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Abstract

We describe new features and algorithms for
HPSG parse selection models and address the
task of creating annotated material to train
them. We evaluate the ability of several sam-
ple selection methods to reduce the number
of annotated sentences necessary to achieve a
given level of performance. Our best method
achieves a 60% reduction in the amount of
training material without any loss in accuracy.

1 Introduction

Even with significant resources such as the Penn Tree-
bank, a major bottleneck for improving statistical parsers
has been the lack of sufficient annotated material from
which to estimate their parameters. Most statistical pars-
ing research, such as Collins (1997), has centered on
training probabilistic context-free grammars using the
Penn Treebank. For richer linguistic frameworks, such as
Head-Driven Phrase Structure Grammar (HPSG), there
is even less annotated material available for training
stochastic parsing models. There is thus a pressing need
to create significant volumes of annotated material in a
logistically efficient manner. Even if it were possible to
bootstrap from the Penn Treebank, it is still unlikely that
there would be sufficient quantities of high quality mate-
rial.

There has been a strong focus in recent years on us-
ing the active learning technique of selective sampling to
reduce the amount of human-annotated training material
needed to train models for various natural language pro-
cessing tasks. The aim of selective sampling is to iden-
tify the most informative examples, according to some se-
lection method, from a large pool of unlabelled material.
Such selected examples are then manually labelled. Se-
lective sampling has typically been applied to classifica-
tion tasks, but has also been shown to reduce the number

of examples needed for inducing Lexicalized Tree Inser-
tion Grammars from the Penn Treebank (Hwa, 2000).

The suitability of active learning for HPSG-type gram-
mars has as yet not been explored. This paper addresses
the problem of minimizing the human effort expended in
creating annotated training material for HPSG parse se-
lection by using selective sampling. We do so in the con-
text of Redwoods (Oepen et al., 2002), a treebank that
contains HPSG analyses for sentences from the Verbmo-
bil appointment scheduling and travel planning domains.
We show that sample selection metrics based on tree en-
tropy (Hwa, 2000) and disagreement between two differ-
ent parse selection models significantly reduce the num-
ber of annotated sentences necessary to match a given
level of performance according to random selection. Fur-
thermore, by combining these two methods as an ensem-
ble selection method, we require even fewer examples —
achieving a 60% reduction in the amount of annotated
training material needed to outperform a model trained
on randomly selected material. These results suggest
that significant reductions in human effort can be real-
ized through selective sampling when creating annotated
material for linguistically rich grammar formalisms.

As the basis of our active learning approach, we create
both log-linear and perceptron models, the latter of which
has not previously been used for feature-based grammars.
We show that the different biases of the two types of mod-
els is sufficient to create diverse members for a commit-
tee, even when they use exactly the same features. With
respect to the features used to train models, we demon-
strate that a very simple feature selection strategy that ig-
nores the proper structure of trees is competitive with one
that fully respects tree configurations.

The structure of the paper is as follows. In sections 2
and 3, we briefly introduce active learning and the Red-
woods treebank. Section 4 discusses the parse selection
models that we use in the experiments. In sections 5 and
6, we explain the different selection methods that we use



for active learning and explicate the setup in which the
experiments were conducted. Finally, the results of the
experiments are presented and discussed in section 7.

2 ActivelLearning

Active learning attempts to reduce the number of exam-
ples needed for training statistical models by allowing
the machine learner to directly participate in creating the
corpus it uses. There are a several approaches to active
learning; here, we focus on selective sampling (Cohn et
al., 1994), which involves identifying the most informa-
tive examples from a pool of unlabelled data and pre-
senting only these examples to a human expert for an-
notation. The two main flavors of selective sampling are
certainty-based methods and committee-based methods
(Thompson et al., 1999). For certainty-based selection,
the examples chosen for annotation are those for which
a single learner is least confident, as determined by some
criterion. Committee-based selection involves groups of
learners that each maintain different hypotheses about
the problem; examples on which the learners disagree in
some respect are typically regarded as the most informa-
tive.

Active learning has been successfully applied to a
number of natural language oriented tasks, including text
categorization (Lewis and Gale, 1994) and part-of-speech
tagging (Engelson and Dagan, 1996). Hwa (2000) shows
that certainty-based selective sampling can reduce the
amount of training material needed for inducing Prob-
abilistic Lexicalized Tree Insertion Grammars by 36%
without degrading the quality of the grammars. Like
Hwa, we investigate active learning for parsing and thus
seek informative sentences; however, rather than induc-
ing grammars, our task is to select the best parse from the
output of an existing hand-crafted grammar by using the
Redwoods treebank.

3 The Redwoods Treebank

The English Resource Grammar (ERG, Flickinger
(2000)) is a broad coverage HPSG grammar that provides
deep semantic analyses of sentences but has no means to
prefer some analyses over others because of its purely
symbolic nature. To address this limitation, the Red-
woods treebank has been created to provide annotated
training material to permit statistical models for ambigu-
ity resolution to be combined with the precise interpreta-
tions produced by the ERG (Oepen et al., 2002).
Whereas the Penn Treebank has an implicit grammar
underlying its parse trees, Redwoods uses the ERG ex-
plicitly. For each utterance, Redwoods enumerates the
set of analyses, represented as derivation trees, licensed
by the ERG and identifies which analysis is the preferred
one. For example, Figure 1 shows the preferred deriva-
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Figure 1: Redwoods derivation tree for the sentence what
can | do for you? The node labels are the names of the
ERG rules used to build the analysis.

tion tree, out of three ERG analyses, for what can | do
for you?. From such derivation trees, the parse trees and
semantic interpretations can be recovered using an HPSG
parser.

Redwoods is (semi-automatically) updated after
changes have been made to the ERG, and it has thus far
gone through three growths. Some salient characteris-
tics of the first and third growths are given in Table 1 for
utterances for which a unique preferred parse has been
identified and for which there are at least two analyses.*
The ambiguity increased considerably between the first
and third growths, reflecting the increased coverage of
the ERG for more difficult sentences.

corpus sentences | length | parses
Redwoods-1 3799 7.9 9.7
Redwoods-3 5302 9.3 58.0

Table 1: Characteristics of subsets of Redwoods versions
used for the parse selection task. The columns indi-
cate the number of sentences in the subset, their average
length, and their average number of parses.

The small size of the treebank makes it essential to
explore the possibility of using methods such as active
learning to speed the creation of more annotated material
for training parse selection models.

4 Parse Selection

Committee-based active learning requires multiple learn-
ers which have different biases that cause them to make
different predictions sometimes. As in co-training, one

1There are over 1400 utterances in both versions for which
the ERG produces only one analysis and which therefore are
irrelevant for parse selection. They contain no discriminating
information and are thus not useful for the machine learning
algorithms discussed in the next section.
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Figure 2: Three example ngram features based on the
derivation tree in Figure 1.

way such diverse learners can be created is by using in-
dependent or partially independent feature sets to reduce
the error correlation between the learners. Another way
is to use different machine learning algorithms trained on
the same feature set. In this section, we discuss two fea-
ture sets and two machine learning algorithms that are
used to produce four distinct models and we give their
overall performance on the parse selection task.

4.1 Features

Our two feature sets are created by using only the deriva-
tion trees made available in Redwoods. The configura-
tional set is loosely based on the derivation tree features
given by Toutanova and Manning (2002), and thus en-
codes standard relations such as grandparent-of and left-
sibling for the nodes in the tree. The ngram set is created
by flattening derivation trees and treating them as strings
of rule names over which ngrams are extracted, taking up
to four rule names at a time and including the number of
intervening parentheses between them. We ignore ortho-
graphic values for both feature sets.

As examples of typical ngram features, the derivation
tree given in Figure 1 generates features such as those de-
picted in Figure 2. Such features provide a reasonable ap-
proximation of trees that implicitly encodes many of the
interesting relationships that are typically gathered from
them, such as grandparent and sibling relations. They
also capture further relationships that cross the brackets
of the actual tree, providing some more long-distance re-
lationships than the configurational features.

4.2 Algorithms

We use both log-linear and perceptron algorithms to cre-
ate parse selection models. Both frameworks use iter-
ative procedures to determine the weights (wy, . .., wp,)
of a corresponding set of features { f1, . .., fm} produced
from annotated training material. Though they are oth-
erwise quite different, this commonality facilitates their
use in a committee since they can work with the same
training material. When preparing the training material,
we record observations about the distribution of analyses
with a binary distinction that simply identifies the pre-
ferred parse, rather than using a full regression approach
that recognizes similarities between the preferred parse
and some of the dispreferred ones.

Log-linear models have previously been used for
stochastic unification-based grammars by Johnson et

al. (1999) and Osborne (2000). Using Redwoods-1,
Toutanova and Manning (2002) have shown that log-
linear models for parse selection considerably outper-
form PCFG models trained on the same features. By
using features based on both derivation trees and seman-
tic dependency trees, they achieved 83.32% exact match
whole-sentence parse selection with an an ensemble of
log-linear models that used different subsets of the fea-
ture space.

As standard for parse selection using log-linear mod-
elling, we model the probability of an analysis ¢; given a
sentence with a set of analyses 7 = {t; . .. } as follows:

exp(37L, fi(ti)w;)
Z(s)

P(ti]s) =

where f;(t) returns the number of times feature j occurs
in analysis ¢ and Z(s) is a normalization factor for the
sentence. The parse with the highest probability is taken
as the preferred parse for the model.> We use the lim-
ited memory variable metric algorithm (Malouf, 2002) to
determine the weights.

Perceptrons have been used by Collins and Duffy
(2002) to re-rank the output of a PCFG, but have not pre-
viously been applied to feature-based grammars. Stan-
dard perceptrons assign a score rather than probability to
each analysis. Scores are computed by taking the inner
product of the analysis’ feature vector with the parameter
vector:

m

score(t;) = ij (ti)w;

=1

The preferred parse is that with the highest score out of
all analyses of a sentence.

4.3 Performance

Using the two feature sets (configurational and ngram)
with both log-linear and perceptron algorithms, we create
the four models shown in Table 2. To test their overall
accuracy, we measured performance using exact match.
This means we award a model a point if it picks some
parse for a sentence and that parse happens to be the best
analysis. We averaged performance over ten runs using
a cross-validation strategy. For each run, we randomly
split the corpus into ten roughly equally-sized subsets and
tested the accuracy for each subset after training a model
on the other nine. The accuracy when a model ranks m
parses highest is given as 1/m.

The results for the four models on both Redwoods-1
and Redwoods-3 are given in Table 3, along with a base-
line of randomly selecting parses. As can be seen, the
increased ambiguity in the later version impacts the ac-



Model Algorithm | Feature set
LL-CONFIG | log-linear | configurational
LL-NGRAM | log-linear | ngram
PT-CONFIG | perceptron | configurational
PT-NGRAM | perceptron | ngram

Table 2: Parse selection models.

Model Redwoods-1 | Redwoods-3
RANDOM 25.71 22.70
LL-CONFIG 81.84 74.90
LL-NGRAM 81.35 74.05
PT-CONFIG 79.92 71.76
PT-NGRAM 79.92 72.75

Table 3: Parse selection accuracy.

curacy heavily.

The performance of LL-CONFIG on Redwoods-1
matches the accuracy of the best stand-alone log-linear
model reported by Toutanova and Manning (2002), which
uses essentially the same features. The log-linear model
that utilizes the ngram features is not far behind, indicat-
ing that these simple features do indeed capture important
generalizations about the derivation trees.

The perceptrons both perform worse than the log-linear
models. However, what is more important is that each
model disagrees with all of the others on roughly 20%
of the examples, indicating that differentiation by using
either a different feature set or a different machine learn-
ing algorithm is sufficient to produce models with dif-
ferent biases. This is essential for setting up committee-
based active learning and could also make them informa-
tive members in an ensemble for parse selection.

5 Selecting Examplesfor Annotation

In applying active learning to parse selection, we in-
vestigate two primary sample selection methods, one
certainty-based and the other committee-based, and com-
pare them to several baseline methods.

The single-learner method uses tree entropy (Hwa,
2000), which measures the uncertainty of a learner based
on the conditional distribution it assigns to the parses of
a given sentence. Following Hwa, we use the following
evaluation function to quantify uncertainty based on tree
entropy:

— Dier P(t|8)log2(p(t]s))

fre(s,7) = length(s)

where 7 denotes the set of analyses produced by the ERG

2\When only an absolute ranking of analysesisrequired, it is
unnecessary to exponentiate and compute Z(s).

for the sentence. Higher values of f.(s,7) indicate ex-
amples on which the learner is most uncertain and thus
presumably are more informative. The intuition behind
tree entropy is that sentences should have a skewed dis-
tribution over their parses and that deviation from this
signals learner uncertainty. Calculating tree entropy is
trivial with the conditional log-linear models described
in section 4. Of course, tree entropy cannot be straight-
forwardly used with standard perceptrons since they do
not determine a distribution over the parses of a sentence.

The second sample selection method is inspired by
the Query by Committee algorithm (Freund et al., 1997;
Argamon-Engelson and Dagan, 1999) and co-testing
(Muslea et al., 2000). Using a fixed committee consisting
of two distinct models, the examples we select for anno-
tation are those for which the two models disagree on the
preferred parse. We will refer to this method as preferred
parse disagreement. The intuition behind this method is
that the different biases of each of the learners will lead to
different predictions on some examples and thus identify
examples for which at least one of them is uncertain.

We compare tree entropy and disagreement with the
following three baseline selection methods to ensure the
significance of the results:

e random: randomly select sentences

e ambiguity: select sentences with a higher number of
parses

e length: select longer sentences

6 Experimental Setup

The pseudo-code for committee-based active learning
with two members is given in Figure 3.3 Starting with
a small amount of initial annotated training material, the
learners on the committee are used to select examples,
based on the method being used. These examples are
subsequently manually annotated and added to the set of
labelled training material and the learners are retrained on
the extended set. This loop continues until all available
unannotated examples are exhausted, or until some other
pre-determined condition is met.

As is standard for active learning experiments, we
quantify the effect of different selection techniques by
using them to select subsets of the material already an-
notated in Redwoods-3. For the experiments, we used
tenfold cross-validation by moving a fixed window of 500
sentences through Redwoods-3 for the test set and select-
ing samples from the remaining 4802 sentences. Each
run of active learning begins with 50 randomly chosen,
annotated seed sentences. At each round, new examples

3The code for asingle-learner is essentially the same.



A and B are two different learners.
M, and M are models of A and B at step i.
U isapool of unlabelled examples.
L isthe manually labelled seed data.
Initialize:
MS « Train(A, L°)
MY < Train(B, L°)
L oop:
N « Select n examples using M and M}
according to some selection method S
U+<U-N
L'« L' U Label(N)
MY« Train(A, L)
MGt < Train(B,L't)
until:
(U = 0) or (human stops)

Figure 3: Pseudo-code for committee-based active learn-
ing.

are selected for annotation from a randomly chosen sub-
set according to the operative selection method until the
total amount of annotated training material made avail-
able to the learners reaches 3000. We select 25 examples
at time until the training set contains 1000 examples, then
50 at a time until it has 2000, and finally 100 at a time un-
til it has 3000. The results for each selection method are
averaged over four tenfold cross-validation runs.

Whereas Hwa (Hwa, 2000) evaluated the effectiveness
of selective sampling according to the number of brack-
ets which were needed to create the parse trees for se-
lected sentences, we compare selection methods based
on the absolute number of sentences they select. This
is realistic in the Redwoods setting since the derivation
trees are created automatically from the ERG, and the
task of the human annotator is to select the best from all
licensed parses. Annotation in Redwoods uses an inter-
face that presents local discriminants which disambiguate
large portions of the parse forest, so options are narrowed
down quickly even for sentences with a large number of
parses.

7 Results

Figure 4 shows the performance of the LL-CONFIG model
as more examples are chosen according to the different
selection methods. As can be seen, both tree entropy and
disagreement are equally effective and significantly im-
prove on random selection.* Selection by sentence length
is worse than random until 2100 examples have been an-
notated. Selecting more ambiguous sentences does even-
tually perform significantly better than random, but its ac-
curacy does not rise nearly as steeply as tree entropy and

4L L-CONFIG was paired with LL-NGRAM for preferred parse
disagreement in Figure 4(a).

disagreement selection. Table 4 shows the precise values
for all methods using different amounts of annotated sen-
tences. The accuracies for entropy and disagreement are
statistically significant improvements over random selec-
tion. Using a pair-wise t-test, the values for 500, 1000,
and 2000 are significant at 99% confidence, and those for
3000 are significant at 95% confidence.®

500 | 1000 | 2000 | 3000
random 65.87 | 68.76 | 71.39 | 72.82
disagree 68.52 | 71.60 | 74.31 | 74.63
entropy 69.01 | 71.90 | 74.10 | 74.85
ambiguity | 64.65 | 68.54 | 72.25 | 74.54
length 64.82 | 66.41 | 70.37 | 73.51

Table 4: Accuracy for different selection methods with
different amounts of training data.

Table 5 shows that when compared to random selec-
tion using 3000 examples, tree entropy and disagreement
achieve higher accuracy while reducing the number of
training examples needed by more than one half. Though
selection by ambiguity does provide a reduction over ran-
dom selection, it does not enjoy the same rapid increase
as tree entropy and disagreement, and it performs roughly
equal to or worse than random until 1100 examples, as is
evident in Figure 4(b).

# examples | avg. score | reduction
random 3000 72.82 N/A
disagree 1450 72.95 51.7
entropy 1450 72.84 51.7
ambiguity 2300 72.95 23.3
length 2600 73.70 12.0

Table 5: Number of examples needed for different selec-
tion methods to outperform random selection with 3000
examples. The final column gives the percentage reduc-
tion in the number of examples used.

We also tested preferred parse disagreement by pair-
ing LL-CONFIG with the perceptrons. The performance
in these cases was nearly identical to that given for selec-
tion by disagreement in Figure 4, which used LL-CONFIG
and LL-NGRAM for the committee. This indicates that
differences either in terms of the algorithm or the feature
set used are enough to bias the learners sufficiently for
them to disagree on informative examples. This provides
flexibility for applying selection by disagreement in dif-
ferent contexts where it may be easier to employ different

5The dlightly lower confi dence for 3000 examples indicates
the fact that the small size of the corpus leaves the selection
techniques with fewer informative examples to choose from and
thereby differentiate itself from random selection.
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Figure 4: Accuracy as more examples are selected according to (a) random, tree entropy, and disagreement, and (b)

random, ambiguity, and sentence length.

feature sets than different algorithms, or vice versa. The
fact that using the same feature set with different algo-
rithms is effective for active learning is interesting and is
echoed by similar findings for co-training (Goldman and
Zhou, 2000).

Given the similar performance of tree entropy and pre-
ferred parse disagreement, it is interesting to see whether
they select essentially the same examples. One case
where they might not overlap is a distribution with two
sharp spikes, which would be likely to provide excellent
discriminating information. Though such a distribution
has low entropy, each model might be biased toward a
different spike and they would select the example by dis-
agreement.

To test this, we ran a further experiment with a com-
bined selection method that takes the intersection of tree
entropy and disagreement. At each round, we randomly
choose examples from the pool of unannotated sentences
and sort them according to tree entropy, from highest to
lowest. From the first 100 of these examples, we take the
first n examples that are also selected by disagreement,
varying the number selected in the same manner as for
the previous experiments. When the size of the intersec-
tion is less than the number to be selected, we select the
remainder according to tree entropy.

The performance for combined selection is compared
with entropy and random selection in Figure 5 and Ta-
ble 6. There is an slight, though not significant improve-
ment over entropy on its own. The improvement over
random is significant for all values, using a pair-wise
t-test at 99% confidence. The combined approach re-
quires 1200 examples on average to outperform random
selection with 3000 examples, a 60.0% reduction that im-
proves on either method on its own.

Tracking the examples chosen by tree entropy and dis-

500 | 1000 | 2000 | 3000
random 65.87 | 68.76 | 71.39 | 72.82
entropy 69.01 | 71.90 | 74.10 | 74.85
combined | 69.56 | 71.98 | 74.43 | 75.26

Table 6: Accuracy for random, tree entropy and com-
bined selection selection with different amounts of train-
ing data.

agreement at each round verifies that they do not se-
lect precisely the same examples. It thus appears that
disagreement-based selection helps tease out examples
that contain better discriminating information than other
examples with higher entropy. This may in effect be ap-
proximating a more general method that could directly
identify such examples.

The accuracy of LL-CONFIG when using all 4802 avail-
able training examples for the tenfold cross-validation
is 74.80%, and combined selection improves on this by
reaching 75.26% (on average) with 3000 training exam-
ples. Furthermore, though active learning was halted at
3000 examples, the accuracy for all the selection methods
was still increasing at this point, and it is likely than even
higher accuracy would be achieved by allowing more ex-
amples to be selected. Sample selection thus appears to
identify highly informative subsets as well as reduce the
number of examples needed.

Finally, we considered one further question regarding
the behavior of sample selection under different condi-
tions: can an impoverished model select informative ex-
amples for a more capable one? Thus, if active learning
is actually used to extend a corpus, will the examples se-
lected for annotation still be of high utility if we later
devise a better feature selection strategy that gives rise
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to better models? To test this, we created a log-linear
model that uses only bigrams, used it to select examples
by tree entropy, and simultaneously trained and tested
LL-CONFIG on those examples. Utilizing all training ma-
terial, the bigram model performs much worse than LL-
CONFIG overall: 71.43% versus 74.80%.

LL-CONFIG is thus a sort of passenger of the weaker bi-
gram model, which drives the selection process. Figure 6
compares the accuracy of LL-CONFIG under this condi-
tion (which only involved one tenfold cross-validation
run) with the accuracy when LL-CONFIG itself chooses
examples according to tree entropy. Random selection is
also included for reference.
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Figure 6: Accuracy as more examples are selected based

tree entropy according to LL-CONFIG itself and when LL-
CONFIG is the passenger of an impoverished model.

This experiment demonstrates that although accuracy
does not rise as quickly as when LL-CONFIG itself selects
examples, it is still significantly better than random (at

95% confidence) despite the bigram model’s poorer per-
formance. We can thus expect samples chosen by the cur-
rent best model to be informative, though not necessarily
optimal, for improved models in the future.

8 Conclusion

We have shown that sample selection according to both
tree entropy and preferred parse disagreement signifi-
cantly reduce the number of examples needed to train
models for HPSG parse selection, when compared to
several baseline selection metrics. Furthermore, perfor-
mance improves further when these these two methods
are combined, resulting in a 60% reduction in the amount
of training material without any degradation in parse se-
lection accuracy. Another interesting result is that, for
this data set, higher accuracy is attainable by not using
all of the available training material. We have also shown
that an impoverished learner can effectively choose sam-
ples that are informative for a better model.

Because tree entropy requires only one learner, it is
simpler and more efficient than preferred parse disagree-
ment. However, it requires the learner to be probabilis-
tic, and thus cannot be straightforwardly used with ma-
chine learning algorithms such as standard perceptrons
and support vector machines.

A more important difference between tree entropy
and disagreement is that the latter leads naturally to a
combined approach using both active learning and co-
training. Rather than comparing the two learners on
whether they categorically select the same preferred parse
on a number of examples, we can view active learning
as the inverse of agreement-based co-training (Abney,
2002). We can then explore thresholds for which we can
determine that certain examples need to be human anno-
tated and others can be confidently machine labelled.

In future work, we will explore the effect of using fur-
ther models that utilize the semantic information in Red-
woods for sample selection, and we will apply active
learning to both expand Redwoods and add discourse-
level annotations.
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