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Abstract

Statistical machinelearning algorithms have
beensuccessfullyappliedto mary naturallan-
guageprocessingNLP) problems.Compared
to manually constructedsystems, statistical
NLP systemsare often easierto develop and
maintainsince only annotatedraining text is
required. From annotatediata,the underlying
statisticalalgorithm canbuild a modelso that
annotationsfor future data can be predicted.
However, the performanceof a statisticalsys-
tem canalsodependheaily onthe character
istics of the training data. If we apply such
a systemto text with characteristicgifferent
from thatof thetrainingdata thenperformance
degradationwill occur In this paper we ex-
aminethisissueempiricallyusingthe sentence
boundarydetectionproblem. We proposeand
compareseveral methodsthat can be usedto
updatea statisticalNLP systemwhenmoving
to adifferentdomain.

1 Introduction

An important issue for a statistical machinelearning
basedNLP systemis that its performancecan depend
heavily onthe characteristicef thetraining datausedto

build the system. Consequentlyf we train a systemon

somedatabut applyit to otherdatawith differentcharac-
teristics,thenthe systems performanceandegradesig-

nificantly. It is thereforenaturalto investigatehefollow-

ing relatedissues:

e How to detectthe changeof underlyingdatacharac-
teristics,andto estimatethe correspondingsystem
performancealegradation.

o |f performancedegradationis detectedhow to up-
datea statisticalsystemto improve its performance
with aslittle humaneffort aspossible.

This paperinvestigatesomemethodologicadndprac-
tical aspectof the above issues. Although ideally such
a studywould includeasmary differentstatisticalalgo-
rithmsaspossible andasmary differentlinguistic prob-
lemsaspossible(sothata very generakonclusionmight
bedrawn), in reality suchanundertakings notonly diffi-
cult to carryout, but alsocanhide essentiabbsenations
andobscure@mportanteffectsthat may dependon mary
variables. An alternatve is to study a relatively simple
andwell-understoodoroblemto try to gain understand-
ing of the fundamentalssues.Causaleffectsandessen-
tial obsenationscanbe more easilyisolatedandidenti-
fiedfrom simpleproblemssincetherearefewervariables
thatcanaffectthe outcomeof the experiments.

In this paperwetakethesecondpproactandfocuson
a specificproblemusinga specificunderlyingstatistical
algorithm. However, we try to useonly somefundamen-
tal propertiesof the algorithm so that our methodsare
readily applicableto other systemswith similar proper
ties. Specifically we usethesentencéoundarydetection
problemto performexperimentssincenot only is it rel-
atively simple andwell-understoodbut it also provides
the basisfor other more advancedlinguistic problems.
Our hopeis thatsomecharacteristicef this problemare
universalto languageprocessingothatthey canbegen-
eralizedto morecomplicatedinguistic tasks.In this pa-
perwe usethegeneralizedVinnow method(Zhangetal.,
2002)for all experiments.Applied to text chunking,this
methodresultedn stateof theart performancelt is thus
reasonabld@o conjecturethatit is also suitableto other
linguistic problemsincluding sentencesegmentation.

Although issuesaddressedn this paperare very im-
portantfor practicalapplications,therehave only been
limited studieson this topic in the existing literature.
In speechprocessingyariousadaptiontechniqueshave
beenproposedfor languagemodeling. However, the
languagemodeling problemis essentiallyunsupervised
(densityestimation)in the sensethatit doesnot require
ary annotation. Thereforetechniquesdevelopedthere
cannotbe appliedto our problems Motivatedfrom adap-



tive languagemodeling,transformatiorbasedadaptation
techniqueshave also been proposedfor certain super
visedlearningtasks(GalesandWoodland,1996). How-
ever, typically they only consideredrery specificstatisti-
cal modelswheretheideais to fit certaintransformation
parametersin particularthey did not considerthe main
issuesnvestigatedn this paperaswell asgenerallyappli-
cablesupervisedadaptatiormethodologiesuchaswhat
we proposeln fact,it will beverydifficult to extendtheir
methodgo naturallanguagerocessingroblemgshatuse
differentstatisticalmodels. The adaptionideain (Gales
andWoodland,1996)is alsocloselyrelatedto theideaof
combining supervisedand unsupervisedearningin the
samedomain(Merialdo,1994).In machindearning,this
is oftenreferredto assemi-supervisetbarningor learn-
ing with unlabeleddata. Suchmethodsare not always
reliable and can often fail(Zhangand Oles, 2000). Al-
thoughpotentiallyusefulfor smalldistributionalparame-
ter shifts,they cannotrecoverlabelsfor examplesnot (or
inadequately)epresenteth theold trainingdata.ln such
casesit is necessaryo usesuperviseddaptionmethods
whichwe studyin this paper Anotherrelatedideais so-
calledactive learningparadigm(Lewis andCatlett,1994;
Zhangand Oles, 2000), which selectvely annotateghe
mostinformative data(from thesamedomain)soasto re-
ducethe total numberof annotationsequiredto achieve
acertainlevel of accurag. See(Tangetal., 2002;Steed-
manet al., 2003)for relatedstudiesin statisticalnatural
languageparsing.

2 Generalized Winnow for Sentence
Boundary Detection

For the purposeof this paper we considerthe following
form of the sentencéoundarydetectionproblem:to de-
terminefor eachperiod“.” whetherit denotesa sentence
boundaryor not (mostnon-sentencéoundarycasesoc-
cur in abbreviations). Although other symbolssuchas
“?” and“!” may alsodenotesentencéboundariesthey
occurrelatively rarely andwhenthey occur, are easyto
determine.Therearea numberof specialsituations for
example: three (or more) periodsto denoteomission,
wherewe only classifythethird periodasanendof sen-
tencemarker. The treatmentof thesespecialsituations
arenotimportantfor the purposeof this paper

The above formulation of the sentenceseggmentation
problemcan be treatedas a binary classificationprob-
lem. Onemethodthathasbeensuccessfullyappliedto a
numberof linguistic problemsis the Winnow algorithm
(Littlestone, 1988; Khardonet al., 1999). However, a
drawbackof this methodis that the algorithm doesnot
necessarilgorvergefor datathatarenotlinearly separa-
ble. A generalizatiowasrecentlyproposedandapplied
to thetext chunkingproblem(Zhangetal., 2002),where

it wasshown thatthis generalizatiorcanindeedimprove
the performancef Winnow.

Applying the generalizedWinnow algorithm on the
sentencdoundarydetectionproblemis straightforward
sincethe methodsolves a binary classificationproblem
directly. In the following, we briefly review this algo-
rithm, andpropertieausefulin our study

Considerthe binary classificationproblem: to deter
minealabely € {—1,1} associatedvith aninput vec-
tor . A useful methodfor solving this problemis
throughlinear discriminantfunctions, which consistof
linear combinationsof componentf the input vector
Specifically we seeka weightvectorw andathreshold
with thefollowing decisionrule: if w2 < 8 we predict
thatthelabely = —1, andif wTz > 6, we predictthat
thelabely = 1. We denoteby d the dimensionof the
weightvectorw which equalsthe dimensionof theinput
vectorz. Theweightw andthresholdd canbe computed
from thegeneralizedVinnow method whichis basecdn
thefollowing optimizationproblem:
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The numericalmethodwhich we useto solve this prob-
lem, aspresentedn Algorithm 1, is basedon a dualfor-
mulationof the abose problem. See(Zhangetal., 2002)
for detailedderivation of the algorithmandits relation-
shipwith the standard\innow.

In all experiments,we usethe sameparametersug-
gestedn (Zhangetal., 2002)for thetext chunkingprob-
lem: K = 40,p = 0.1, = 0.01, andc = 0.1. The
above parametechoiceamaynotbe optimalfor sentence
segmentation However sincethe purposeof this paperis
not to demonstratéhe bestpossiblesentencesggmenta-
tion systemusingthis approachye shallsimplyfix these
parametersor all experiments.



Algorithm 1 (Generalized Winnow)

input: trainingdata(zt, y'), ... , (", y")
output: weightvectorw andthreshold?
leta; =0(G =1,...,n)

letwf =w; =p(=1,...,d)
letét =06-=p
fork=1,... K
fori=1,...,n
p=(wt —w) iy’ — (07 - 07)y’

c— al, (= —p)), —af)
= wf exp(Aa’w}y") '(j =1,...,d)

w; =wj exp(—Aa‘zyy’) (j=1,... ,d)

0T = 0% exp(—Acaty?)

6~ = 6~ exp(Aaiy?)

al =a' + Adt

Aca? = max(min(2c — o, n(

wt

.S

end
end
letw =wt —w™
letd =6+ — 9~

It wasshawvn in (Zhanget al., 2002) thatif (w,8) is
obtainedfrom Algorithm 1, thenit also approximately
minimizes E, (2P(y = 1|z) — 1 — T(wTz — 6))?,
where P(y = 1|z) denotesthe conditional probabil-
ity of y = 1 at a datapoint . Here we have used
T(p) to denotethe truncationof p onto[—1,1]: T'(p) =
min(1,max(—1,p)). This obsenationimplies that the
quantity(T'(w?z — 6) + 1) /2 canberegardedasanesti-
matefor the in-classconditionalprobability. As we will
see this propertywill bevery usefulfor our purposes.

For eachperiodin thetext, we constructa featurevec-
tor z asthe input to the generalizedNinnow algorithm,
anduseits predictionto determinavhethertheperiodde-
notesa sentencdoundaryor not. In orderto constructz,
we considedinguistic featuressurroundingheperiod,as
listedin Table1. Sincethe featureconstructionroutine
is written in the Java language;,‘'type of characterfea-
turescorrespondo the Java charactettypes,which can
be foundin any standardlavza manual. We picked these
featuresby looking at featuresusedpreviously, aswell
asaddingsomeof our own which we thoughtmight be
useful. However, we have not examinedwhich features
areactuallyimportantto the algorithm (for example,by
looking atthesizeof theweights),andwhichfeaturesare
not.

We usean encodingschemesimilar to that of (Zhang
etal., 2002). For eachdatapoint, the associatedeatures
areencodedasa binary vectorz. Eachcomponenof z
correspondso a possiblefeaturevaluev of a feature f
in Tablel. The value of the componentorrespondso
atestwhich hasvalueoneif the correspondindeaturef
hasvaluev, or valuezeroif the correspondindeature f
hasanotherfeaturevalue.

tokenbeforethe period

tokenafterthe period

characteto theright

type of characteto theright

characteto theleft

type of characteto theleft

characteto theright of blankafterword

type of characteto theright of blankafterword
characteteft of first characteof word

type of characteteft of first characteof word
first characteof the precedingvord

type of first characteof the precedingvord
lengthof precedingwvord

distanceto previousperiod

Tablel: Linguistic Features

The featurespresentechere may not be optimal. In
particular unlike (Zhanget al., 2002), we do not use
higherorderfeatures(for example,combinationsof the
abovefeatures)However, thislist of featureshasalready
givengood performancecomparingfavorably with pre-
vious approachegsee (Reynar and Ratnaparkhi,1997;
Mikheev, 2000)andreferencesherein).

The standardevaluationdatais the Wall-StreetJournal
(WSJ)tree-bank. Basedon our processingschemethe
trainingsetcontainsaboutsesenty-fourthousangeriods,
andthetestsetcontainsaboutthirteenthousandoeriods.
If we train on the training set, and teston the test set,
theaccuray is 99.7%. Anotherdatasetwhich hasbeen
annotateds the Brown corpus. If we train on the WSJ
training set,andteston the Brown corpus,the accurag
is 99.2%. Theerrorrateis threetimeslarger.

3 Experimental Design and System Update
Methods

In our studyof systembehaior underdomainchanges,
we have alsousedmanuallyconstructedulesto filter out
someof the periods. The specificsetof ruleswe have
usedare:

¢ If aperiodterminatesanon-capitalizedvord, andis
followedby a blankanda capitalizedword, thenwe
predictthatit is asentencéoundary

o If aperiodis both precedecandfollowedby alpha-
numericalcharactersthenwe predictthatit is nota
sentencéoundary

The above rulesachieve error ratesof lessthan0.1%
on boththe WSJandBrown datasetswhich is sufficient
for our purpose. Note that we did not try to make the
aborverulesasaccuratespossible For example thefirst



rule will misclassifiysituationssuchas“A vs. B". Elim-
inating suchmistalesis not essentiafor the purposeof
this study

All of our experimentsare performedandreportedon
the remaining periodsthat are not filtered out by the
abose manualrules. In this study the filtering scheme
senestwo purposes.Thefirst purposeis to magnify the
errors. Roughly speaking,the ruleswill classify more
thanhalf of the periods.Theseperiodsarealsorelatively
easyto classify using a statisticalclassifier Therefore
theerrorrateon the remainingperiodsis morethandou-
bled. Sincethe sentencdoundarydetectionproblemhas
a relatively small error rate, this magnificationeffect is
usefulfor comparingdifferentalgorithms. The second
purposeis to reduceour manuallabeling effort. In this
study we haduseda numberof datasetshatarenot an-
notated.Thereforefor experimentatiorpurposewe have
to labeleachperiodmanually

After filtering, the WSJ training set containsabout
twenty seven thousanddatapoints, andthe testsetcon-
tainsaboutfive thousanddatapoints. The Brown corpus
containsaboutseventeenthousanddatapoints. In addi-
tion, we alsomanuallylabeledthe following data:

e Reuters:This is a standarddatasefor text catejo-
rization,availablefrom
http: //kdd.ics.uci.edu/databases/reuters21578/
reuters21578.html.  We only usethe test-datain the
ModAptesplit, which containsabouteightthousand
periodsafterfiltering.

¢ MedLine: Medical abstractsith aboutsesenthou-
sandperiods availablefrom
wwwl.ics.uci.edu/~mlearn/MLRepository.html.

It is perhapsnot surprisingthat a sentenceéboundary
classifiertrainedon WSJdoesnot performnearlyaswell
onsomeof the otherdatasets.Howeverit is usefulto ex-
aminethe sourceof theseextra errors. We obsenedthat
mostof the errorsareclearlycausedy thefactthatother
domainscontainexamplesthatarenot representech the
WSJtraining set. Therearetwo sourcesfor thesepre-
viously unseerexamples:1. changeof writing style; 2.
new linguistic expressionsFor example,quotemarksare
representedstwo singlequote(or backquote)characters
in WSJ,but typically asonedoublequotecharacteelse-
where. In somedatasetssuchas Reuters phrasesuch
as“U.S. Economy”or “U.S. Dollar” frequentlyhave the
word afterthecountrynamecapitalizedthey alsoappear
in lower casesometimesijn the samedata). The above
canbe consideredhsa changeof writing style. In some
othercasesnew expressionsnayoccur For example,in
theMedLinedatanew expressionsuchas‘4 degreesC”
areusedto indicatetemperatureandexpressionsuchas
“Bioch. Biophys.Res.Commun.251,744-747"areused

for citations.In addition,new acrorymsandevenformu-
las containingtokensendingwith periodsoccurin such
domains.

It is clear that the majority of errors are causedby
datathat are not representedn the training set. This
factsuggestshatwhenwe apply a statisticalsystemto a
new domain,we needto checkwhetherthe domaincon-
tainsa significantnumberof previously unseerexamples
which may causeperformancedeterioration. This can
be achieved by measuringhe similarity of the new test
domainto the training domain. Oneway is to compute
statisticson the training domain,and comparethemto
statisticscomputedon the new testdomain;anotheway
is to calculateaproperlydefineddistancebetweerthetest
dataandthetrainingdata.However, it is notimmediately
obvious what datastatisticsare importantfor determin-
ing classificationperformance. Similarly it is not clear
what distancemetric would be goodto use. To avoid
suchdifficulties, in this paperwe assumehat the clas-
sifier itself can provide a confidencemeasurefor each
prediction,and we usethis informationto estimatethe
classifiers performance.

As we have mentionedearlier the generalizedWin-
now method approximately minimizes the quantity
E,(2P(y = 1|z) — 1 — T(w"z — 0))2. It is thusnat-
ural to use (T (w’'z — 6) + 1)/2 asan estimateof the
conditional probability P(y = 1|z). From simple al-
gebra,we obtain an estimateof the classificationerror
asE;|l — T(wTz — 6)|/2. SinceT(wTz — 6) is only
anapproximatiorof theconditionalprobability, this esti-
matemay not be entirely accurate However, onewould
expectit to give a reasonablyindicative measureof the
classificationperformance.In Table 2, we comparethe
true classificationaccurag from the annotatedestdata
to the estimatedaccurag usingthis method. It clearly
shaws thatthis estimateindeedcorrelatesvery well with
the true classificationperformance. Note that this esti-
matedoesnotrequireknowing thetruelabelsof thedata.
Thereforewe areableto detectthe potentialperformance
degradationof the classifieron a new domainusingthis
metricwithoutthe groundtruth information.

accurag | WSJ | Brown | Reuters| MedLine
true 99.3 | 97.7 93.0 94.8
estimated| 98.6 | 98.2 93.3 96.4

Table2: Trueandestimatecaccuray

As pointedout before, a major sourceof error for a
new applicationdomain comesfrom datathat are not
representedh the training set. If we canidentify those
data,thenanaturalway to enhanceheunderlyingclassi-
fier's performancevould be to includethemin thetrain-
ing data,andthenretrain. However, a humanis required



to obtainlabelsfor thenew data,but our goalis to reduce
thehumanlabelingeffort asmuchaspossible. Therefore
we examinethe potentialof usingthe classifierto deter

minewhich partof thedatait hasdifficulty with, andthen
aska humanto label that part. If the underlyingclassi-
fier can provide confidencenformation, thenit is natu-
ral to assumehat confidencedor unseerdatawill likely

below. Thereforefor labelingpurposespnecanchoose
datafrom the new domainfor which the confidenceis

low. This ideais very similar to certainmethodsused
in active learning. In particulara confidence-basesam-
ple selectionrschemeavasproposedn (Lewis andCatlett,
1994).Onepotentialproblemfor this approachs thatby

choosingdatawith lower confidencelevels, noisy data
that are difficult to classify tendto be chosen;another
problemis thatit tendsto choosesimilar datamultiple

times.However, in this papemwe do notinvestigataneth-
odsthatsolve thesessues.

For baselinecomparisonye considettheclassifierob-
tainedfrom the old training data(seeTable3), aswell as
classifierstrainedon randomsamplesrom the new do-
main (seeTable4). In this study we explore the follow-
ing threeideasto improve the performance:

e Databalancing: Merge labeleddatafrom the new
domainwith the existing training datafrom the old
domain;we alsobalanceheir relative proportionso
thatthe effect of onedomaindoesnot dominatethe
othetr

e Featureaugmentation:Use the old classifier(first
level classifier)to createnew featuresfor the data,
andthentrain anotherclassifier(secondevel classi-
fier) with augmentedeaturegon newly labeleddata
from thenew domain).

e Confidencebasedfeatureselection:Insteadof ran-
domsampling selectdatafrom thenew domainwith
lowestconfidencebasedn theold classifier

Onemay combinetheaboveideas.In particular we will
comparehefollowing methodsn this study:

o Random:Randomlyselectediatafrom the new do-
main.

e BalancedUseWSJtrainingset+ randomlyselected
datafrom the new domain. However, we super
sampletherandomlyselectedatasothatthe effec-
tive samplesizeis S-timesthatof the WSJtraining
set,whereg is abalancingfactor

e Augmented(Random): Use the default classifier
output to form additional features. Then train a
secondlevel classifieron randomly selecteddata
from thenew domain with theseadditionalfeatures.
In our experiments four binary featuresare added;

they correspondotestse > 1,¢ > 0,¢ < 0,c < —1
(wherec = wT'z — @ is the outputof thefirst level
classifier).

e Augmented-balancedAs indicated,useadditional
featuresaswell asthe original WSJtraining setfor
thesecondevel classifier

e Confidence-Balancednsteadof randomsampling
from the new domain, choosethe least confident
data(whichis morelikely to provide new informa-
tion), andthenbalancewith the WSJtraining set.

¢ Augmented-Confidence-Balanced@his methodis
similarto Augmented-balanceddowever, we label
theleastconfidentdatainsteadof randomsampling.

4 Experimental Results

We carriedout experimentson the Brown, Reuters,and
MedLine datasets.We randomly partition eachdataset
into training andtesting. All methodsaretrainedusing
only informationfrom the training set, andtheir perfor
manceareevaluatedonthetestset. Eachtestsetcontains
4000 datapointsrandomlyselected.This samplesizeis
choserto make surethatanestimatedcaccurag basedon
theseempirical sampleswill be reasonablycloseto the
true accurag. For a binary classifier the standarddevi-
ation betweenthe empirical meang with a samplesize
m = 4000, andthetruemeang, is /g(1 — §)/m. Since
q ~ ¢, we canreplaceg by ¢. Now, if § > 0.9, then
theerroris lessthan0.5%; if ¢ > 0.98, thenthe standard
deviation is no morethanabout0.2%. Fromthe experi-
ments,we seethatthe accurag of all algorithmswill be
improvedto about0.98 for all threedatasets.Therefore
thetestsetsizewe haveis sufficiently largeto distinguish
adifferenceof 0.5% with reasonableonfidence.

Table 3 lists the test set performanceof classifiers
trainedon the WSJ training set (denotedby WSJ), the
training set from the same domain (that is, Brown,
ReutersandMedLinerespectrely for the corresponding
testsets)denotedby Self, and their combination. This
indicatesupperlimits on whatcanbe achieved usingthe
correspondingdraining setinformation. It is alsointer-
estingto seethat the combinationdoesnot necessarily
improve the performance.We comparedifferentupdat-
ing scheme®dasedon the numberof new labelsrequired
from the new domain. For this purpose we usethe fol-
lowing numberof labeledinstances:100, 200, 400, 800
and1600, correspondingo the“new data”columnin the
tables. For all experiments,if a specificresultrequires
randomsampling,thenfive differentrandomrunswere
performedandthecorrespondingesultis reportedn the
formatof “mean= std.dev.” overthefive runs.

Table4 containsthe performanceof classifierdrained
onrandomlyselectedlatafrom thenew domainalone.lIt



trainset | Brown | Reuters| MedLine
WSJ 97.5 93.1 94.6
Self 90.1 98.4 98.2
WSJ+Self| 98.9 98.9 97.9

Table3: baselineaccurag

is interestingto obsene thatevenwith arelatively small
numberof training examples,the correspondinglassi-
fiers can out-performthose obtainedfrom the default
WSJ training set, which containsa significantly larger
amountof data. Clearly this indicatesthatin someNLP
applicationsusingdatawith theright characteristicean
be moreimportantthanusingmoredata. This alsopro-
videsstrongevidencethat one shouldupdatea classifier
if theunderlyingdomainis differentfrom thetrainingdo-
main.

new data Brown Reuters MedLine
100 945+09 | 94.8+1.4 | 93.2+1.1
200 94.8+1.2 | 95.84+0.9 | 95.5+0.6
400 96.8 £0.3 | 96.8 0.4 | 96.6 + 0.4
800 97.2+0.5 | 97.6 0.1 | 97.2+0.2
1600 | 979+0.1 | 98.0+0.1 | 97.8+0.2

Table4: RandomSelection

Table5 containgheresultsof usingthebalancingdea.
With the sameamountof newly labeleddata, the im-
provementover the randommethodis significant. This
shavsthateventhoughthedomainhaschangediraining
datafrom the old domainarestill very useful. Obsene
that not only is the averageperformancamproved, but
the varianceis alsoreduced. Note thatin this table,we
have fixed 8 = 0.5. The performancewith differents
valueson the MedLine dataseis reportedin Table®6. It
shaws that different choicesof 3 malke relatively small
differencesn accurag. At this point, it is interestingto
checkwhetherthe estimatedaccurag (usingthe method
describedor Table?2) reflectsthe changdn performance
improvement.Theresultis givenin Table7. Clearlythe
methodwe proposestill leadsto reasonablestimates.

B 1R [1/a]1/2 1 2
100 | 96.0 | 95.7 | 95.8 | 96.0 | 94.9
200 | 96.3 | 96.5 | 96.6 | 96.3 | 96.6
400 | 96.8 | 97.0 | 97.2 | 97.1 | 96.8
800 | 97.3 | 97.5 | 97.6 | 97.5 | 97.4
1600 | 97.4 | 97.8 | 97.9 | 98.0 | 97.7

Table 6: Effect of 3 on MedLine using the balancing
scheme

accurag | Brown | Reuters| MedLine
true 98.1 98.3 97.6
estimated| 98.4 97.9 98.2

Table7: Trueandestimatedaccurag (balancingscheme
with 800 samplesand = 0.5)

augmentedfeatures, either with the random sampling
schemeor with thebalancingschemelt canbeseerthat
with featureaugmentationthe randomsamplingandthe
balancingschemegerformsimilarly. Althoughthe fea-
ture augmentatiormethoddoesnot improve the overall
performance(comparedwith balancingschemealone),
one adwvantageis that we do not have to rely on the old

training dataary more. In principle, one may even use
atwo-level classificatiorschemeusethe old classifierif

it givesa high confidenceusethe new classifiertrained
onthe new domainotherwise . However, we have not ex-

ploredsuchcombinations.

new data Brown Reuters MedLine
100 97.5+0.0 | 97.7+0.2 | 95.5+ 1.0
200 97.6+£0.1 | 97.6 0.3 | 95.9+0.8
400 97.7+0.1 | 97.8+0.2 | 97.0+ 0.9
800 97.8+0.1 | 98.1+0.4 | 97.6 £0.3
1600 | 98.1+0.1 | 98.3+0.3 | 97.9+0.1

new data Brown Reuters MedLine
100 97.7+0.1 | 97.14+0.6 | 95.84+0.4
200 97.9+£0.2 | 97.7+0.3 | 96.6 +£0.3
400 97.9+0.1 | 98.1+0.3 | 97.2+0.2
800 98.1+0.2 | 98.3+0.3 | 97.6+0.2
1600 | 98.4+0.1 | 98.7+0.1 | 97.9+0.1

Table 8 and Table 9 report the performanceusing

Table5: Balanced s = 0.5)

Table8: Augmented Random)

Table 10 and Table 11 report the performanceusing
confidencébaseddataselectionjnsteadof randomsam-
pling. This methodhelpsto someextent,but notasmuch
aswe originally expected.However, we have only used
the simplestversionof this method,which is suscepti-
ble to two problemsmentionedearlier: it tends(a) to
selectdatathat are inherently hard to classify and (b)
to selectredundantdata. Both problemscanbe avoided
with a moreelaboratedmplementationput we have not
exploredthis. Anotherpossiblereasonthat using confi-
dencebasedsampleselectiondoesnot resultin signifi-
cantperformancemprovementis thatfor our examples,
the performances alreadyquite goodwith evena small
numberof new samples.



new data Brown Reuters | MedLine
100 97.84+0.3 | 97.0+1.0 | 95.44+0.7
200 97.8+£0.2 | 97.7+0.3 | 959+ 0.6
400 98.0+0.1 | 98.0+0.3 | 96.8+0.6
800 98.24+0.3 |19844+0.3 | 97.24+0.3
1600 | 98.4+0.2 | 98.74+0.3 | 97.5+0.2

Table9: Augmented+ Balanced

new data | Brown | Reuters| MedLine
100 98.0 97.5 96.9
200 98.1 97.4 97.0
400 98.2 97.8 97.6
800 98.7 98.6 98.0
1600 98.8 98.8 98.0

Table10: Confidencer Balanced

5 Conclusion

In this paper we studiedthe problemof updatinga sta-
tistical systemto fit a domainwith characteristicgliffer-
entfrom thatof thetraining data. Without updating per
formancewill typically deteriorate perhapsjuite drasti-
cally.

We usedthe sentencéboundarydetectionproblemto
compareafew differentupdatingmethods This provides
usefulinsightsinto the potentialvalue of variousideas.
In particular we have madethe following obsenations:
1. An NLP systemtrainedon one datasetcanperform
poorly on anotherbecausethere can be nev examples
not adequatelyrepresentedh the old training set; 2. It
is possibleto estimatethe degreeof systemperformance
degradation,andto determinewhetherit is necessaryo
performasystenupdate 3. Whenupdatinga classifierto
fit a new domain,even a smallamountof newly labeled
datacansignificantlyimprove the performancedalso,the
right training datacharacteristiceanbe moreimportant
thanthe quantityof training data);4. Combiningthe old
training datawith the newly labeleddatain anappropri-
ateway (e.g.,by balancingor featureaugmentationgan
beeffective.

Although the sentencesggmentationproblemconsid-

new data | Brown | Reuters| MedLine
100 97.3 97.8 96.9
200 97.8 97.7 96.9
400 98.1 97.7 97.6
800 98.7 98.6 98.1
1600 98.8 98.9 98.2

Table11: Augmented+ Confidencetr Balanced

eredin this paperis relatively simple, we are currently
investigatingother problems. We anticipatethat the ob-
senationsfrom this studycanbeappliedto morecompli-
catedNLP tasks.
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