
An Efficient Clustering Algorithm for Class-based Language Models

Takuya Matsuzaki� Yusuke Miyao�
�Department of Computer Science, University of Tokyo

Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 JAPAN
�CREST, JST (Japan Science and Technology Corporation)
Honcho 4-1-8, Kawaguchi-shi, Saitama 332-0012 JAPAN

�matuzaki,yusuke,tsujii�@is.s.u-tokyo.ac.jp

Jun’ichi Tsujii��

Abstract

This paper defines a general form for class-
based probabilistic language models and pro-
poses an efficient algorithm for clustering
based on this. Our evaluation experiments re-
vealed that our method decreased computation
time drastically, while retaining accuracy.

1 Introduction

Clustering algorithms have been extensively studied in
the research area of natural language processing because
many researchers have proved that “classes” obtained by
clustering can improve the performance of various NLP
tasks. Examples have been class-based �-gram models
(Brown et al., 1992; Kneser and Ney, 1993), smooth-
ing techniques for structural disambiguation (Li and Abe,
1998) and word sense disambiguation (Shütze, 1998).

In this paper, we define a general form for class-based
probabilistic language models, and propose an efficient
and model-theoretic algorithm for clustering based on
this. The algorithm involves three operations, CLAS-
SIFY, MERGE, and SPLIT, all of which decreases the
optimization function based on the MDL principle (Ris-
sanen, 1984), and can efficiently find a point near the lo-
cal optimum. The algorithm is applicable to more general
tasks than existing studies (Li and Abe, 1998; Berkhin
and Becher, 2002), and computational costs are signifi-
cantly small, which allows its application to very large
corpora.

Clustering algorithms may be classified into three
types. The first is a type that uses various heuristic mea-
sure of similarity between the elements to be clustered
and has no interpretation as a probability model (Widdow,
2002). The resulting clusters from this type of method
are not guaranteed to work effectively as a component
of a statistical language model, because the similarity
used in clustering is not derived from the criterion in the

learning process of the statistical model, e.g. likelihood.
The second type has clear interpretation as a probability
model, but no criteria to determine the number of clusters
(Brown et al., 1992; Kneser and Ney, 1993). The perfor-
mance of methods of this type depend on the number of
clusters that must be specified before the clustering pro-
cess. It may prove rather troublesome to determine the
proper number of clusters in this type of method. The
third has interpretation as a probability model and uses
some statistically motivated model selection criteria to
determine the proper number of clusters. This type has
a clear advantage compared to the second. AutoClass
(Cheeseman and Stutz, 1996), the Bayesian model merg-
ing method (Stolcke and Omohundro, 1996) and Li’s
method (Li, 2002) are examples of this type. AutoClass
and the Bayesian model merging are based on soft clus-
tering models and Li’s method is based on a hard clus-
tering model. In general, computational costs for hard
clustering models are lower than that for soft clustering
models. However, the time complexity of Li’s method is
of cubic order in the size of the vocabulary. Therefore, it
is not practical to apply it to large corpora.

Our model and clustering algorithm provide a solution
to these problems with existing clustering algorithms.
Since the model has clear interpretation as a probability
model, the clustering algorithm uses MDL as clustering
criteria and using a combination of top-down clustering,
bottom-up clustering, and a K-means style exchange al-
gorithm, the method we propose can perform the cluster-
ing efficiently.

We evaluated the algorithm through experiments on
a disambiguation task of Japanese dependency analysis.
In the experiments, we observed that the proposed algo-
rithm’s computation time is roughly linear to the size of
the vocabulary, and it performed slightly better than the
existing method. Our main intention in the experiments
was to see improvements in terms of computational cost,
not in performance in the test task. We will show, in Sec-

tions 2 and 3, that the proposed method can be applied
to a broader range of tasks than the test task we evalu-
ate in the experiments in Section 4. We need further ex-
periments to determine the performance of the proposed
method with more general tasks.

2 Probability model

2.1 Class-based language modeling

Our probability model is a class-based model and it is an
extension of the model proposed by Li and Abe (1998).
We extend their two-dimensional class model to a multi-
dimensional class model, i.e., we incorporate an arbitrary
number of random variables in our model.

Although our probability model and learning algorithm
are general and not restricted to particular domains, we
mainly intend to use them in natural language process-
ing tasks where large amounts of lexical knowledge are
required. When we incorporate lexical information into
a model, we inevitably face the data-sparseness problem.
The idea of ‘word class’ (Brown et al., 1992) gives a gen-
eral solution to this problem. A word class is a group
of words which performs similarly in some linguistic
phenomena. Part-of-speech are well-known examples of
such classes. Incorporating word classes into linguistic
models yields good smoothing or, hopefully, meaningful
generalization from given samples.

2.2 Model definition

Let us introduce some notations to define our model. In
our model, we have considered � kinds of discrete ran-
dom variables ��� ��� � � � � �� and their joint distribu-
tion. �� denotes a set of possible values for the �-th vari-
able ��. Our probability model assumes disjunctive par-
titions of each ��, which are denoted by ��’s. A disjunc-
tive partition � � ���� ��� � � � � ��� of � is a subset of
��, and satisfies �� � �� � 	 �
 �� �� and � � �������.
We call elements in a partition �� classes of elements in
��. ��

� , or �� for short, denotes a class in �� which
contains an element � � ��.

With these notations, our probability model is ex-
pressed as:

 ��� � ��� �� � ��� � � � � �� � ���

�
 ���� � ��� � � � � � ����

��

���

 ��� � ����� (1)

In this paper, we have considered a hard clustering model,
i.e.,
 ����� � � for any � �� �. Li & Abe’s model
(1998) is an instance of this joint probability model,
where � � �. Using more than 2 variables the model can
represent the probability for the co-occurrence of triplets,
such as �subject, verb, object�.

2.3 Clustering criterion

To determine the proper number of classes in each par-
tition ��� � � � � ��, we need criteria other than the maxi-
mum likelihood criterion, because likelihood always be-
come greater when we use smaller classes. We can see
this class number decision problem as a model selection
problem and apply some statistically motivated model
selection criteria. As mentioned previously (following
Li and Abe (1998)) we used the MDL principle as our
clustering criterion.

Assume that we have � samples of co-occurrence
data:

� � ��� � ����� ���� � � � � ���� �
 � �� �� � � � � ���

The objective function in both clustering and parame-
ter estimations in our method is the description length,
������, which is defined as follows:

������ � � ��	�� ���
 ����� (2)

where � denotes the model and �� ��� is the likelihood
of samples � under model � :

�� ��� �

	�

���

 ����� ���� � � � � ����� (3)

The first term in Eq.2, � ��	�� ���, is called the data
description length. The second term, ����, is called the
model description length, and when sample size � is
large, it can be approximated as

���� �
�

�
��	��

where � is the number of free parameters in model � .
We used this approximated form throughout this paper.
Given the number of classes, �� � ���� for each � �
�� � � � � �, we have

��
��� ��� � free parameters for joint

probabilities
 ���� ��� ���. Also, for each class �, we
have ���� � free parameters for conditional probabilities

 �����, where � � �. Thus, we have

� �
��

���

�

���

���� � ��

��

���

�� � �

�

��

���

����� ����

��

���

�� � ��

Our learning algorithm tries to minimize ������ by
adjusting the parameters in the model, selecting partition
�� of each ��, and choosing the numbers of classes, ��

in each partition ��.

3 Clustering algorithm

Our clustering algorithm is a combination of three ba-
sic operations: CLASSIFY, SPLIT and MERGE. We it-
eratively invoke these until a terminate condition is met.
Briefly, these three work as follows. The CLASSIFY
takes a partition � in � as input and improves the par-
tition by moving the elements in � from one class to an-
other. This operation is similar to one iteration in the K-
means algorithm. The MERGE takes a partition � as in-
put and successively chooses two classes �� and �� from
� and replaces them with their union,����� . The SPLIT
takes a class, �, and tries to find the best division of �
into two new classes, which will decrease the description
length the most.

All of these three basic operations decrease the de-
scription length. Consequently, our overall algorithm
also decreases the description length monotonically and
stops when all three operations cause no decrease in de-
scription length. Strictly, this termination does not guar-
antee the resulting partitions to be even locally opti-
mal, because SPLIT operations do not perform exhaus-
tive searches in all possible divisions of a class. Doing
such an exhaustive search is almost impossible for a class
of modest size, because the time complexity of such an
exhaustive search is of exponential order to the size of the
class. However, by properly selecting the number of tri-
als in SPLIT, we can expect the results to approach some
local optimum.

It is clear that the way the three operations are com-
bined affects the performance of the resulting class-based
model and the computation time required in learning. In
this paper, we basically take a top-down, divisive strat-
egy, but at each stage of division we do CLASSIFY op-
erations on the set of classes at each stage. When we
cannot divide any classes and CLASSIFY cannot move
any elements, we invoke MERGE to merge classes that
are too finely divided. This top-down strategy can drasti-
cally decrease the amount of computation time compared
to the bottom-up approaches used by Brown et al. (1992)
and Li and Abe (1998).

The following is the precise algorithm for our main
procedure:

Algorithm 1 MAIN PROCEDURE(�)

INPUT

� : an integer specifying the number of trials in a
SPLIT operation

OUTPUT
Partitions ��� ��� �� and estimated parameters in the
model

PROCEDURE

Step 0 ���� ��� ��� 	 INITIALIZE����� ������ ��

Step 1 Do Step 2 through Step 3 until no change is made
through one iteration

Step 2 For � � �� ��� �, do Step 2.1 through Step 2.2

Step 2.1 Do Step 2.1.1 until no change occurs through it

Step 2.1.1 For � � �� ��� � , �� 	 CLASSIFY����

Step 2.2 For each � � ��, � 	 SPLIT��� ��

Step 3 For � � �� ��� �, �� 	 MERGE����

Step 4 Return the resulting partitions with the parame-
ters in the model

In the Step 0 of the algorithm, INITIALIZE creates
the initial partitions of ��� � � � � ��. It first divides each
��� � � � � �� into two classes and then applies CLASSIFY
to each partition ��� � � � � �� one by one, while any ele-
ments can move.

The following subsections explain the algorithm for
the three basic operations in detail and show that they
decrease ������ monotonically.

3.1 Iterative classification

In this subsection, we explain a way of finding a local
optimum in the possible classification of elements in ��,
given the numbers of classes in partitions ��.

Given the number of classes, optimization in terms of
the description length (Eq.2) is just the same as optimiz-
ing the likelihood (Eq.3). We used a greedy algorithm
which monotonically increases the likelihood while
updating classification. Our method is a generalized
version of the previously reported K-means/EM-
algorithm-style, iterative-classification methods in
Kneser and Ney (1993), Berkhin and Becher (2002) and
Dhillon et al. (2002). We demonstrate that the method is
applicable to more generic situations than those previ-
ously reported, where the number of random variables is
arbitrary.

To explain the algorithm more fully, we define ‘counter
functions’ ����� as follows:

����� � ��� � � � �� � ���

����� � ��� � � � �� � ���

����� ��� ��� � ��� � � � �� � ��� ����� � ���

����� ��� ����� �� ����� ��� ���

� ��� � � � �� � ���
 �� ����� � ��

where the hatch (�) denotes the cardinality of a set and
�� is the �-th variable in sample �. We used � ��	 � � �,
in this subsection.

Our classification method is variable-wise. That is, to
classify elements in each ��� � � � � ��, we classified the
elements in each �� in order. The precise algorithm is as
follows:

Algorithm 2 CLASSIFY(��)

INPUT �� : a partition in ��

OUTPUT An improved partition in ��

PROCEDURE

Step 1 Do steps 2.1 through 2.3 until no elements in ��

can move from their current class to another one.

Step 2.1 For each element � � ��, choose a class � �
� �

�� which satisfies the following two conditions:

1. � �
� is not empty �� �

� �� 	� , and

2. � �
� maximizes following quantity ����� �

��:

����� �
�� �

�

����

����� ��� ����� �� ����� ��� ���

 ��	
����� ��� ����� � �

�� �
���� ��� ���

��� �
��

�

When the class containing � now, ��, maximizes �,
select �� as � �

� even if some other classes also max-
imize �.

Step 2.2 Update partition �� by moving each � � �� to
the classes which were selected as � �

� for � in Step
2.1.

Step 2.3 Update the parameters by maximum likelihood
estimation according to the updated partition.

Step 3 Return improved partition ��.

In Step 2.3, the maximum likelihood estimation of the
parameters are given as follows:

 �� � ��
�� �

����

����
��

�
 ���� ��� ��� �
����� ��� ���

�
�

(4)
To see why this algorithm monotonically increases the

likelihood (Eq.3), it is sufficient to check that, for vari-
able �� and any classification before Steps 2 and 3, do-
ing Steps 2 and 3 positively changes the log likelihood
(Eq.3). We can show this as follows.

First, assume � � � without loss of generality. Let
�� � ���� � � � � ���

� and �� � ���� � � � � ���
� denote

the partitions before/after Step 2, respectively. Let �� �
�� and �� � �� denote the classes where an element
� � �� belongs, before and after Step 2, respectively.
Also, let � �

� � �� denote the class which was chosen for
� in Step 2.1 in the algorithm. Note that � �

� is different

from �� as a set. However, with these notations, it holds
that if � �

� � � �

, then �� � �
. We also use the suffixes

in notations �� and �� as it holds that, if � �
� � ��, then

� � ��.
Using Eq.4, we can write the change in the log likeli-

hood, ����	�� as follows:

����	��

�
�

����

�

������ ���

������� ��� ��� ��	
����� �

�� ��� ���

�����

�
�

����

�

������ ���

������� ��� ��� ��	
����� �

�� ��� ���

�����
�

(5)

To see the difference is � �, we insert the intermediate
terms into the right of Eq.5 and transform it as:

����	��

�
�

����

�

������ ���

������� ��� ��� ��	
����� �

�� ��� ���

�����

�
�

����

�

������ ���

������� ��� ��� ��	
��� �

�� �
�� ��� ���

��� �
��

�

����

�

������ ���

������� ��� ��� ��	
��� �

�� �
�� ��� ���

��� �
��

�
�

����

�

������ ���

������� ��� ��� ��	
����� �

�� ��� ���

�����

�
�

����������

�

���� �� ���

����� �
�� ��� ���

���	
����� �

�� ��� ���

�����
� ��	

����� �
�� ��� ���

�����
� (6)

�

����

������ �
��� ��������� (7)

In the last expression, each term in the summation (7)
is � � according to the conditions in Step 2 of the al-
gorithm. Then, the summation (7) as a whole is always
� � and only equals 0 if no elements are moved. We
can confirm that the summation (6) is positive, through
an optimization problem:

maximize the following quantity
�

����������

�

����

����� �
�� ��� ��� ��	����� ��� ������

under the condition:
�

����

����� ��� �� � ��� � �

for any ����� 	� � ��.
����� is � � because �� �� 	, and ����� �

�� ��� ���
is always � �. Thus, the solution to this problem is given
by:

����� ��� �� � ��� �
����� �

�� ��� ���

�����

for any ����� 	� � ��. Through this, we can conclude
that the summation (6) is � �. Therefore, ����	�� � �
holds, i.e., CLASSIFY increases log likelihood monoton-
ically.

3.2 SPLIT operation

The SPLIT takes a class as input and tries to find a way
to divide it into two sub-classes in such a way as to re-
duce description length. As mentioned earlier, to find the
best division in a class requires computation time that is
exponential to the size of the class. We will first use a
brute-force approach here. Let us simply try � random
divisions, rearrange them with CLASSIFY and use the
best one. If the best division does not reduce the descrip-
tion length, we will not change the class at all. It may
possible to use a more sophisticated initialization scheme,
but this simple method yielded satisfactory results in our
experiment.

The following is the precise algorithm for SPLIT:

Algorithm 3 SPLIT(�, �)

INPUT

� : a class to be split

� : an integer specifying the number of trials

OUTPUT
Two new classes �� and �� on success, or � with
no modifications on failure

PROCEDURE

Step 1 Do Steps 2.1 through 2.3 J times

Step 2.1 Randomly divide � into two classes

Step 2.2 Apply CLASSIFY to these two classes

Step 2.3 Record the resulting two classes in Step 2.2 with
the reduced description length produced by this split

Step 3 Find the maximum reduction in the records

Step 4 If this maximum reduction � �, return the corre-
sponding two classes as output, or return � if the
maximum � �

Clearly, this operation decreases ������ on success
and does not change it on failure.

3.3 MERGE operation

The MERGE takes partition � as input and successively
chooses two classes �� and �� from � and replaces them
with their union �� ��� . This operation thus reduces the
number of classes in � and accordingly reduces the num-
ber of parameters in the model. Therefore, if we properly
choose the ‘redundant’ classes in a partition, this merging
reduces the description length by the greater reduction in
the model description length which surpasses the loss in
log-likelihood.

Our MERGE is almost the same procedure as that de-
scribed by Li (2002). We first compute the reduction in
description length for all possible merges and record the
amount of reduction in a table. We then do the merges in
order of reduction, while updating the table.

The following is the precise algorithm for MERGE.
In the pseudo code, Æ�� denotes the reduction in ������
which results in the merging of �� and �� .

Algorithm 4 MERGE(�)

INPUT � : a partition in �

OUTPUT An improved partition in � on success, or the
same partition as the input on failure

PROCEDURE

Step 1 For each pair ���� ��� in � compute Æ�� and
store them in a table.

Step 2 Do Step 3.1 through 3.5 until the termination con-
dition in 3.2 is met

Step 3.1 Find the maximum, Æ��	, in all Æ��

Step 3.2 If Æ��	 � �, return the updated partition, or
else go to Step 3.3.

Step 3.3 Replace the class pair ���� ��� which corre-
sponds to Æ��	, with their union �� � �� � ��.

Step 3.4 Delete all Æ�� ’s which concern the merged
classes �� or �� from the table.

Step 3.5 For each �� in � ��� �� ���, compute Æ�� and
store them in the table.

It is clear from the termination condition in Step 3.2
that this operation reduces ������ on success but does
not change it on failure.

4 Evaluation

This section discusses the results of the evaluation ex-
periment where we compared three clustering methods:
i.e., our method, Li’s agglomerative method described in
Li (2002), and a restricted version of our method that only
uses CLASSIFY.

4.1 Evaluation task

We used a simplified version of the dependency analysis
task for Japanese for the evaluation experiment.

In Japanese, a sentence can be thought of as an array of
phrasal units called ‘bunsetsu’ and the dependency struc-
ture of a sentence can be represented by the relationships
between these bunsetsus. A bunsetsu consists of one or
more content words and zero or more function words that
follow these.

For example, the Japanese sentence

Ryoushi-ga kawa-de oyogu nezumi-wo utta.
hunter-SUBJ river-in swim mouse-OBJ shot

(A hunter shot a mouse which swam in the river.)

contains five bunsetsus � Ryoushi-ga, kawa-de, oyogu,
nezumi-wo, utta � and their dependency relations are as
follows:

Ryoushi-ga
 utta kawa-de
 oyogu
oyogu
 nezumi-wo nezumi-wo
 utta

Our task is, given an input bunsetsu, to output the cor-
rect bunsetsu on which the input bunsetsu depends. In
this task, we considered the dependency relations of lim-
ited types. That is the dependency of types: noun-pp

pred , where noun is a noun, or the head of a compound
noun, pp is one of 9 postpositions �ga, wo, ni, de, to,
he, made, kara, yori� and pred is a bunsetsu which con-
tains a verb or an adjective as its content word part. We
restricted possible dependee bunsetsus to be those to the
right of the input bunsetsus because in Japanese, basically
all dependency relations are from left to right. Thus, our
test data is in the form

� noun-pp� �pred�� ��� pred�� �� (8)

where �pred�,...,pred�� is the set of all candidate de-
pendee bunsetsus that are to the right of the input depen-
dent bunsetsu noun-pp in a sentence. The task is to select
the correct dependee of noun-pp from �pred�,..,pred��.

Our training data is in the form ��, noun, pp, pred�.
A sample of this form represents two bunsetsus, noun-
pp and pred within a sentence, in this order, and � �
�
��� denotes whether they are in a dependency relation
(� �
), or not (� � �). From these types of samples,
we want to estimate probability
 ��� noun� pp� pred� and
use these to approximate probability ��, where given the
test data in Eq.8, pred� is the correct answer, expressed
as

�� �
 �
� noun� pp� pred��
�

� ���

 ��� noun� pp� pred���

We approximated the probability of occurrence for
sample type � � � expressed as

 ��� noun� pp� pred� �
 ��� noun�
 ��� pp� pred��

and estimated these from the raw frequencies. For the
probability of type � �
, we treated a pair of pp and
pred as one variable, pp:pred, expressed as

 �
� noun� pp� pred� �
��noun� pp:pred��

and estimated
��noun� pp:pred� from the training data.
Thus, our decision rule given test data (Eq.8) is, to

select pred� where � is the index which maximizes the
value

��noun� pp:pred��

 ��� pp� pred��

�

We extracted the training samples and the test data
from the EDR Japanese corpus (EDR, 1994). We ex-
tracted all the positive (i.e., � �
) and negative (� � �)
relation samples and divided them into 10 disjunctive sets
for 10-fold cross validation. When we divided the sam-
ples, all the relations extracted from one sentence were
put together in one of 10 sets. When a set was used as
the test data, these relations from one sentence were used
as the test data of the form (Eq.8). Of course, we did not
use samples with only one pred. In the results in the next
subsection, the ‘training data of size �’ means where we
used a subset of positive samples that were covered by the
most frequent � nouns and the most frequent � pp:pred
pairs.

4.2 Results

In this experiments, we compared three methods: ours,
Li’s described in Li (2002), and a restricted version of
our method that only uses CLASSIFY operations. The
last method is simply called ‘the CLASSIFY method’
in this subsection. We used 10 as parameter � in our
method, which specifies the number of trials in initializa-
tion and each SPLIT operation. Li’s method (2002) uses
the MDL principle as clustering criteria and creates word
classes in a bottom-up fashion. Parameters � and � in
his method, which specify the maximum numbers of suc-
cessive merges in each dimension, were both set to 100.
The CLASSIFY method performs K-means style itera-
tive clustering and requires that the number of clusters be
specified beforehand. We set these to be the same as the
number of clusters created by our method in each train-
ing set. By evaluating the differences in the performance
of ours and the CLASSIFY method, we can see advan-
tages in our top-down approach guided by the MDL prin-
ciple, compared to the K-means style approach that uses a
fixed number of clusters.We expect that these advantages
will remain when compared to other previously reported,
K-means style methods (Kneser and Ney, 1993; Berkhin
and Becher, 2002; Dhillon et al., 2002).

In the results, precision refers to the ratio !��!
 "�
and coverage refers to the ratio !�#, where ! and " denote
the numbers of correct and wrong predictions, and # de-
notes the number of all test data. All the ‘ties cases’ were

1

10

100

1000

10000

100000

1000 10000 100000

co
m

pu
ta

tio
n

tim
e

(s
ec

)

size of vocabulary

our method
Li’s method
CLASSIFY

Figure 1: Computation time

10

100

1000

10000

100000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

co
m

pu
ta

tio
n

tim
e(

se
c)

coverage

our method
Li’s method

Figure 2: Coverage-Cost plot

treated as wrong answers ("), where a ‘tie case’ means
a situation where two or more predictions are made with
the same maximum probabilities.

All digits are averages of results for ten training-test
pairs, except for Li’s method where the training sets were
8k or more. The results of the Li’s method on training
set of 8k were the averages over two training-test pairs.
We could not do more trials with Li’s method due to time
constraints. All experiments were done on Pentium III
1.2-GHz computers and the reported computation times
are wall-clock times.

Figure 1 shows the computation time as a function of
the size of the vocabulary, i.e., the number of nouns plus
the number of case frame slots (i.e., pp:pred) in the train-
ing data. We can clearly see the efficiency of our method
in the plot, compared to Li’s method. The log-log plot re-
veals our time complexity is roughly linear to the size of
the vocabulary in these data sets. This is about two orders
lower than that for Li’s method.

There is little relevance in comparing the speed of the

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

pr
ec

is
io

n

coverage

our method
Li’s method
CLASSIFY

Figure 3: Coverage-precision plot

CLASSIFY method to the speed of the other two meth-
ods, because its computation time does not include the
time required to decide the proper number of classes. Of
more interest is to see its seeming speed-up in the largest
data sets. This implies that, in large and sparse training
data, the CLASSIFY method was caught in some bad lo-
cal optima at some early points on the way to better local
optima.

Figure 2 has the computation times as a function of
the coverage which is achieved using that computation
time. From this, we would expect our method to reach
higher coverage within a realistic time if we used larger
quantities of training data. To determine this, we need
other experiments using larger corpora, which we intend
to do in the future.

Table 1 lists the description lengths for training data
from 1 to 32k and Table 2 shows the precision and cov-
erage achieved by each method with this data. In these
tables, we can see that our method works slightly better
than Li’s method as an optimization method which min-
imizes the description length, and also in the evaluation
tasks. Therefore, we can say that our method decreased
computational costs without losing accuracy. We can also
see that ours always performs better than the CLASSIFY
method. Both ours and the CLASSIFY method use ran-
dom initializations, but from the results, it seems that our
top-down, divisive strategy in combination with K-means
like swapping and merging operations avoids the poor lo-
cal optima where the CLASSIFY method was caught.

Figure 3 also presents the results in terms of coverage-
precision trade-off. We can see that our method selected
always better points in the trade-off than Li’s method or
the CLASSIFY method.

From these results, we can conclude that our cluster-
ing algorithm is more efficient and yields slightly better
results than Li’s method, which uses the same cluster-
ing criterion. We can also expect that our combined ap-

size of test data 1k 2k 3k 4k 5k 8k 16k 32k
our method 1.15 1.88 2.38 2.76 3.13 3.77 5.03 6.21
Li’s method 1.16 1.89 2.40 2.80 3.17 3.85 N/A N/A
CLASSIFY 1.16 1.89 2.39 2.77 3.14 3.79 5.08 6.31

Table 1: Description length in training data sets (unit: �
 ��
)

size of training data 1k 2k 3k 4k 5k 8k 16k 32k
our method precision 0.805 0.799 0.798 0.794 0.791 0.797 0.780 0.745

coverage 0.043 0.076 0.109 0.136 0.163 0.245 0.362 0.429
Li’s method precision 0.802 0.795 0.793 0.786 0.784 0.791 N/A N/A

coverage 0.043 0.076 0.109 0.135 0.162 0.242 N/A N/A
CLASSIFY precision 0.797 0.792 0.789 0.785 0.786 0.789 0.768 0.741

coverage 0.042 0.075 0.108 0.135 0.162 0.242 0.356 0.427

Table 2: Performance of each method in the evaluation task

proach with the MDL principle will have advantages in
large and sparse data compared to existing K-means style
approaches where the number of the clusters is fixed.

5 Conclusion

This paper proposed a general, class-based probability
model and described a clustering algorithm for it, which
we evaluated through experiments on a disambiguation
task of Japanese dependency analysis. We obtained the
following results. (1) Our clustering algorithm was much
more efficient than the existing method that uses the same
objective function and the same kind of model. (2) It
worked better as an optimization algorithm for the de-
scription length than the existing method. (3) It per-
formed better in the test task than an existing method and
another method that is similar to other existing methods.

References

Andreas Stolcke and Stephen M. Omohundro. 1994.
Best-first Model Merging for Hidden Markov Model
Induction. Technical Report TR-94-003, Computer
Science Division, University of California at Berkeley
and International Science Institute.

Dominic Widdow and Beate Dorow. 2002. A Graph
Model for Unsupervised Lexical Acquisition. Pro-
ceedings of the 19th International Conference on Com-
putational Linguistics, 1093–1099.

EDR. 1994. EDR (Japanese Electronic Dictionary Re-
search Institute, Ltd) dictionary version 1.5 technical
guide.

Hang Li. 2002. Word Clustering and Disambiguation
based on Co-occurrence Data, Natural Language En-
gineering, 8(1), 25-42.

Hang Li and Naoki Abe. 1998. Word Clustering and
Disambiguation Based on Co-occurrence data. Pro-
ceedings of the 18th International Conference on Com-
putational Linguistics and the 36th Annual Meeting of
Association for Computational Linguistics, 749–755.

Hinrich Schütze. 1998. Automatic Word Sense Discrim-
ination Computational Linguistics, 24(1) 97–124.

Inderjit S. Dhillon, Subramanyam Mallela and Rahul Ku-
mar. 2002. Information Theoretic Feature Clustering
for Text Classification. The Nineteenth International
Conference on Machine Learning, Workshop on Text
Learning.

Jorma Rissanen. 1984. Universal Coding, Information,
Prediction, and Estimation. IEEE Transactions on In-
formation theory, Vol. IT-30(4):629–636

Pavel Berkhin and Jonathan Becher. 2002. Learning
Simple Relations: Theory and Applications. In Pro-
ceedings of the Second SIAM International Conference
on Data Mining, 420–436.

Peter F. Brown, Vincent J. Della Pietra, Peter V. deSouza,
Jennifer C. Lai and Robert L. Mercer. 1992. Class-
Based n-gram Models of Natural Language. Compu-
tational Linguistics 18(4):467-479.

Peter Cheeseman and John Stutz. 1996. Bayesian Clas-
sification (AutoClass): Theory and Results. In U.
Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthu-
rusamy (Eds.), Advances in Knowledge Discovery and
Data Mining, 153–180. AAAI Press.

Reinherd Kneser and Hermann Ney. 1993. Improved
Clustering Techniques for Class-Based Statistical Lan-
guage Modelling. In Proceedings of the 3rd European
Conference on Speech Communication and Technol-
ogy, 973–976.

