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Abstract

The purpose of this work is to investigate the
use of machine learning approaches for confi-
dence estimation within a statistical machine
translation application. Specifically, we at-

tempt to learn probabilities of correctness for
various model predictions, based on the native
probabilites (i.e. the probabilites given by the

original model) and on features of the current
context. Our experiments were conducted us-
ing three original translation models and two

types of neural nets (single-layer and multi-

layer perceptrons) for the confidence estima-
tion task.

Introduction

George Foster
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a large space of output sentences, represented as se-
guences of words.

Given a statistical model that produces a probabilistic
score, a straightforward way of obtaining a true probabil-
ity is to use the score as input to another model whose
output is interpreted as the desired probability. The idea
is that the second model can learn how to transform the
base model’s score by observing its performance on new
text, possibly in conjunction with other features. This ap-
proach, which is known as confidence estimation (CE), is
widely used in speech recognition (Guillevic et al., 2002;
Moreno et al., 2001; Sanchis et al., 2003; Stolcke et al.,
1997) but is virtually unknown in other areas of natural
language progessing (NLP).

The alternatives to confidence estimation are tradi-
tional smoothing techniques such as backing off to sim-
pler models and cross validation, along with careful

Most statistical models used in natural language appifarginalization and scaling where applicable to obtain
cations are capable in principle of generating probabilitf’® desired posterior probabilities. There is some evi-
estimates for their outputs. However, in practice, thesgence (Wessel et al., 2001) that this approach can give
estimates are often quite poor and are usually interpret&gSults that are at least as good as those obtainable with
simply as scores that are monotonic with probabilities2" €xternal CE model. However, CE as we present it here
There are many contexts where good estimates of tri@ Not incompatible with traditional techniques, and has
probabilities are desirable:

several practical advantages. First, it can easily incorpo-
rate specialized features that are highly indicative of how

e in a decision-theoretic setting, posterior probabiliwell the base model will perform on a given input, but
ties are required in order to choose the lowest-coshat may be of little use for the task of choosing the out-
output for a given input. put. Since such features may be inconvenient to include

e when a collection of different models is available forIn the base model, CE represents a kind of modulariza-

some problem. output probabilities provide a rinci_tion, particularly as it may be possible to reuse some fea-
P »output p SP P tures for many different problems. Another advantage is
pled and convenient way of combining them; and

that a CE layer is usually much smaller and easier to train

¢ when mu|t|p|y|ng conditional probabi"ties to com- than the baseline model; this means that it can be used
pute joint distributions, the accuracy of the resulto rapidly adapt a system’s performance to new domains.
is crucially dependent on the stability of the con-Finally, CE typically concentrates on only the top few hy-

ditional estimates across different contexts—this IS~ 1 (ecent exception is Manmatha and Sever (2002), who de-

important for applications like speech recognitionscribe a form of confidence estimation for combining the results
and machine translation that perform searches ovef different query engines in information retrieval.



potheses output by the baseline model, which is an easi@gecide how much text to predict in a given context, bal-
task than estimating a complete distribution. This is esancing the greater potential benefit of longer predictions
pecially true when the hypotheses of interest are drawaigainst a greater likelihood of being wrong, and a higher
from a joint distribution that may be impossible in prac-cost to the user (in terms of distraction and editing) if they
tice to enumerate. are wrong or only partially right.

In this paper we describe an application of confidence Our solution to the problem of how much text to pre-
estimation to an interactive target-text prediction task imlict is based on a decision-theoretic framework in which
a translation setting, using two different types of neuralve attempt to find the prediction that maximizes the ex-
nets: single-layer perceptron (SLPs) and multi-layer pepected benefit to the translator in the current context (Fos-
ceptrons (MLPs) with 20 hidden units. ter et al., 2002b). Formally, we seek:

The main issues that we investigate here are:

% = argmax B(x|h,s), Q)

¢ the benefit that can be gained by using confidence x
estimatgs, in di.scrimination power aljd/or (_)VGr'allNherex is a prediction about what will followh in
application quality as computed by a simulation tha{he translation of a source sentengeand B(x|h, s)

estimates the benefit to the user; is the expected benefit in terms of typing time saved.

e the use of different machine learning (ML) tech—ASl described in (Foster et al., 2002d}(% |h,s) =
niques for CE; > ko P(k|x,h,s)B(x|h,s, k) depends on two main
quantities: the probabilityp(k|x, h,s) that exactlyk
o the relevance of various confidence features; and characters from the beginning of are correct, and
o ) ) ~ the benefitB(x|h,s, k) to the translator if this is the
e model combinations: we experiment with various;age. B(x|h,s, k) is estimated from a model of user
model combination schemes based on the CE laygghaviour—based on data collected in user trials of the
in order to improve the over-all prediction accuracyool—that captures the cost of reading a prediction and
of the application. performing any necessary editing, as well as the some-

what random nature of people’s decisions to accept. Pre-

Among the more interesting results we will present ar%tiction probabilities»(k[x, h, s) are derived from a statis-
the comparisons between the discrimination capacity ?lcal translation model fop(w|h, s), the probability that

the native probabilities and the probabilities of correct- . .
) some wordw will follow the target texth in the transla-
ness produced by the CE layer. Depending on the ui-
. . CY tion of a source sentenee
derlying SMT model, we obtained a relative improve- T . . .
Because optimizing (1) directly is expensive, we use

ment in correct rejection rate (CR) ranging fraén®0% o )
to 33.09% at a fixed0.80 correct acceptance rate (CA) a heuristic search proc_edure to _approxmfatd:o_r eagh
lengthm from 1 to a fixed maximum of\/ (4 in this

for prediction lengths of up to four words. We also mea- aper), we perform a Viterbi-like beam search with the

sured relative improvements of approximately 10% in ed . i o
timated benefit to the user with our application. translation model to find the sequence of worls =

In the following section we briefly describe the text Ly Wm most likely to follow h. For each such se-

prediction application we are aiming to improve. Next wedence, we fqrm a corresApondlng chara(_:ter sequﬁm_ce
and evaluate its benefl?(%,,, h,s). The final output is

outline the CE approach and the evaluation methods VYﬁe predictionk,, with maximum benefit, or nothing if
applied. Finally, we report the results obtained in our ex m '

. . . all benefit estimates are negative.
periments and conclude with suggestions for future work. . ,

To evaluate the system, we simulate a translator’s ac-
tions on a given source text, using an existing transla-
tion as the text the translator wishes to type, and the user
The application we are concerned with in this paper is amodel to determine his or her responses to predictions
interactive text prediction tool for translators. The sysand to estimate the resulting benefit. Further details are
tem observes a translator in the process of typing a targgitven in (Foster et al., 2002b).
text and, after every character typed, has the opportunit
to display a suggestion about what will come next, bas
on the source sentence under translation and the prefix\e experimented with three different translation models
its translation that has already been typed. The transléor p(w|h,s). All have the property of being fast enough
tor may incorporate suggestions into the text if they aréo support real-time searches for predictions of up to 5
helpful, or simply ignore them and keep typing. words.

Suggestions may range in length from 0 characters to The first model, referred to as Maxentl below, is a log-
the end of the target sentence; it is up to the system tmear combination of a trigram language model with a

2 Text Prediction for Translators

1 Translation Models



maximum entropy translation component that is an ananost probable prediction of length from an-best set
log of the IBM translation model 2 (Brown et al., 1993).of alternative predictions according to the base model. In
This model is described in (Foster, 2000). Its major weaksur experiments the prediction length varies between
ness is that it does not keep track of which words in thé and4 andn is at most5. As the n-best predictions
current source sentence have already been translated, gmd.,, ..., w?, } are themselves a function of the context,
hence it is prone to repeating previous suggestions. Thee will simply note the conditional probability of cor-
second model, called Maxent2 below, is similar to Maxrectness by(C = 1|W,,, h,s).
entl but with the addition of extra parameters to limit this We experimented with two types of neural nets: single-
behaviour (Foster et al., 2002a). layer perceptrons (SLPs) and multi-layer perceptrons
The final model, called Bayes below, is also describeMLPs) with 20 hidden units. For both, we used a
in (Foster etal., 2002a). It is a noisy-channel combinatioroftmax activation function and gradient descent train-
of a trigram language model and an IBM model 2 for theng with a negative log-likelihood error function. Given
source text given target text. This model has roughly thsuitably-behaved class-conditional feature distributions,
same theoretical predictive capability as Maxent2, but urthis setup is guaranteed to yield estimates of the true pos-
like the Maxent models it is not discriminatively trained,terior probabilities(C = 1|W,,, h,s) (Bishop, 1995).

and hence its native probability estimates tend to be much , i
worse than theirs. 3.1 Single Layer Neural Nets and Maximum

Entropy Models

2.2 Computing Smoothed Conditional Probabilities |t js interesting to note the relation between the SLP and
In order to calculate the character-based probabilmaximum entropy models. For the problem of estimating
ties p(k|x, h,s) required for estimating expected ben-p(y|x) for a set of classeg over a space of input vectors
efit, we need to know the conditional probabilitiesx, a single-layer neural net with “softmax” outputs takes
p(w|wy,...,w;_1,h,s) that some wordw will follow  the form:
wi,...,w;—1 in the context(h,s). These are derived -
from correctness estimates E)bta?ned from our confidence- plylx) = exp(dy - x +b)/Z(x)

estimation layer as follows. As explained below, eswhered, is a vector of weights for clasg, b is a bias
timates from the CE layer are in the form(C = term, andZ(x) is a normalization factor, the sum over
1|%,,, h,s), wherew,, is the most probable prediction all classes of the numerator. A maximum entropy model
of length m according to the base translation modelis a generalization of this in which an arbitrary feature
Define a smoothed joint distribution over predictions ofunctionf,(x) is used to transform the input space as a
lengthm as: function ofy:

p(C = 1|Wy, hys), w,, =W, p(ylx) = exp(a - f,(x))/Z(x).

ps(Wm|h,s) = { (Wi |h,8)/zm, else

@ Both models are trained by maximum likelihood meth-
wherep(wom|h,s) = []™, p(wi|w wi1,h,s) is ods. GivenC classes, the maximum entropy model can

ml i=1 PAWiW1, - - - Wi1, A, simulate a SLP by dividing its weight vector int@
calculated from the conditional probabilities given by theolocks each the size of, then usingf, (x) to pick out
base model; and theyth,block: ' Y

o £ = (01,00
= ) - Ty e-s —17X,O 17...70071)’
o 17p(0 = 1|Wm,h,s) v Y y+

where eacl®; is a vector of0’s and the final 1 yields a
is a normalization factor. Then the required smoothefias term.

conditional probabilities are estimated from the smoothed The advantage of maximum-entropy models is that

joint distributions in a straightforward way: their features can depend on the target class. For natural-
h language applications where target classes correspond to
ps(wlwr,. .., wi_1,h,s) = ps(wi; - - Wiz, w}|l ’S)’ words, this produces an economical and powerful repre-
ps(wi, ..., wi_1]h,s) sentation. However, for CE, where the output is binary

(correct or incorrect), this capacity is less interesting. In
fact, there is no a priori reason to use a different set of
features for correct outputs or incorrect ones, so the nat-
ural form of a maxent model for this problem is identical
Our approach for CE consists in training neural nets to e$s a SLP (modulo a bias term). Therefore the experiments
timate the conditional probability of correctnegs®” =  we describe below can be seen as a comparison between
W, h,s, {wl ... w"}), wherew,, = w} is the maxent models and neural nets with a hidden layer.

wherep(ws, ..., w;—1|/h,s) = 1 wheni = 1.

3 Confidence Estimation with Neural Nets



3.2 Confidence Features D is the rate of correct tokens € D with s(t;) > 6.

The features we use can be divided into three f.’:lmilieér:hat IS:

ones designed to capture the intrinsic difficulty of the H{t: € D|C(t;)) =1 A s(t;) > 6}
source sentence (for any NLP task); ones intended to CA(0) = {t; € D| C(t;) = 1}] )
reflect how harda is to translate in general, and ones in- ' ’

tended to reflect how harelis for the current model to  Similarly, thecorrect rejection rateCR(0) is the rate
translate. For the first two families, we used two sets off false tokens; such thats(t;) < 6:

values: static ones that depend grand dynamic ones

that depend on only those words snthat are deemed (g (g) — [{ti € D | C(t:) =0 A s(t;) <6} )
to be still untranslated, as determined by an IBM2 word I{t: € D[ C(t;) = 0}

alignment betweern andh. The features are:

As 60 ranges over [a,b], the value pairs
o family 1: trigram perplexity, minimum trigram word (CA(0),CR(0)) € [0,1] x [0,1] define a curve,
probabi"ty’ average word frequency, average W0r§a||ed theROC curveof s over D. The discrimination

length, and number of words; capacity of s is given by its capacity to distinguish
correct from false tokens. Consequently, a perfect ROC

o family 2: average number of translations per sourceurve would describe the squar®,1),(1,1),(1,0).
word (according to an independent IBM1), averag&his is the case whenever there exists a threshold
IBM1 source word entropy, number of source token® < [a, ] that separates all correct tokens fin from
still to be translated, number of unknown source toall the false ones, meaning that the score ranges of
kens, ratio of linked to unlinked source words withincorrect, respectively false, tokens don't overlap. The
the aligned region of the source sentence, and lengitorst case scenario, describing a scoring function that
of the current target-text prefix; and is completely irrelevent for correct/false discrimination,

_ corresponds to the diagondl, 1), (1,0). Note that the

o family 3: average number of search hypothesegyerse of the ideal ROC curve, the plot overlapping the
pruned (ie outside the beam) per time step, finalyes(1,0), (0,0), (1,0) is equivalent to its inverse from
search lattice size, active vocabulary size (numbe{ gjiscrimination capacity point of view: it suffices to
of target words considered in the search), number Gfyert the rejection algorithm by accepting all tokens that
nbest hypotheses, rank of current hypothesis, proliaye a score inferior to the rejection threshold.
ability ratio of best hypothesis to sum of top 5 hy- | our setting, the tokens are tiie, translation predic-
potheses, and base model probability of current prgions and the score function is the conditional probability
diction. p(C = 1%y, h,s).

. In order to easily compare the discrimination capacity

4 Evaluation of various scoring functions we use a raw measure, the

Evaluation is performed using test sets of translation prddtégralof the ROC curve, or IROC. A perfect ROC curve
dictions, each tagged as correct or incorrect. A translatioffill have anlROC = 1.0 (respectivey0.0 in the inverse
predictionw,,, is tagged as correct if and only if an iden-Case)- The worst case scenario corresponds to.an IROC
tical word sequence is found in the reference translatio! 0-5- We also compare various scoring functions by
properly aligned. This reflects our application, where wéXing an operational point af'A = 0.80 and observing
attempt to match what a particular translator has in mindn€ corresponding’R values.
not simply produce any correct translation. We use twi
types of evaluation methods: ROC curves and a user sif-
ulation as described above. The data for our experiments originates from the Hansard
English-French parallel corpus. In order to generate the
4.1 ROC curves train and test sets, we use 1.3 million (900000 for train-
Consider a set of tokents € D from given domainD. ing and 400000 for testing purposes) translation predic-
Each tokent; is labelled with a tagC(¢;) = 1 ifitis tions for each fixed prediction length of one, two, three
considered correct a®(t;) = 0 if it is false. Consider a and four words, summing to a total of 5.2 million pre-
functions : D — [a, b] that associates@nfidence score diction examples. Each original SMT model experiment
s(t) € [a,b] to any tokent; € D. s is not necessarily a was combined with two different CE model architectures:
probability, it can range over any real interyal b]. MLPs with one hidden layer containing 20 hidden units
Given arejection threshold € [a,b], any tokent; €  and SLP (sometimes also referred to as MLPs with 0 hid-
D is rejectedif s(¢;) < 6 and it isacceptedotherwise. den units). Moreover, for each (native model, CE model
The correct acceptence rat€A () of a threshold) over  architecture)-pair, we train five separate CE models: one

Experimental Set-up



Bayes:m =1,...,4,CA=0.80
Model IROC CR
native probability| 0.8019 0.6604
SLP 0.8357 0.7211 1
MLP 0.8679 0.7728 vol i

Table 1: Comparison of discrimination capacity betweel osf
the Bayes prediction model probability and the CE of the .|
corresponding SLP and MLP on predictions of up to fou
words

CR
05F 4
for each fixed prediction length of one, two, three or four **[ ——— mIp-20-hu '\
words, and an additional model for variable predictior o} i
---- mlp-0-hu :
lengths of up to four word$. Ll
' orig. prob.

6 ROC Evaluations i

In this section we report the ROC evaluation results. Th % o1 02 03 04 o0s 06 o7 o8 03 1

user-model evaluation results are presented in the follow- cA

ing section.

6.1 CE and Native SMT Probabilites

The first question we wish to address is whether we can Bayes:m =4, CA=0.80

improve the correct/false discrimination capacity by us- Model IROC CR

ing the propability of correctness estimated by the CE native probability| 0.7281 0.4998

model instead of the native probabilites. SLP 0.8161 0.6602
For each SMT model we compare the ROC plots, MLP 0.8560 0.7503

IROC and CA/CR values obtained by the native proba-
bility and the estimated probability of correctness outpufable 2: Comparison of discrimination capacity between
by the corresponding SLPs (also noted as mlp-0-hu) ariie Bayes prediction model probability and the CE of the
the 20 hidden units MLPs on the one-to-four word precorresponding SLP and MLP on fixed-length predictions
diction task. of four words
Results obtained for various length predictions of up
to four words using the Bayes models are summarized in
figure (1)and in table 1 below, and are encouraging. At a
fixed CA of0.80 we obtain CR increases fromn6604 for
the native probability t@.7211 for the SLP and).7728 Figure 2: Bayesm =4
for the MLP. The over-all gain is also evident from the "
the relative improvements in IROC obtained by the SLF .| T i
and MLP models over the native probability, that are re T
spectively17.06% and33.31%. These results are quite | '
significant. 07t TN 1
Note that the improvements obtained in the fixed ¢l ' " ]
length 4-word-prediction tasks with the Bayes model (fig cr N
ure (2) and table 2) model are even larger: the relativ | ERRY
improvements on IROC arg2.36% and50.07% for the 40— mip—20-hu .
SLP and the MLP, respectively. 0sk =
However, the results obtained in the Maxent model ---- mip=0-hu
are much less positive: the SLP CR actually drops, whil **| orig. prob. |
the MLP CR only increases slightly to4a80% relative o1f

i
4

SEey

2Training and testing of the neural nets was done us % o1 oz o3 04 05 o5 o7 08 05 1
ing the open-source Torch toolkit ((Collobert et al., 2002), CA
http://www.torch.ch/), which provides efficient C++ implemen-
tations of many ML algorithms.



Maxentl:m =1,...,4, CA=0.80

Model IROC CR Figure 3: Maxent2m =1,...,4
native probability| 0.8581 0.7467 T —
SLP 0.8401 0.7142
MLP 0.8636 0.7561

0.7

Table 3: Comparison of discrimination capacity betwee!
the Maxentl prediction model probability and the CE ol st
the corresponding SLP and MLP on predictions of up t &

05F

four words
4 —— mip-20-hu
Maxent2:m =1,...,4, CA=0.80 ear mip-0-hu
Model IROC CR 02} .
native probability| 0.8595 0.7479 A orig. prob.
SLP 0.8352 0.6973
MLP 0.8638 0.7599 00 O‘.l 0‘2 0.‘3 O‘.A éSA 0.‘6 O‘.7 0.‘8 0.‘9 1

Table 4: Comparison of discrimination capacity between

the Maxent2 prediction model probability and the CE of | _Discrimination vs. prediction length: Maxent2
the corresponding SLP and MLP on predictions of up to | Prediction | %C=1 IROC native IROC CE
four words lengthm probability MLP

m=1 44.78 0.7926 0.7986

m =2 23.30 0.8074 0.8121
improvement in the CR rate for the Maxentl model (ta- | m =3 13.12 0.8261 0.8245
ble 3) and only3.9% for the Maxent2 model ( table 4). | m =4 7.74 0.8517 0.8567
The results obtained with the two Maxent models arevery| m=1,...,4 | 22.23 0.8595 0.8638
similar. We therefore only draw the ROC curve for the o o
Maxent2 model (figure (3). Table 5: Impact of prediction length on discrimination

It is interesting to note that the native model predic—caloacIty and accuracy for the Maxent2 prediction model

tion accuracy didn't affect the discrimination capacity of
the corresponding probability of correctness of the Cl6.3 Dealing with predictions of various lengths

models. _Thls result is illustrated in table pe!ow, whergyq compared different approaches for dealing with vari-
%C = lis the pe,rcentage of correct predlctlons. ,Ev_e_%us length predictions: we trained four separate MLPs for
though the Bayes’ model accuracy and IROC is signifig, o g jength predictions of one through four words; and a
cantly lower then the Maxent model's, the CE IROC valjn g6 \MLP over predictions of varying lengths. Results

ues are almost identical. are given in table 5 and figure (4)

6.2 Relevance of Confidence Features 7 Model Combination

We investigated the relevance of different confidence fed? this section we describe how various model combi-
tures by using the IROC values of single-feature modefdations schemes affect prediction accuracy. We use the

for the 1-4 word prediction task, with both Maxent1 and3@yes and the Maxent2 prediction models: we try to ex-
Bayes base models. ploit the fact that these two models, being fundamentally

The aroup of features that performs best over botﬁifferent, tend to be complementary in some of their re-
group P onses. The CE models we use are the corresponding
models are the model- and search-dependent features

scribed above, followed by the features that capture the Ps, as they clearly outperform the SLPs. The results

T resented in table 6 are reported on the variable-length
intrinsic difficulty of the source sentence and the targegrediction task for up to four words,

prefix. Least valuable are the remaining features that The combination schemes are the following: we run

capture translation difficulty. The single most significan}he two prediction models in parallel and choose one of

feature is native probability, followed by the probability _— . i
ratio of the best hypothesis, and the prediction Iengtrfg\?vi%osgt?ﬁg Cprriteedrli;t.lon hypotheses according to the fol

Somewhat unsurprisingly, the weaker Bayes models are
much more sensitive to longer translations than the Max- e Maximum CE vote: choose the prediction with the
ent models. highest CE;



Figure 4: Maxent2m =1,m=2,m=3,m =4,m =

1,...,4

1

model | base| mults | SLP | MLP | best
Bayes| 3.2 65| 64 6.4 11.8
ME1 | 16.6| 16.5| 18.1| 18.3| 23.5
ME2 | 17.4| 17.4| 19.0| 19.3| 24.3

09r
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0 0.1 0.2 0.3 0.4 COZ 0.6 0.7 0.8 0.9 1
Model Combination Prediction Accuracy

Prediction model combination Accuracy
Bayes alone 8.77
Maxent alone 22.23
Max native probability vote combination 17.49
Max CE vote combination 23.86
Optimal combination 27.79

Table 7: Percentage of typing time saved for various CE
configurations.

with a user model. In order to abstract away from ap-
proximations made in deriving character-based proba-
bilities p(k|x, h,s) used in the benefit calculation from
word-based probabilities, we employed a specialized user
model. In contrast to the realistic model described in
(Foster et al., 2002b), this assumes that users accept pre-
dictions only at the beginnings of words, and only when
they are correct in their entirety. To reduce variation fur-
ther, it also assumes that the user always accepts a correct
prediction as soon as it is suggested. Thus the model’s
estimates of benefit to the user may be slightly over-
optimistic: the limited opportunities for accepting and
editing must be balanced against the user’'s inhumanly
perfect decision-making. However, its main purpose is
not realism but simply to allow for a fair comparison be-
tween the base and the CE models.

Simulations with all three translation models were per-
formed using a 500-sentence test text. At each prediction

Table 6: Prediction accuracy of the Bayes and Maxentgoint, the benefits associated with best predictions of 1-4
model compared with combined model accuracy

e Maximum native probability vote: choose the pre

diction with the highest native probability.

words in length were compared to decide which (if any)
to propose. The results, in terms of percentages of typing
time saved, are shown in tableBasecorresponds to the

base modelmultsto length-specific probability multipli-
ers tuned to optimize benefit on a held-out corpBlkP

As a baseline comparison, we use the accuracy of tidMLP to CE estimates; andestto using an oracle to
individual native prediction models. Then we computedick the length that maximizes benefit.
the maximum gain we can expect with an optimal model Although the CE layer provides no gain over the much
combination strategy, obtained by running an “oraclesimpler probability-multiplier approach for the Bayes

that always picks the right answer.

model, the gain for both maxent models is substantial,

The results are very positive: the maximum CE votingiround 10% in relative terms and 25% of the theoretical
scheme obtains 29.31% of the maximum possible ac- maximum gain (over the base model) with the MLP and
curacy gain over the better of the two indiviual modelsslightly lower with the SLP.

(Maxent2). Moreover, if we choose the maximum native i
probability vote, the overall accuracy actually drops sig9 Conclusion

nificantly. These results are a strong motivation for oufhe results obtained in this paper can be summarized in
post-prediction confidence estimation approach: by trainye following set of questions and answers:
ing an additional CE layer using the same confidence fea-

tures and training data for different underlying prediction e Can the probabilities of correctness estimated by

models we obtain more uniform estimates of the proba-

bility of correctness.

8 User-Model Evaluations

As described in section 2, we evaluated the prediction

the CE layer exceed the native probablities in dis-
crimination capacity? Depending on the underlying
SMT model, we obtained a relative improvement in
correct rejection rate (CR) ranging from90% to
33.09% at a fixed0.80 (CA) correct acceptance rate
for prediction lengths varying betwedrand4.

system as a whole by simulating the actions of a trans-
lator on a given source text and measuring the gain e¢ Can we improve the overall performance of the un-



derlying SMT application using confidence estima- of Machine Translation: Parameter estimatiddom-
tion? In simulated results, we found a significant putational Linguistics19(2):263-312, June.

gain (10% relative) in benefit to a translator due t‘h Collobert, S. Bengio, and J. Mathoz. 2002. Torch:

the use of a CE layer in two of three translation mod- 5 11,5 qylar machine learning software library. Techni-
els tested. cal Report IDIAP-RR 02-46, IDIAP.

e Can prediction accuracy of the application be imGeorge Foster, Philippe Langlais, and Guy Lapalme.
proved using prediction model combinations? A 2002a. Text prediction with fuzzy alignments. In
maximum CE voting scheme yields248.31% ac- Stephen D. Richardson, editéttoceedings of the 5th
curacy improvement of the maximum possible ac- Conference of the Association for Machine Transla-
curacy gain. A similar voting scheme using native tion in the Americas Tiburon, California, October.
probabilies significantly decreases the accuracy of SPringer-Verlag.

the model combination. George Foster, Philippe Langlais, and Guy Lapalme.
How d th dicti fth i d 2002b. User-friendly text prediction for translators.
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