribe related, but not necessarily identical, situations.
An event is a particular atomic occurrence described by a
single clause. SPANIEL uses a statistical model to identify
correlations. Our overall goal is to capture significant cor-
relations between events. We provide an overview here,
and will discuss the details in a future paper.

Briefly, SPANIEL uses a modified Markov model to
capture correlations. The model attempts to capture a se-
quence identifying the significant events in a text. Our
modification to Markov chaining captures the fact that
events can be conditioned on a prior event that occurs
several clauses distant, instead of on direct sequential de-
pendence between events.

After the training data is parsed, SPANIEL creates a
graph from individual clauses. This graph is meant to
capture the semantically important information from each
clause in the training texts. The nodes in the graph are
created from the actual clauses, with the arcs in the graph
indicating which clauses occur together in a text, and in
what order. Events are built from the nodes in the graph,
with the arcs providing the starting point for correlations
between events.

We convert the parsed text to graph nodes using a
frame representation. Each frame contains four slots.
Three primary slots represent the agent, the action, and
the theme of the clause. The agent and action slot fillers
are straightforward: the agent slot takes a noun phrase
that was tagged as the clause’s subject by the parser, and
the action slot takes the clause’s verb phrase. The theme
slot is more flexible, and can be filled by a noun phrase,
prepositional phrase, or adjective phrase that follows the
verb. Noun phrases tagged as the direct object have pri-
ority, but the first prepositional or adjective phrase can
serve as the filler in the absence of a direct object.2 A
fourth slot is only filled if the system identifies a depen-
dent clause through the presence of a clause marker or
the absence of a theme (e.g. “She reported she was hav-
ing control problems.”). Words are not stemmed, except

1Following previous authors, we use narrative instead of
story to refer to a text, indicating that we do not expect to find a
full plot structure.

2Passive verbs result in rearrangement of the fillers.

in two special cases described later.
The three primary slots are filled by a head and a mod-

ifier. The head is the head word of the appropriate phrase.
Prepositional phrases also concatenate the preposition to
the head. Verb phrases include all verbs from the phrase,
along with particles. The modifier is a concatenation of
all adjectives, adverbs, and other nouns. Two examples of
sentences and the resulting frames are given in Figure 1.

We define three functions over the graph. These func-
tions allow us to both detect correlations between events,
and identify when nodes might represent the same event.
First, the cooccurrence of two nodes, C(Ni, Nj), is the
number of narratives in which Ni occurs before Nj , and
thus quantifies each arc. Ni and Nj do not have to be
neighbors: any number of other clauses could have sepa-
rated them. Cooccurrence is directional: C(Ni, Nj) is
not the same as C(Nj , Ni). Next, two nodes Ni and
Nj match, denoted M(Ni, Nj), if their frames are iden-
tical.3 Finally, two nodes Ni and Nj are similar, denoted
S(Ni, Nj), if they demonstrate a certain degree of textual
similarity. This function plays an important role in event
creation, and we define it in detail in the next section.

Given this graph, SPANIEL uses a beam search to de-
tect correlations of multiple events by incrementally ex-
panding a sequence of events that occur frequently to-
gether. As of this writing, most resulting correlations in-
clude only a pair of events, with rare sequences of three
events. Our goal is to find such correlations with min-
imal domain-specific knowledge. Thus, SPANIEL must
create events from individual nodes as it expands event
sequences. We describe this event formation process, the
heart of this paper, in the next section.

3 Event Construction and Revision

The goal of event formation is to identify nodes that can
play the same role within a domain. Event formation
starts with a single node, identified as a potential part of
a correlation, and attempts to expand this simple event by
adding additional nodes. This process is unsupervised, so
we restrict the search by defining two criteria that nodes
must meet to be included in the same event. First, the
Similarity criterion states that each node in an event must
be textually similar to at least one other node in the event.
Therefore, a node must be similar to at least one node
that is already part of an event in order to be added to the
event. Second, the InSeq criterion states that each node
in the event must occur, in the appropriate order, with at
least one node in each of the event’s immediate neighbors
in the sequence.

Similarity is determined by a function S(Ni, Nj) that
indicates whether two nodes share sufficient textual fea-

3Identical frames do not guarantee identical text, as the
frames are simplified versions of the original clauses.

The pilot reported that he was running out of fuel.

DC: null

AGENT: AIRCRAFT
ACTION: CRASHED
THEME: INTO_GROUND

DC:

AGENT: PILOT
ACTION: REPORTED
THEME: null

DC: null

AGENT: HE
ACTION: WAS_RUNNING_OUT
THEME: OF_FUEL

The aircraft crashed into the ground.

Figure 1: Example Frames

ACTION: IMPACTED
THEME: TREES
DC: null

AGENT: AIRPLANE
ACTION: IMPACTED
THEME: HILL
DC: null

AGENT: AIRPLANE

Figure 2: Textually Similar Nodes

tures. Two nodes satisfy this function if two of their
three primary slots share heads, with some exceptions
described below. Empty fillers are not considered simi-
lar. In addition, the nodes must have similar dependent
clauses (identified by recursively applying the same cri-
teria). Null fillers for this slot are considered similar. An
example of two textually similar nodes is given in Fig-
ure 2.

Two exceptions to this general definition handle nom-
inalizations and “to be.” First, if two nodes’ actions do
not match, but the stemmed head of one node’s action
matches the stemmed head of the other node’s theme,
the nodes are considered similar. Second, if the stemmed
form of a node’s action is “to be”, the action is ignored in
determining similarity. Therefore, the node’s agent and
theme must match the other node for the nodes to be sim-
ilar.

The second criteria for adding nodes to events, In-
Seq, ensures that all nodes in an event occur in simi-
lar contexts. Within a correlation, we call events im-
mediately prior to or following a given event its neigh-
bors. Neighbors provide contextual information indicat-
ing which nodes occur in similar places in narratives.
The InSeq constraint states that for a node to be added
to an event, it must cooccur at least once with each of
that event’s neighbors in the proper order. To test for this
cooccurrence, we extend the definition of cooccurrence to
apply to mixed node and event arguments. Thus C(N, E)
or C(E, N) is the number of times node N cooccurred in
the training data with any node from event E. The order
in which the arguments are given is the order in which

C(N3,E3) = 1

C(N1,N3) = 1

S(N2,N3) = true

C(N2,N4) = 1

C(N1,N4) = 2

N1 N4

N3

N2
C(N1,N2) = 1

E1 E3

E2

C(N3,N4) = 1

C(E1,N2) = 1
C(E1,N3) = 1

C(N2,E3) = 1

Figure 3: Example of Acceptable Node Pair

they must appear to count.
An example of two nodes (N2 and N3) that meet our

two criteria is given in Figure 3. The two nodes are
both textually similar (S(N2, N3) = true) and have the
same context (C(E1, N2), C(E1, N3), C(N2, E3), and
C(N3, E3) are all greater than zero), so they can be com-
bined into one event E2.

Event formation is divided into two algorithms. The
first, AUGMENT, adds nodes to an event based on the
context provided by one neighbor. The second, REVISE,
removes nodes that do not meet the InSeq criterion when
an event acquires a second neighbor through further cor-
relation expansion.

3.1 The AUGMENT Algorithm

The job of the AUGMENT algorithm is to form a new
event and add it to the front or back of a correlation.
Therefore the new event initially has one neighboring
event. Each new event is initialized from a single node,
and AUGMENT adds all nodes that meet both the Similar-
ity and InSeq criteria to this node.

A phenomenon we refer to as self-cooccurrence com-
plicates the augmentation process. This is when two
nodes in the same event both occur in the same narrative.
Since assigning two nodes to an event proposes that the
nodes represent the same occurrence, self-cooccurrence
is undesirable: it represents examples where the two

Input: seed, a seed node, B, a neighbor event
Output: the augmented event, E

Function AUGMENT(seed, B)

E = {seed}
∀Ns.t.∃M ∈ E, S(N, M)

if C(N, B) > 0 then
if C(N, B) > (C(N, E) + C(E,N)) then

E = E ∪ N
return E

Figure 4: AUGMENT Algorithm Pseudocode

nodes are likely to actually represent different events.4 To
avoid adding to an event a node that actually represents
a different type of occurrence, we bias the cooccurrence
function to penalize events that contain multiple nodes
from the same narrative.

SPANIEL employs the AUGMENT algorithm, illus-
trated in Figure 4, each time it evaluates the addition of a
new event to a sequence. The new event is seeded with an
initial node, and AUGMENT then checks each node that is
similar to the event. If the node occurs at least once with
the neighboring event and does not occur more frequently
with the event being augmented, the algorithm adds the
node to the event. We show the pseudocode for augmen-
tation at the beginning of a sequence; augmentation at
the conclusion of a sequence is analogous, with C(N, B)
replaced by C(B, N) in all cases.

Two special cases bootstrap event formation when a
correlation of two events is first created. First, AUGMENT

allows the InSeq criterion to be fulfilled by cooccurrence
with a node similar to the existing neighbor, since that
neighbor initially consists of a single node. Second, since
that neighbor also previously had no context to constrain
it, AUGMENT is also called on the neighbor.

3.2 The REVISE Algorithm

As previously mentioned, AUGMENT only has one neigh-
bor against which to enforce the InSeq criterion. Fulfill-
ment of the criterion using one neighbor does not ensure
that the node will be acceptable given a second neighbor.
Therefore, if a second neighbor to this event is added to
the sequence, the REVISE algorithm removes nodes that
fail to remain acceptable. Figure 5 illustrates the situa-
tion with a sequence containing three events, the new one
having just been added at the front of the sequence. Each
node in the new event meets the InSeq criterion, but now
a node in its neighbor does not. REVISE removes such
nodes from events. Any removals from the first event re-
vised may also warrant removals from the next neighbor
in the sequence and so on. Therefore, SPANIEL applies
REVISE to each existing node in the sequence in order,

4This does not mean that identical events cannot occur in a
sequence.

N6

N5

N4

N3 N7N1

N2

E1

E2

N8

E3

Figure 5: Example of an InSeq Violation

Input: An event sequence, S =< E1, E2, . . . , En >

Output: An event sequence respecting InSeq
Function REVISE(S)

modified = true
i = 2
while (modified && i ≤ n)

modified = false
∀X ∈ Ei

if C(Ei−1, X) = 0 then
Ei = Ei \ X
modified = true

if |Ei| = 0 then
return failure

i++
return S =< E1, . . . , En >

Figure 6: REVISE Algorithm Pseudocode

starting with the event neighboring the new event.
REVISE (see Figure 6 for the pseudocode) checks that

all nodes in an event are still valid members, given the
context provided by a new neighbor. If the algorithm re-
moves any nodes from the event, it proceeds to check the
next event in order. The pseudocode presents this order-
ing from left to right, as when an event is added to the
front end of the correlation. The reverse traversal is anal-
ogous, with the loop proceeding from n − 1 down to 1
instead of from 2 up to n, where n is the length of the se-
quence. Note that the first (respectively last) event does
not need to be checked, as AUGMENT ensures the InSeq
criterion for this event with its single neighbor.

REVISE can have one additional effect. If revision re-
sults in any event having no nodes, the proposed event
addition fails. In other words, the new event is inconsis-
tent with the rest of the correlation.

In summary, the AUGMENT algorithm creates an event

that contains all nodes that are similar to the original node
and that cooccur with the neighboring event in the se-
quence. Since AUGMENT works on an event that has only
one neighbor, REVISE checks these constraints when a
second neighbor is added next to an event. Together,
the algorithms enforce the two criteria we use to define
events.

4 Evaluation

Automatic evaluation of individual events would be dif-
ficult, since they primarily have meaning in the context
of a specific correlation. Therefore, we primarily employ
manual evaluation. In addition, we describe a series of
ablation tests that illustrate why events and our two event
formation criteria are needed.

To conduct the evaluation, we applied SPANIEL to
a corpus of narratives from the National Transportation
Safety Board’s online database of summaries of aviation
accidents. This database, as of our experiments, contains
more than 43,000 texts. We sampled five sets of approx-
imately 4,300 texts each, and subdivided these sets with
eighty percent of the sample used for training and twenty
percent used for testing.

4.1 Event Cohesion

To evaluate event generation, we presented human judges
with events acquired by our system and asked them to
score each event by assessing the nodes’ concurrence in
describing an identifiable type of occurrence. The judges
were asked to apply the following procedure:

1. Read all nodes in the event, and determine what oc-
currence the nodes describe.

2. Read all the nodes again, with the dominant concept
of the occurrence in mind. For each node, assign a
score of one if the node matches the concept or zero
otherwise.

3. For each event, total the scores of the nodes. This
gives a score for the event.

The first step is asks the judge to choose the dominant
concept of each event based on their interpretation of the
nodes. The second and third steps assign a score to each
event based on the nodes it contains. We then divide this
score by the number of nodes in the event to give a per-
centage of nodes that match the dominant concept of the
occurrence represented by the event. We call these the
conforming nodes.

We used two human judges, both of whom have back-
grounds in computer science and aviation. Each judge
was given the same set of results from the learning sys-
tem, with each two event correlation separated into in-
dividual events. An example of an event, printed as the

** Event 32 **
-> PILOT MADE FORCED LANDING
-> PILOT PERFORMED FORCED LANDING
-> PLT MADE LEFT TURN
-> PILOT MADE PRECAUTIONARY LANDING
-> PLT MADE FORCED LANDING
-> PILOT LANDED ON GRAVEL BAR
-> PLT APPROACHING_LAND IN OPEN FIELD
-> PLT ATTEMPTED LANDING
-> PILOT ATTEMPTED_LAND AT NEARBY AIRPORT
-> PILOT ELECTED_LAND IN FIELD
-> PILOT LAND IN OPEN FIELD
-> PILOT HAD_LAND_OFF AIRPORT
-> PLT MADE EMERG LANDING

Figure 7: Example Learned Event

System Judge 1 Judge 2
Baseline 0.623 0.696
Learned 0.925 0.930

Table 1: Evaluation Results

judges received it, is given in Figure 7. We generated
correlations from the five different data sets, and blindly
chose one set to give the judges. Figure 10 gives the dis-
tribution of the number of nodes in each event.

To provide a baseline, ten percent of the events pre-
sented to the judges were generated by probabilisti-
cally choosing a set of random nodes from the graph,
with more frequent nodes chosen with higher probabil-
ity. Each random event contains between two and ten
nodes. The judges were not informed of this procedure,
and thus we can obtain a measure of their scoring applied
to a randomly generated event.

In Table 1, we give the mean fraction of conforming
nodes for our event generation algorithm and the random
baseline.5

We present more detailed results in two graphs, one for
the results from each judge, in Figure 8 and Figure 9. We
plot both the baseline and the learned results, giving the
fraction of nodes that were judged conforming versus the
size of the event in nodes. Where more than one event had
the same number of nodes, we plot the mean conforming
node fraction for the events. These graphs give an indi-
cation of the cohesiveness of the events as the size of the
events increases. The cohesiveness of the learned events
does not appear to drop dramatically as the size of the
events increases, whereas the the baseline’s performance
does appear to decrease.

5Our second judge, instead of giving a numerical score and
description of the event’s dominant concept, simply put a ques-
tion mark for each of the two baseline events of size 10. We
interpret this result as no dominant concept, which equates to
the existence of a pathological dominant concept of size one,
and therefore one conforming node.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50

C
on

fo
rm

in
g

N
od

es

Event Size

Learned
Baseline

Figure 8: First Judge’s Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50

C
on

fo
rm

in
g

N
od

es

Event Size

Learned
Baseline

Figure 9: Second Judge’s Results

4.2 Ablation Testing

We also evaluated the utility of events by eliminating
SPANIEL’s ability to acquire events. The ablated ver-
sion of SPANIEL can only learn correlations of nodes,
not events. We used the same five sets of training texts
as input to the ablated system. The full system learned
between 22 and 28 correlations meeting a probability
threshold corresponding to approximately 12 occurrences
in the training set, while the ablated system learned be-
tween zero and two correlations with the same probabil-
ity.

We also ablated SPANIEL by removing each of the two
criteria, Similarity and InSeq, individually. Removing ei-
ther criteria rendered the system computationally infea-
sible to run. Neither version could expand even a sin-
gle sequence in a reasonable amount of time. This phe-
nomenon appears to be the result of two similar causes.
If the InSeq criterion is disabled, the system encounters a
chain reaction caused by similar nodes. Each time a node
is added to an event, more nodes become similar to the
event, causing uncontrolled expansion. If the Similarity
criterion is disabled, any node that occurs in the proper
order with the neighboring event can be added to the
event. Since cooccurrence ignores intervening clauses,
a potentially huge number of nodes can cooccur with an
event, again causing uncontrolled expansion. These re-

0

1

2

3

4

5

10 20 30 40 50

of

 E
ve

nt
s

Event Size

Learned
Random

Figure 10: Event Sizes

sults support our hypothesis that, since event formation is
an unsupervised process, it must be somewhat conserva-
tive to avoid allowing excessive noise into events.

5 Related Work

Two lines of research are relevant to this work. First, our
research is based on research into scripts. Second, re-
cent work in semantic lexicon learning is similar to our
work, although it focuses on learning related words, not
related clauses. In addition, extraction patterns and case
frames bear some resemblance to our events. Riloff and
Schmelzenbach’s work (1998) is an example of this line
of research. However, events use contextual information
about other events, unlike extraction patterns and case
frames.

The idea of a script originated with Schank and Abel-
son (1977) through research on human knowledge struc-
tures, and was demonstrated in the SAM system (Culling-
ford, 1978). Later work includes manual creation of a va-
riety of knowledge structures including scripts to under-
stand stories (Lehnert et al., 1983), application of man-
ually generated scripts to the processing of newswire
stories (DeJong, 1982), and a combination of apply-
ing manually generated scripts to information retrieval
and applying genetic algorithms to adjusting existing
scripts (Mauldin, 1989).

Semantic lexicons have been the focus of much re-
search. WordNet (Fellbaum, 1998) is a prominent exam-
ple of a manually generated lexicon. Two recent projects
in learning semantic lexicons apply automated techniques
to a small set of human provided seed words to create
lists of words that the systems assign to the same se-
mantic category. Each project uses a different technique
to evaluate word similarity. Thelen (2002) uses similar
context within a sentence. Phillips (2002) mines syn-
tactic structures. Other researchers have also clustered
words to create semantic lexicons. Lin (1998) created a
thesaurus using syntactic relationships with other words.

Rooth et al. (1999) used clustering to create clusters sim-
ilar to Levin verb classes (Levin, 1993). Pereira, Tishby
and Lee (1993) clustered words according to context.

6 Conclusion

Both of our criteria play essential roles in the event gen-
eration process. Using similarity alone would combine
all clauses that, while similar on the surface, actually are
referring to different types of occurrences. Using context
alone would combine all clauses encountered in the same
position relative to some other clause. Either approach al-
lows excessive noise to contaminate the resulting events.

Our event generation technique is an essential part of
SPANIEL, our event correlation learning system. With-
out a means for combining nodes, the system would be
unable to generalize between different authors’ descrip-
tions of occurrences, unless they used exactly the same
terminology. While standardized lexicons have been in-
vestigated (Kamprath et al., 1998), their use has not be-
come common. Therefore, competent event generation is
required for success in detecting event correlations.

In addition to their role in event correlations, events
could be used as information extraction tools. Using mul-
tiple fillers from different nodes for two primary slots
makes the event potentially useful as a pattern for extract-
ing fillers for the third slot from specific documents.

Our results show that this technique for generating
events produces encouragingly coherent events and out-
performs randomly grouping nodes. Our technique for
exploiting the training texts during event generation is
relatively simple. Possible future work includes testing
other algorithms for combining nodes, such as standard
clustering techniques. In summary, we have defined an
interesting problem and provided useful insight into its
solution, which furthers our research into learning event
correlations.

7 Acknowledgements

We would like to thank Robert Cornell and Donald Jones
for evaluating our system.

References
Peter Clark and Bruce Porter. 1995. Constructing scripts

from components: Working note 6. Unpublished
manuscript, University of Texas at Austin.

Richard Cullingford. 1978. Script Application: Com-
puter Understanding of Newspaper Stories. Ph.D. the-
sis, Yale University, New Haven, Connecticut.

Gerald DeJong. 1982. An overview of the FRUMP sys-
tem. In Wendy Lehnert and Martin Ringle, editors,
Strategies for Natural Language Processing. Lawrence
Erlbaum Associates, Hillsdale, New Jersey.

Christiane Fellbaum, editor. 1998. WordNet, An Elec-
tronic Lexical Database. MIT Press.

Christine Kamprath, Eric Adolphson, Teruko Mitamura,
and Eric Nyberg. 1998. Controlled language for mul-
tilingual document production: Experience with cater-
pillar technical english. In Proceedings of the Second
International Workshop on Controlled Language Ap-
plications (CLAW ’98).

Wendy Lehnert, Michael Dyer, Peter Johnson, C J Yang,
and Steve Harley. 1983. BORIS — an experiment in
in-depth understanding of narratives. Artificial Intelli-
gence, 20:15–62.

Beth Levin. 1993. English Verb Classes and Alterna-
tions: A Preliminary Investigation. The University of
Chicago Press, Chicago, IL.

Dekang Lin. 1998. Automatic retrieval and clustering
of similar words. In Proceedings of COLINGACL ’98,
Montreal, Canada, August.

Michael L. Mauldin. 1989. Information Retrieval by Text
Skimming. Ph.D. thesis, Carnegie Mellon University,
Pittsburgh, PA.

Raymond Mooney and Gerald DeJong. 1985. Learning
schemata for natural language processing. In Proceed-
ings of IJCAI-85.

Fernando Pereira, Naftali Tishby, and Lillian Lee. 1993.
Distributional clustering of english words. In Proceed-
ings of ACL-93.

William Phillips and Ellen Riloff. 2002. Exploiting
strong syntactic heuristics and co-training to learn se-
mantic lexicons. In Proceedings of EMNLP-2002.

Ellen Riloff and Mark Schmelzenbach. 1998. An em-
pirical approach to conceptual case frame acquisition.
In Proceedings of the Sixth Workshop on Very Large
Corpora.

Mats Rooth, Stefan Riezler, Detlaf Prescher, Glenn Car-
roll, and Franz Beil. 1999. Inducing a semantically an-
notated lexicon via em-based clustering. In Proceed-
ings of ACL-99.

Roger Schank and Robert Abelson. 1977. Scripts, Plans,
Goals and Understanding: An Inquiry into Human
Knowledge Structures. Lawrence Erlbaum Associates,
Hillsdale, New Jersey.

Roger Schank and Christopher Riesbeck, editors. 1981.
Inside Computer Understanding: Five Programs Plus
Miniatures. Lawrence Erlbaum Associates, Hillsdale,
New Jersey.

Michael Thelen and Ellen Riloff. 2002. A bootstrapping
method for learning semantic lexicons using extraction
pattern contexts. In Proceedings of EMNLP-2002.

