Semi-supervised Verb Class Discovery Using Noisy Features

Suzanne Stevenson and Eric Joanis
Department of Computer Science
University of Toronto
{suzanne, j oani s}@s. t oront 0. edu

Abstract

We cluster verbs into lexical semantic classes,
using a general set of noisy features that cap-
ture syntactic and semantic properties of the
verbs. The feature set was previously shown to
work well in a supervised learning setting, us-
ing known English verb classes. Inmovingto a
scenario of verb class discovery, using cluster-
ing, we face the problem of having alarge num-
ber of irrelevant features for aparticular cluster-
ing task. We investigate various approaches to
feature selection, using both unsupervised and
semi-supervised methods, comparingtheresults
to subsets of features manually chosen accord-
ing to linguistic properties. We find that the un-
supervised method we tried cannot be consis-
tently applied to our data. However, the semi-
supervised approach (using a seed set of sam-
ple verbs) overal outperforms not only the full
set of features, but the hand-sel ected features as
well.

1 Introduction

Computational linguists face a lexical acquisition bot-
tleneck, as vast amounts of knowledge about individual
words are required for language technologies. Learn-
ing the argument structure properties of verbs—the se-
mantic roles they assign and their mapping to syntac-
tic positions—isboth particularly important and difficult.
A number of supervised learning approaches have ex-
tracted such information about verbsfrom corpora, includ-
ing their argument roles (Gildea and Jurafsky, 2002), se-
lectiona preferences (Resnik, 1996), and lexical semantic
classification (i.e., grouping verbs according to their argu-
ment structure properties) (Dorr and Jones, 1996; Lapata
and Brew, 1999; Merlo and Stevenson, 2001; Joanis and
Stevenson, 2003). Unsupervised or semi-supervised ap-
proaches have been successful as well, but have tended to
be more restrictive, in relying on human filtering of the
results (Riloff and Schmelzenbach, 1998), on the hand-
selection of features (Stevenson and Merlo, 1999), or on
the use of an extensive grammar (Schulte im Walde and
Brew, 2002).

We focus here on extending the applicability of un-
supervised methods, as in (Schulte im Walde and Brew,
2002; Stevenson and Merlo, 1999), to the lexical seman-
tic classification of verbs. Such classes group together
verbs that share both a common semantics (such astrans-
fer of possession or change of state), and a set of syntactic
frames for expressing the arguments of the verb (Levin,
1993; FrameNet, 2003). As such, they serve as a means
for organizing complex knowledge about verbsin a com-
putational lexicon (Kipper et a., 2000). However, cre-
ating a verb classification is highly resource intensive, in
terms of both required time and linguistic expertise. De-
velopment of minimally supervised methodsisof particu-
lar importanceif we areto automatically classify verbsfor
languages other than English, where substantial amounts
of labelled dataare not available for training classifiers. It
isalso necessary to consider the probablelack of sophisti-
cated grammars or text processing toolsfor extracting ac-
curate features.

We have previoudly shown that a broad set of 220
noisy features performs well in supervised verb classifi-
cation (Joanis and Stevenson, 2003). In contrast to Merlo
and Stevenson (2001), we confirmed that a set of gen-
eral features can be successfully used, without the need
for manually determining the relevant features for dis-
tinguishing particular classes (cf. Dorr and Jones, 1996;
Schulteim Walde and Brew, 2002). Onthe other hand, in
contrast to Schulteim Wal de and Brew (2002), we demon-
strated that accurate subcategorization statisticsare unnec-
essary (see also Sarkar and Tripasai, 2002).

By avoiding the dependence on precise feature extrac-
tion, our approach should be more portable to new lan-
guages. However, ageneral feature space means that most
featureswill beirrelevant to any given verb discrimination
task. Inan unsupervised (clustering) scenario of verb class
discovery, can we maintain the benefit of only needing
noisy features, without the generality of the feature space
leading to “the curse of dimensionality”? In supervised
experiments, the learner uses class labelsduring thetrain-
ing stage to determine which features are relevant to the
task at hand. Inthe unsupervised setting, thelarge number
of potentially irrelevant features becomes a serious prob-
lem, since those features may midead the learner.

Thus, the problem of dimensionality reductionis akey



issueto be addressed inverb class discovery. In thispaper,
wereport resultson several feature sel ection approachesto
the problem: manual selection (based on linguistic knowl-
edge), unsupervised selection (based on an entropy mea-
sure among the features, Dash et d., 1997), and a semi-
supervised approach (inwhich seed verbsareused totrain
asupervised learner, from which we extract the useful fea-
tures). Although our motivation is verb class discovery,
we perform our experiments on English, for which we
have an accepted classification to serve as agold standard
(Levin, 1993). To preview our results, we find that, over-
all, the semi-supervised method not only outperforms the
entire feature space, but also the manually sel ected subset
of features. The unsupervised feature selection method,
on the other hand, was not usable for our data

In the remainder of the paper, we first briefly review
our feature space and present our experimental classes and
verbs. We then describe our clustering methodol ogy, the
measures we use to evaluate a clustering, and our experi-
mental results. We conclude with a discussion of related
work, our contributions, and future directions.

2 TheFeature Space

Like others, we have assumed lexical semantic classes of
verbs as defined in Levin (1993) (hereafter Levin), which
have served as a gold standard in computationa linguis-
tics research (Dorr and Jones, 1996; Kipper et a., 2000;
Merlo and Stevenson, 2001; Schulte im Walde and Brew,
2002). Levin'sclasses form ahierarchy of verb groupings
with shared meaning and syntax. Our feature space was
designed to reflect these classes by capturing properties
of the semantic arguments of verbs and their mapping to
syntactic positions. Itisimportant to emphasi ze, however,
that our features are extracted from part-of-speech (POS)
tagged and chunked text only: there are no semantic tags
of any kind. Thus, thefeatures serve as approximationsto
the underlying distinctionsamong cl asses.

Here we briefly describe the features that comprise our
feature space, and refer the interested reader to Joanis and
Stevenson (2003) for details.

Features over Syntactic Slots (120 features)

One set of features encodes the frequency of the syntac-
tic dotsoccurring with averb (subject, direct and indirect
object, and prepositional phrases (PPs) indexed by prepo-
sition), which collectively serve as rough approximations
totheallowablesyntacticframesfor averb. We al so count
fixed elements in certain dots (it and there, asin It rains
or There appeared a ship), since these are part of the syn-
tactic frame specifications for averb.

In addition to approximating the syntactic frames them-
selves, we also want to capture regul aritiesin the mapping
of argumentsto particular dots. For example, thelocation
argument, the truck, is direct object in | loaded the truck

with hay, and object of a prepositionin | loaded hay onto
thetruck. These allowable alternationsin the expressions
of arguments vary according to the class of averb. We
measure this behaviour using features that encode the de-
gree to which two g ots contain the same entities—that is,
we calculate the overlap in noun (lemma) usage between
pairs of syntactic dots.

Tense, Voice, and Aspect Features (24 features)

Verb meaning, and therefore class membership, inter-
acts in interesting ways with voice, tense, and aspect
(Levin, 1993; Merlo and Stevenson, 2001). In addition
to verb POS (which often indicates tense) and voice (pas-
sive/active), we d so include countsof modals, auxiliaries,
and adverbs, which are partial indicators of these factors.

The Animacy Features (76 features)

Semantic propertiesof theargumentsthat fill certainroles,
such as animacy or motion, are more challenging to de-
tect automatically. Currently, our only such featureis an
extension of the animacy feature of Merlo and Stevenson
(2001). We approximate the animacy of each of the 76
syntactic sotsby counting both pronounsand proper noun
phrases (NPs) labelled as “person” by our chunker (Ab-
ney, 1991).

3 Experimental Classes and Verbs

We use the same classes and example verbs as in the su-
pervised experiments of Joanis and Stevenson (2003) to
enable a comparison between the performance of the un-
supervised and supervised methods. Here we describethe
selection of theexperimental classes and verbs, and the es-
timation of the feature values.

3.1 TheVerb Classes

Pairsor triplesof verb classesfrom Levin were selected to
formthetest pairg/triplesfor each of a number of separate
classification tasks. These sets exhibit different contrasts
between verb classes in terms of their semantic argument
assignments, alowing usto evaluate our approach under
a range of conditions. For example, some classes differ
in both their semantic roles and frames, while others have
the same rolesin different frames, or different rolesin the
same frames.! Here we summarize the argument structure
digtinctions between the classes; Table 1 below lists the
classes with their Levin class numbers.

Benefactive versus Recipient verbs.

Mary baked... a cake for Joan/Joan a cake.

Mary gave... a cake to Joan/Joan a cake.

These dativeaternation verbsdiffer intheprepositionand
the semantic role of its object.

! For practical reasons, aswell asfor enabling usto draw more
general conclusions from the results, the classes also could nei-
ther be too small nor contain mostly infrequent verbs.



Admire versus Amuse verbs.

| admireJane.  Janeamuses me.

These psychological state verbs differ in that the Experi-
encer argument isthe subject of Admire verbs, and the ob-
ject of Amuse verbs.

Run versus Sound Emission verbs.

Thekids ran in the room./* Theroomran with kids.

Thebirds sang in the trees./The trees sang with birds.

These activity verbs both have an Agent subject in thein-
transitive, but differ in the prepositiona aternations they
allow.

Cheat versus Steal and Remove verbs.

| cheated... Jane of her money/*the money from Jane.

| stole... * Jane of her money/the money from Jane.

These classes aso assign the same semantic arguments,
but differ in their prepositional aternants.

Wipeversus Seal and Remove verbs.

Wipe... the dust/the dust from the table/the table.

Seal... the money/the money fromthe bank/* the bank.

These classes generaly allow the same syntactic frames,
but differ in the possible semantic role assignment. (Loca
tion can be the direct object of Wipe verbs but not of Steal
and Remove verbs, as shown.)

Soray/Load versus Fill versus Other Verbs of

Putting (severa related Levin classes).

| loaded... hay on the wagon/the wagon with hay.

| filled... *hay on the wagon/the wagon with hay.

| put... hay on the wagon/* the wagon with hay.

These three classes also assign the same semantic roles
but differ in prepositional aternants. Note, however, that
the optionsfor Spray/Load verbs overlap with those of the
other two types of verbs.

Optionadlly Intransitive: Run versus Change

of State versus “Object Drop”.

The horseraced./Thejockey raced the hor se.

The butter melted./The cook melted the butter.

The boy played./The boy played soccer.

These three classes are al optionally intransitive but as-
signdifferent semantic rolesto their arguments(Merlo and
Stevenson, 2001). (Note that the Object Drop verbs are a
superset of the Benefactives above.)

For many tasks, knowing exactly what PP arguments
each verb takes may be sufficient to perform theclassifica-
tion (cf. Dorr and Jones, 1996). However, our features do
not give us such perfect knowledge, since PP arguments
and adjuncts cannot be distinguished with high accuracy.
Using our simple extraction tools, for example, the PPy,
argument in | admired Jane for her honesty is not distin-
guished from the PPy, adjunct in | amused Jane for the
money. Furthermore, PP argumentsdiffer in frequency, so
that a highly distinguishing but rarely used aternant will

likely not be useful. Indicators of PP usage are thususeful
but not definitive.

| Verb Class | ClassNumber | # Verbs |
Benefactive 26.1, 26.3 35
Recipient 13.1,13.3 27
Admire 31.2 35
Amuse 311 134
Run 51.3.2 79
Sound Emission 43.2 56
Cheat 10.6 29
Seal and Remove 10.5, 10.1 45
Wipe 10.4.1,10.4.2 35
Soray/Load 9.7 36
Fill 9.8 63
Other V. of Putting 9.1-6 48
Change of State 4514 169
Object Drop 26.1, 26.3, 26.7 50

Table 1: Verb classes (see Section 3.1), their Levin class
numbers, and the number of experimental verbs in each
(see Section 3.2).

3.2 Verb Sdlection

Our experimental verbs were selected as follows. We
started with alist of al the verbsin the given classes from
Levin, removing any verb that did not occur at least 100
timesin our corpus (the BNC, described below). Because
we make the simplifying assumption of a single correct
classification for each verb, we also removed any verb:
that was deemed excessively polysemous; that belonged
to another class under consideration in our study; or for
which the class did not correspond to the main sense.

Table 1 above shows the number of verbsin each class
at the end of this process. Of these verbs, 20 from each
classwererandomly selected to use astrainingdatafor our
supervised experiments in Joanis and Stevenson (2003).
We began with this same set of 20 verbs per class for
our current work. We then replaced 10 of the 260 verbs
(4%) to enable us to have representative seed verbs for
certain classes in our semi-supervised experiments (e.g.,
so that we could include wipe as a seed verb for the Wipe
verbs, and fill for the Fill verbs). All experiments reported
here were run on this same final set of 20 verbs per class
(including a replication of our earlier supervised experi-
ments).

3.3 Feature Extraction

All features were estimated from counts over the British
Nationa Corpus(BNC), a100M word corpus of text sam-
ples of recent British English ranging over a wide spec-
trum of domains. Sinceit isa genera corpus, we do not
expect any strong overal domain biasin verb usage.



We used the chunker (partial parser) of Abney (1991)
to preprocess the corpus, which (noisily) determines the
NP subject and direct object of averb, as well as the PPs
potentially associated with it. Indirect objects are identi-
fied by aless sophisticated (and even noisier) method, sim-
ply assuming that two consecutive NPs after the verb con-
gtitute a double object frame. From these extracted dots,
we calcul ate the features described in Section 2, yielding
a vector of 220 normalized counts for each verb, which
forms the input to our machine learning experiments.

4 Clustering and Evaluation Methods

41 Clustering Parameters

We used the hierarchical clustering command in Matlab,
which implements bottom-up agglomerative clustering,
for all our unsupervised experiments. In performing hi-
erarchical clustering, both a vector distance measure and
a cluster distance (“linkage’) measure are specified. We
used the simple Euclidean distance for the former, and
Ward linkagefor thelatter. Ward linkage essentially mini-
mizesthedistancesof al cluster pointsto thecentroid, and
thusisless sensitive to outliers than some other methods.

We chose hierarchical clustering because it may be pos-
sibleto find coherent subclusters of verbs even when there
are not exactly C' good clusters, where C' is the number
of classes. To explore this, we can induce any number
of clusters K by making a cut at a particular level in the
clustering hierarchy. In the experiments here, however,
we report only results for X = C, since we found no
principled way of automatically determining a good cut-
off. However, we did experiment with K’ = 2C (asin
Strehl et d., 2000), and found that performance was gen-
erally better (even on our R4 measure, described below,
that discounts oversplitting). This supports our intuition
that the approach may enable us to find more consistent
clusters at afiner grain, without too much fragmentation.

4.2 Evaluation Measures

We use three separate evaluation measures, that tap into
very different properties of the clusterings.

421 Accuracy

We can assign each cluster the class label of the ma-
jority of its members. Then for al verbs v, consider v to
be classified correctly if Class(v)=ClusterLabel(v), where
Class(v) isthe actual class of v and ClusterLabel (v) isthe
label assigned tothe cluster inwhich v isplaced. Then ac-
curacy has the standard definition:2

2 Acc isequivalent to theweighted mean precision of the clus-
ters, weighted according to cluster size.

Aswe have defined it, Acc necessarily generally increases as
the number of clusters increases, with the extreme being at the
number of clusters equal to the number of verbs. However, since
we fix our number of clustersto the number of classes, the mea-
sure remainsinformative.

#verbs correctly classified

Ace =
c #verbstotal

Ace thus provides a measure of the usefulnessin prac-
tice of a clustering—that is, if one were to use the clus-
tering as a classification, this measure tells how accurate
overall the class assignments would be. The theoretical
maximumis, of course, 1. To calculate arandom baseline,
we evaluated 10,000 random clusterings with the same
number of verbs and classes as in each of our experimen-
tal tasks. Because the Ace achieved depends on the pre-
cise sizeof clusters, we calculated mean Acc over the best
scenario (with equa-sized clusters), yielding a conserva
tive estimate (i.e., an upper bound) of the basdline. These
figures are reported with our resultsin Table 2 bel ow.

4.2.2 Adjusted Rand Measure

Accuracy can be relatively high for a clustering when
a few clusters are very good, and others are not good.
Our second measure, the adjusted Rand measure used by
Schulteim Walde (2003), instead gives a measure of how
consistent the given clustering is overall with respect to
the gold standard classification. Theformulaisasfollows
(Hubert and Arabie, 1985):

Ry = D () =5 () T, (/)

302 () + 525 (1 =2 (5) 25 (%) /()

where n;; is the entry in the contingency table between
the classification and the clustering, counting the size of
the intersection of class : and cluster j. Intuitively, R,4;
measures the similarity of two partitions of data by con-
sidering agreements and disagreements between them—
thereisagreement, for example, if »; and v; fromthe same
class are in the same cluster, and disagreement if they are
not. It isscaled so that perfect agreement yields a value
of 1, whereas random groupings(with the same number of
groupsin each) get avaluearound O. Itisthereforeconsid-
ered “corrected for chance,” given afixed number of clus-
ters3

In tests of the R,4; measure on some contrived cluster-
ings, we found it quite conservative, and on our experi-
mental clusteringsit did not often attain values higher than
.25. However, it is useful as a relative measure of good-
ness, in comparing clusterings arising from different fea-
ture sets.

4.2.3 Mean Silhouette

Ace gives an average of theindividual goodness of the
clusters, and R,4; ameasure of the overall goodness, both
with respect to the gold standard classes. Our final mea-
suregivesanindicationof theoverall goodnessof theclus-
terspurely interms of their separation of the data, without

%In our experiments for estimating the Acc baseling, we in-
deedfound amean R.q; valueof 0.00for all random clusterings.
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Figure 1: The dendrograms and meanSil values for the
2-way Wipe/Seal-Remove task, using the Ling and Seed
sets. The higher meanSil (.89 vs. .33) reflects the better
separation of the data.

regard tothetarget classes. We use meanSil, the mean of
the silhouette measure from Matl ab, which measures how
distant adata point is from other clusters. Silhouette val-
ues vary from +1 to -1, with +1 indicating that the point
is near the centroid of its own cluster, and -1 indicating
that thepointisvery closeto another cluster (and therefore
likely in the wrong cluster). A value of 0 suggests that a
point isnot clearly in a particular cluster.

We cal cul ate the mean silhouette of al pointsin aclus-
tering to obtain an overall measure of how well the clus-
ters are separated. Essentially, the measure numericaly
captureswhat we can intuitively grasp in the visua differ-
ences between the dendrograms of “better” and “worse”
clusterings. (A dendrogramisatreediagramwhoseleaves
arethedatapoints, and whose branch lengthsindicatesim-
ilarity of subclusters; roughly, shorter vertical linesindi-
cate closer clusters.)

For example, Figure 1 shows two dendrograms using
different feature sets (Ling and Seed, described in Sec-
tion 5) for the same set of verbs from two classes. The
Seed set has dlightly lower values for Acec and R,q4;, but
amuch higher value (.89) for meanSil, indicating a bet-
ter separation of thedata. Thiscaptureswhat isreflectedin
the dendrogram, in that very short lines connect verbslow
inthetree, and longer lines connect the two main clusters.

ThemeanSil measureisindependent of thetrueclassi-
fication, and coul d be high when the other dependent mea-
sures are low, or vice versa. However, it gives important
information about the quality of a clustering: The other
mesasures being equd, aclustering withahigher meanSil
value indicates tighter and more separated clusters, sug-
gesting stronger inherent patternsin the data.

5 Experimental Results

We report here the results of a number of clustering ex-
periments, using feature setsasfollows: (1) thefull feature
space; (2) amanually selected subset of features; (3) un-
supervised selection of features; and (4) semi-supervised
selection, using a supervised learner applied to seed verbs
to select the features.

For each type of feature set, we performed the same
ten clustering tasks, shown in the first column of Table 2.
These are the same tasks performed in the supervised set-
ting of Joanis and Stevenson (2003). The 2- and 3-way
tasks, and their motivation, were described in Section 3.1.
Three multiway tasks explore performance over a larger
number of classes. The 6-way task involves the Cheat,
Seal-Remove, Wipe, Spray/Load, Fill, and “Other Verbs
of Putting” classes, all of which undergo similar locative
alternations. To these 6, the 8-way task adds the Run and
Sound Emission verbs, which also undergo locative ater-
nations. The 13-way task includesall of our classes.

The second column of Table 2 includes the accuracy
of our supervised learner (the decision tree induction sys-
tem, C5.0), on the same verb sets as in our clustering
experiments. These are the results of a 10-fold cross-
validation (with boosting) repeated 50 times.* In our ear-
lier work, we found that cross-validation performance av-
eraged about .02, .04, and .11 higher than test performance
on the 2-way, 3-way, and multiway tasks, respectively,
and so should be taken as an upper bound on what can be
achieved.

The third column of Table 2 gives the baseline Acc we
calculated from random clusterings. Recall that thisisan
upper bound on random performance. We use this base-
linein calculating reductionsin error rate of Ace.

Theremaining columnsof thetablegivethe Acc, Ra4;,
and meanSil measures as described in Section 4.2, for
each of the feature sets we explored in clustering, which
we discuss in turn below.

5.1 Full Feature Set

Thefirst subcolumn (Full) under each of thethree cluster-
ing evaluation measures in Table 2 showstheresultsusing
thefull set of features(i.e., nofeature selection). Although
generaly higher than the baseline, Ace iswell below that
of the supervised learner, and R,4; and meanSil are gen-
erally low.

5.2 Manual Feature Selection

One approach to dimensionality reduction is to hand-
select features that one believes to be relevant to a given
task. Following Joanis and Stevenson (2003), for each
class, we systematically identified the subset of features

4These results differ slightly from those reported in Joanis
and Stevenson (2003), becauseof our slight changesin verb sets,
discussed in Section 3.2.



Base Ace Rag; meanSil

Tasc 50 Ace | Full | Ling | Seed | Full | Ling | Seed | Full | Ling | Seed
Benefactive/Recipient | .74 .56 .60 .68 .58 .02 A0 .02 22 40 .81
Admire/Amuse .83 .56 .83 .80 .78 41 34 .29 A8 49 71
Run/Sound Emission .83 .56 .58 .50 .78 | -.00 | -.02 .29 A7 44 .66
Cheat/Steal-Remove .89 .56 .55 .53 80 | -.01| -.02 34 .30 .29 .74
Wi pe/Seal-Remove .78 .56 .65 .73 .70 .07 A8 A5 24 .33 .89
Mean of 2-way .81 .56 .64 .65 .73 A0 A2 22 22 39 .76
Soray/Fill/Putting .80 42 .53 .60 A7 10 16 .01 A2 31 48
Optionally Intrans. .66 42 .38 .38 58 | -.02 | -.02 .25 .16 27 .39
Mean of 3-way .73 42 46 49 .53 .04 .07 A3 a4 .29 44
6 Locative Classes .70 .28 31 .39 42 .04 A1 A3 .05 22 31
8 Locative Classes 712 24 31 .38 42 A0 A2 A2 A3 .23 .23
All 13 Classes .58 19 .29 31 .29 .07 .08 .09 .05 A2 16
Mean of multiway .67 .23 .30 .36 .38 .07 A0 A1 .08 19 .23

Table 2: Experimental Results. C5.0 is supervised accuracy; Base Ace is Ace on random clusters. Full isfull feature
set; Ling ismanually selected subset; Seed is seed-verb-selected set. See text for further description.

indicated by the classdescription giveninLevin. For each
task, then, the linguistically-relevant subset is defined as
the union of these subsetsfor all the classesin the task.

The resultsfor these feature setsin clustering are given
in the second subcolumn (Ling) under each of the Aecc,
Raq;, and meanSil messures in Teble 2. On the 2-way
tasks, the performance on average is very close to that of
thefull feature set for the Acc and R,4; measures. On the
3-way and multiway tasks, there is a larger performance
gain using the subset of features, with an increase in the
reduction of the error rate (over Base Acc) of 6-7% over
thefull feature set.

Overdll, there is a small performance gain using the
Ling subset of features (with an increase in error rate re-
ductionfrom 13%to 17%). Moreover, themeanSil value
for the manually selected features is aimost aways very
much higher than that of thefull feature set, indicating that
the subset of featuresismorefocused on the propertiesthat
lead to a better separation of the data.

This performance comparison tentatively suggests that
good feature selection can be helpful in our task. How-
ever, itisimportant to find a method that does not depend
on having an existing classification, since we are inter-
ested in applying the approach when such a classification
does not exist. In the next two sections, we present un-
supervised and minimally supervised approaches to this
problem.

5.3 Unsupervised Feature Selection

In order to deal with excessive dimensionality, Dash et al.
(1997) propose an unsupervised method to rank a set of
features according to their ability to organize the data in
space, based on an entropy measure they devise. Unfortu-
nately, this promising method did not prove practical for

our data. We performed anumber of experimentsinwhich
we tested the performance of each feature set from cardi-
nality 1 to thetotal number of features, where each set of
size: differsfromthe set of sizei — 1 intheaddition of the
feature with next highest rank (according to the proposed
entropy measure). Many feature sets performed very well,
and some far outperformed our best results using other
feature selection methods. However, across our 10 ex-
perimental tasks, there was no consi stent range of feature
ranksor feature set sizesthat was correl ated with good per-
formance. While we could have selected a threshold that
might work reasonably well with our data, we would have
little confidence that it would work well in general, con-
sidering the inconsi stent pattern of results.

5.4 Semi-Supervised Feature Selection

Unsupervised methods such as Dash et a.’s (1997) are
appealing because they require no knowledge externd to
the data. However, in many aspects of computational lin-
guistics, it has been found that a small amount of labelled
data contains sufficient information to allow usto go be-
yondthelimitsof completel y unsupervised approaches. In
our domain in particular, verb class discovery “in a vac-
uum” is not necessary. A plausible scenario is that re-
searchers would have examples of verbs which they be-
lieve fdl into different classes of interest, and they want
to separate other verbsalong the same lines. To model this
kind of approach, we selected a sample of five seed verbs
from each class. Each set of verbs was judged (by the au-
thors intuition aone) to be “representative’ of the class.
We purposely did not carry out any linguisticanalysis, a-
though we did check that each verb was reasonably fre-
guent (with log frequencies ranging from 2.6 to 5.1).

For each experimenta task, we ran our supervised



Task Ling | Seed
Benefactive/Recipient | 28 5
Admire/Amuse 24 4
Run/Sound Emission 21 4
Cheat/Seal-Remove 18 4
Wi pe/Seal-Remove 20 3
Soray/Fill/Putting 33 8
Optionally Intrans. 50 10
6 Locative Classes 39 19
8 Locative Classes 46 26
All 13 Classes 72 43

Table 3: Feature counts for Ling and Seed feature sets.

learner (C5.0) on the seed verbs for those classes, in a
5-fold cross-validation (without boosting). We extracted
from the resulting decision trees the union of all features
used, which formed the reduced feature set for that task.
Each clustering experiment used thefull set of 20 verbsper
class; i.e., seed verbs were included, following our pro-
posed mode of guided verb class discovery.®

The results using these feature sets are shown in the
third subcolumn (Seed) under our three evaluation mea-
sures in Table 2. This feature selection method is highly
successful, outperformingthefull featureset (Full) on Ace
and R,q; on most tasks, and performing the same or very
close on theremainder. Moreover, the seed set of features
outperformsthe manually selected set (Ling) on over half
the tasks. More importantly, the Seed set shows a mean
overal reduction in error rate (over Base Acc) of 28%,
compared to 17%fortheLing set. Theincreased reduction
inerror rateis particularly striking for the 2-way tasks, of
37% for the Seed set compared to 20% for the Ling set.

Another striking result is the difference in meanSil
values, which are very much higher than those for Ling
(which are in turn much higher than for Full). Thus, not
only dowe see asizeableincreasein performance, we also
obtain tighter and better separated clusters with our pro-
posed feature selection approach.

5.5 Further Discussion

In our clustering experiments, we find that smaller sub-
sets of features generally perform better than the full set
of features. (See Table 3 for the number of featuresin the
Ling and Seed sets.) However, not just any small set of
features is adequate. We ran 50 experiments using ran-
domly selected sets of featuresof cardinality 3C', where C'

SWe also tried directly applying the mutual information (M1)
measure used in decision-tree induction (Quinlan, 1986). We
calculated the M1 of eachfeature with respect to the classification
of the seed verbs, and computed clusterings using the features
aboveacertain M| threshold. This method did not work aswell
as running C5.0, which presumably captures important feature
interactions that are ignored in the individual M| calculations.

isthe number of classes (asimplelinear function roughly
approximating the number of features in the Seed sets).
Mean Acc over these clusterings was much lower than
for the Seed sets, and R,4; was extremely low (below .08
in all cases). Interestingly, meanSil was generally very
high, indicating that there is structure in the data, but not
what matches our classification. Thisconfirmsthat appro-
priatefeature selection, and not just asmall number of fea-
tures, isimportant for the task of verb class discovery.

We also find that our semi-supervised method (Seed)
islinguisticaly plausible, and performs as well as or bet-
ter than features manually determined based on linguistic
knowledge (Ling). We might aso ask, would any sub-
set of verbs do as well? To answer this, we ran experi-
ments using 50 different randomly sel ected seed verb sets
for each class. We found that the mean Acc and meanSil
values are the same as that of the Seed set reported above,
but mean R4 isalittlelower. We tentatively conclude
that, yes, any subset of verbs of the appropriate class may
be sufficient as a seed set, athough some sets are better
than others. Thisispromising for our method, asit shows
that the precise selection of a seed set of verbsisnot cru-
cia to the success of the semi-supervised approach.

6 Other Verb Clustering Work

Using thesame Ace measure asours, Stevenson and Merlo
(1999) achieved performance in clustering very close to
that of their supervised classification. However, their
study used a small set of five features manually devised
for a set of three particular classes. Our feature set is es-
sentially a generalization of theirs, but in scaling up the
feature space to be useful across English verb classes in
general, we necessarily face adimensionality problem that
did not arise in their research.

Schulte im Walde and Brew (2002) and Schulte im
Walde (2003), on the other hand, use a larger set of fea
tures intended to be useful for abroad number of classes,
as in our work. The R,q scores of Schulte im Welde
(2003) range from .09 to .18, while oursrange from .02 to
.34, with amean of .17 across all tasks. However, Schulte
im Walde's features rely on accurate subcategorization
dtatistics, and her experiments include a much larger set
of classes (around 40), each with amuch smaller number
of verbs(average around 4). Performance differences may
beduetothetypesof features (oursare noisier, but capture
information beyond subcat), or due to the number or size
of classes. Whileour R,4; resultsgenerally decrease with
an increase in the number of classes, indicating that our
tasksin genera may be “easier” than her 40-way distinc-
tion, our classes al so have many more members (20 versus
an average of 4) that need to be grouped together. Itisa
question for future research to explore the effect of these
variablesin clustering performance.



7 Conclusionsand Future Work

We have explored manua, unsupervised, and semi-
supervised methods for feature selection in a clustering
approach for verb class discovery. We find that manual
selection of a subset of features based on the known
classification performs better than using a full set of
noisy features, demonstrating the potential benefit of
feature selection in our task. An unsupervised method
wetried (Dash et d., 1997) did not prove useful, because
of the problem of having no consistent threshold for
feature inclusion. Weinstead proposed a semi-supervised
method in which aseed set of verbsis chosen for training
a supervised classifier, from which the useful features
are extracted for use in clustering. We showed that this
feature set outperformed both the full and the manually
selected sets of features on al three of our clustering
evaluation metrics. Furthermore, the method is relatively
insensitive to the precise make-up of the selected seed
et

As successful as our seed set of featuresis, it still does
not achieve the accuracy of asupervised learner. Morere-
search is needed on the definition of the general feature
space, as well as on the methods for selecting a more use-
ful set of features for clustering. Furthermore, we might
guestion the clustering approach itself, in the context of
verb class discovery. Rather than trying to separate a set
of new verbsinto coherent clusters, we suggest that it may
be useful to perform a nearest-neighbour type of classifi-
cation using a seed set, asking for each new verb “isit like
these or not?’ In some ways our current clustering task is
too easy, because al of the verbs are from one of the tar-
get classes. In other ways, however, it istoo difficult: the
learner has to distinguish multiple classes, rather than fo-
cus on theimportant propertiesof asingleclass. Our next
step isto explore theseissues, and investigate other meth-
ods appropriateto the practical problem of grouping verbs
in anew language.
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