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Abstract

The term translation spotting(TS) refers to
the task of identifying the target-language (TL)
words that correspond to a given set of source-
language (SL) words in a pair of text segments
known to be mutual translations. This arti-
cle examines this task within the context of a
sub-sentential translation-memory system, i.e.
a translation support tool capable of proposing
translations for portions of a SL sentence, ex-
tracted from an archive of existing translations.
Different methods are proposed, based on a sta-
tistical translation model. These methods take
advantage of certain characteristics of the ap-
plication, to produce TL segments submitted
to constraints ofcontiguity and composition-
ality. Experiments show that imposing these
constraints allows important gains in accuracy,
with regard to the most probable alignments
predicted by the model.

1 Introduction

Translation spottingis the term coined by V́eronis and
Langlais (2000) for the task of identifying the word-
tokens in a target-language (TL) translation that corre-
spond to some given word-tokens in a source-language
(SL) text. Translation spotting (TS) takes as input acou-
ple, i.e. a pair of SL and TL text segments, which are
known to be translations of one another, and aSL query,
i.e. a subset of the tokens of the SL segment, on which the
TS will focus its attention. The result of the TS process
consists of two sets of tokens, i.e. one for each language.
We call these sets the SL and TLanswersto the query.

In more formal terms:

• The input to the TS process is a pair of SL and TL
text segments〈S, T 〉, and a contiguous, non-empty

sequence of word-tokens inS, q = si1 ...si2 (the
query).

• The output is a pair of sets of tokens〈rq(S), rq(T )〉,
theSL answerandTL answerrespectively.

Figure 1 shows some examples of TS, where the words
in italics represent the SL query, and the words in bold are
the SL and TL answers.

As can be seen in these examples, the tokens in the
queryq and answersrq(S) andrq(T ) may or may not be
contiguous (examples 2 and 3), and the TL answer may
possibly be empty (example 4) when there is no satisfying
way of linking TL tokens to the query.

Translation spotting finds different applications, for
example in bilingual concordancers, such as the
TransSearchsystem (Macklovitch et al., 2000), and
example-based machine translation (Brown, 1996). In
this article, we focus on a different application: asub-
sentential translation memory. We describe this applica-
tion context in section 2, and discuss how TS fits in to this
type of system. We then propose in section 3 a series of
TS methods, specifically adapted to this application con-
text. In section 4, we present an empirical evaluation of
the proposed methods.

2 Sub-sentential Translation Memory
Systems

A translation memory systemis a type of translation sup-
port tool whose purpose is to avoid the re-translation of
segments of text for which a translation has previously
been produced. Typically, these systems are integrated
to a word-processing environment. Every sentence that
the user translates within this environment is stored in a
database (thetranslation memory– or TM). Whenever
the system encounters some new text that matches a sen-
tence in the TM, its translation is retrieved and proposed
to the translator for reuse.



Sentence Pair
Query SL (English) TL (French)

1. and a growing gap Is this our model of the future, regional
disparity and a growing gapbetween
rich and poor?

Est ce l̀a le mod̀ele que nous visons,
soit la disparit́e ŕegionaleet un fosśe de
plus en plus largeentre les riches et les
pauvres?

2. the government’s com-
mitment

The government’s commitmentwas
laid out in the 1994 white paper.

Le gouvernement a expośe ses en-
gagementsdans le livre blanc de 1994.

3. close to[...] years I have been fortunate to have been trav-
elling for close to40years.

J’ai eu la chance de voyager pendant
pr ès de40ans.

4. to the extent that To the extent thatthe Canadian govern-
ment could be open, it has been so.

Le gouvernement canadien aét́e aussi
ouvert qu’il le pouvait.

Figure 1: Translation spotting examples

As suggested in the above paragraph, existing systems
essentially operate at the level of sentences: the TM is
typically made up of pairs of sentences, and the system’s
proposals consist in translations of complete sentences.
Because the repetition of complete sentences is an ex-
tremely rare phenomenon in general language, this level
of resolution limits the usability of TM’s to very spe-
cific application domains – most notably the translation
of revised or intrinsically repetitive documents. In light
of these limitations, some proposals have recently been
made regarding the possibility of building TM systems
that operate “below” the sentence level, orsub-sentential
translation memories(SSTM) – see for example (Langé
et al., 1997; McTait et al., 1999).

Putting together this type of system raises the prob-
lem of automatically establishing correspondences be-
tween arbitrary sequences of words in the TM, or, in other
words, of “spotting translations”. This process (transla-
tion spotting) can be viewed as a by-product ofword-
alignment, i.e. the problem of establishing correspon-
dences between the words of a text and those of its trans-
lation: obviously, given a complete alignment between
the words of the SL and TL texts, we can extract only
that part of the alignment that concerns the TS query;
conversely, TS may be seen as a sub-task of the word-
alignment problem: a complete word-alignment can be
obtained by combining the results of a series of TS oper-
ations, covering the entirety of the SL text.

From the point of view of an SSTM application, the
TS mechanism should find the TL segments that are the
most likely to be useful to the translator in producing the
translation of a given SL sentence. In the end, the final
criterion by which a SSTM will be judged isprofitability:
to what extent do the system’s proposals enable the user
to save time and/or effort in producing a new translation.

From that perspective, the two most important charac-
teristics of the TL answers arerelevance, i.e. whether
or not the system’s TL proposals constitute valid trans-
lations for some part of the source sentence; andco-
herence, i.e. whether the proposed segments are well-

formed, at least from a syntactic point of view. As sug-
gested by McTait et al. (1999), “linguistically motivated”
sub-sentential entities are more likely than arbitrary se-
quences of words to lead to useful proposals for the user.

Planas (2000) proposes a fairly simple approach for an
SSTM: his system would operate on sequences of syntac-
tic chunks, as defined by Abney (1991). Both the contents
of the TM and the new text under consideration would
be segmented into chunks; sequences of chunks from the
new text would then be looked upverbatimin the TM;
the translation of the matched sequences would be pro-
posed to the user as partial translations of the current in-
put. Planas’s case for using sequences of chunks as the
unit of translation for SSTM’s is supported by thecoher-
encecriterion above: chunks constitute “natural” textual
units, which users should find easier to grasp and reuse
than arbitrary sequences.

The coherence criterion also supports the case forcon-
tiguous TL proposals, i.e. proposals that take the form
of contiguous sequences of tokens from the TM, as op-
posed to discontiguous sets such as those of examples 2
and 3, in figure 1. This also makes intuitive sense from
the more general point of view of profitability: manually
“filling holes” within a discontiguous proposal is likely to
be time-consuming and counter-productive. On the other
hand, filling those holes automatically, as proposed for
example by Lanǵe et al. and McTait et al., raises numer-
ous problems with regard to syntactic and semantic well-
formedness of the TL proposals. In theory, contiguous
sequences of token from the TM should not suffer from
such ills.

Finally, and perhaps more importantly, in a SSTM ap-
plication such as that proposed by Planas, there appears
to be statistical argument in favor of contiguous TL pro-
posals: the more frequent a contiguous SL sequences, the
more likely it is that its TL equivalent is also contiguous.
In other words, there appears to be a natural tendency
for frequently-occurring phrases and formulations to cor-
respond to like-structured sequences in other languages.
This will be discussed further in section 4. But clearly,



a TS mechanism intended for such a SSTM should take
advantage of this tendency.

3 TS Methods

In this section, we propose various TS methods, specif-
ically adapted to a SSTM application such as that pro-
posed by Planas (2000), i.e. one which takes as transla-
tion unit contiguous sequences of syntactic chunks.

3.1 Viterbi TS

As mentioned earlier, TS can be seen as a bi-product of
word-level alignments. Such alignments have been the
focus of much attention in recent years, especially in the
field of statistical translation modeling, where they play
an important role in the learning process.

For the purpose of statistical translation modeling,
Brown et al. (1993) define an alignment as a vectora =
a1...am that connects each word of a source-language
textS = s1...sm to a target-language word in its transla-
tion T = t1...tn, with the interpretation that wordtaj is
the translation of wordsj in S (aj = 0 is used to denote
words ofs that do not produce anything inT ).

Brown et al. also define theViterbi alignmentbetween
source and target sentencesS and T as the alignment
â whose probability is maximal under some translation
model:

â = argmaxa∈APrM(a|S, T )

whereA is the set of all possible alignments betweenS
andT , andPrM(a|S, T ) is the estimate ofa’s probabil-
ity under modelM, which we denotePr(a|S, T ) from
hereon. In general, the size ofA grows exponentially
with the sizes ofS andT , and so there is no efficient way
of computingâ efficiently. However, under Model 2, the
probability of an alignmenta is given by:

Pr(a|S, T ) =
m∏

i=1

Pr(ai|i,m, n) (1)

where

Pr(j|i,m, n) =
γ(j, i, m, n)∑n

J=0 γ(J, i,m, n)
, (2)

and
γ(j, i, m, n) = t(si|tj)a(j, i, m, n)

In this last equation,t(si|tj) is the model’s estimate of
the “lexical” distributionp(si|tj), while a(j, i, m, n) es-
timates the “alignment” distributionp(j|i,m, n). There-
fore, with this model, the Viterbi alignment can be ob-
tained by simply picking for each positioni in S, the
alignment that maximizest(si|tj)a(j, i, m, n). This pro-
cedure can trivially be carried out inO(mn) operations.

Because of this convenient property, we base the rest of
this work on this model.

Adapting this procedure to the TS task is straightfor-
ward: given the TS queryq, produce as TL answer the
corresponding set of TL tokens in the Viterbi alignment:
rq(T ) = {tâi1

, ..., tâi2
} (the SL answer is simplyq it-

self). We call this methodViterbi TS: it corresponds to
the most likely alignment between the queryq and TL
text T , given the probability estimates of the translation
model. If q containsI tokens, the Model 2 Viterbi TS
can be computed inO(In) operations. Figure 2 shows
an example of the result of this process.

query : the government ’s commitment
couple:

S = Let us see where
the government’s commit-
mentis really at in terms of
the farm community.

T = Voyons quel est le
véritable engagement du
gouvernement envers la
communaut́e agricole.

Viterbi alignment on query tokens:
the → le

government → gouvernement
’s → du

commitment → engagement
TL answer:

T = Voyons quel estle véritableengagement du gou-
vernementenvers la communauté agricole.

Figure 2: Viterbi TS example

3.2 Post-processings

The tokens of the TL answer produced by Viterbi TS are
not necessarily contiguous inT which, as remarked ear-
lier, is problematic in a TM application. Variousa poste-
riori processings onrq(T ) are possible to fix this; we list
here only the most obvious:

expansion : Take the minimum and maximum val-
ues in {âi1 , ..., âi2}, and produce the sequence
tmin ai

...tmax ai
; in other words, produce as TL an-

swer the smallest contiguous sequence inT that con-
tains all the tokens ofrq(T ).

longest-sequence: Produce the subset ofrq(T ) that
constitutes the longest contiguous sequence inT .

zero-tolerance : If the tokens inrq(T ) cannot be ar-
ranged in a contiguous sequence ofT , then simply
discard the whole TL answer.

Figure 3 illustrates how these three strategies affect the
Viterbi TS of figure 2.

3.3 Contiguous TS

The various independence assumptions underpinning
IBM Model 2 often have negative effects on the result-
ing Viterbi alignments. In particular, this model assumes



rq(T ) = {le, engagement, du, gouvernement}
post-processing:

expansion: X(rq(T )) = le véritable engagement du gouvernement
longest-sequence: L(rq(T )) = engagement du gouvernement
zero-tolerance: Z(rq(T )) = ∅

Figure 3: Post-processings on Viterbi TS

that all connections within an alignment are indepen-
dent of each other, which leads to numerous aberrations
in the alignments. Typically, each SL token gets con-
nected to the TL token with which it has the most “lex-
ical affinities”, regardless of other existing connections
in the alignment and, more importantly, of the relation-
ships this token holds with other SL tokens in its vicinity.
Conversely, some TL tokens end up being connected to
several SL tokens, while other TL tokens are left uncon-
nected.

As mentioned in section 2, in a sub-sentential TM ap-
plication, contiguous sequences of tokens in the SL tend
to translate into contiguous sequences in the TL. This
suggests that it might be a good idea to integrate a “con-
tiguity constraint” right into the alignment search proce-
dure.

For example, we can formulate a variant of the Viterbi
TS method above, which looks for the alignment that
maximizesPr(a|S, T ), under the constraint that the TL
tokens aligned with the SL query must be contiguous.
Consider a procedure that seeks the (possibly null) se-
quencetj1 ...tj2 of T , that maximizes:

Pr(aq|si2
i1

, tj2j1)Pr(aq̄|si1−1
1 sm

i2+1, t
j1−1
1 tnj2+1)

Such a procedure actually produces two distinct align-
ments overS andT : an alignmentaq, which connects the
query tokens (the sequencesi2

i1
) with a sequence of con-

tiguous tokens inT (the sequencetj2j1), and an alignment
aq̄, which connects the rest of sentenceS (i.e. all the to-
kens outside the query) with the rest ofT . Together, these
two alignments constitute the alignmenta = aq ∪ aq̄,
whose probability is maximal, under a double constraint:

1. the query tokenssi2
i1

can only be connected to tokens

within a contiguous region ofT (the sequencestj2j1);

2. the tokens outside the query (in either one of the two
sequencessi1−1

1 andsm
i2+1) can only get connected

to tokens outsidetj2j1 .

With such an alignment procedure, we can trivially de-
vise a TS method, which will return the optimaltj2j1 as TL
answer. We call this methodContiguous TS. Alignments
satisfying the above constraints can be obtained directly,
by computing Viterbi alignmentsaq andaq̄ for each pair
of target positions〈j1, j2〉. The TS procedure then re-
tains the pair of TL language positions that maximizes

the joint probability of alignmentsaq andaq̄. This oper-
ation requires the computation of two Viterbi alignments
for each pair〈j1, j2〉, i.e. n(n − 1) Viterbi alignments,
plus a “null” alignment, corresponding to the situation
wheretj2j1 = ∅. Overall, using IBM Model 2, the oper-
ation requiresO(mn3) operations. Figure 4 illustrates a
contiguous TS obtained on the example of figure 2.

Alignment: Let us see → Voyons
where → quel

aq =

the → engagement
government → gouvernement

’s → du
commitment → engagement

is → est
really → véritable

at → la
in terms of → envers

the → la
farm → agricole

community → communaut́e
. → .

TL answer:
T = Voyons quel est le v́eritableengagement du gou-
vernementenvers la communauté agricole.

Figure 4: Contiguous TS Example

3.4 Compositional TS

As pointed out in section 3.3, In IBM-style alignments,
a single TL token can be connected to several SL to-
kens, which sometimes leads to aberrations. This con-
trasts with alternative alignment models such as those
of Melamed (1998) and Wu (1997), which impose a
“one-to-one” constraint on alignments. Such a constraint
evokes the notion ofcompositionalityin translation: it
suggests that each SL token operates independently in
the SL sentence to produce a single TL token in the
TL sentence, which then depends on no other SL token.
This view is, of course, extreme, and real-life translations
are full of examples (idiomatic expressions, terminology,
paraphrasing, etc.) that show how this compositionality
principle breaks down as we approach the level of word
correspondences.

However, in a TM application, TS usually needs not go
down to the level of individual words. Therefore, compo-
sitionality can often be assumed to apply, at least to the
level of the TS query. The contiguous TS method pro-



posed in the previous section implicitly made such an as-
sumption. Here, we push it a little further.

Consider a procedure that splits each the source and
target sentencesS andT into two independent parts, in
such a way as to maximise the probability of the two re-
sulting Viterbi alignments:

argmax〈i,j,d〉


d = 1 : Pr(a1|si

1, t
j
1)

×Pr(a2|sm
i+1, t

n
j+1)

d = −1 : Pr(a1|si
1, t

n
j+1)

×Pr(a2|sm
i+1, t

j
1)

In the triple〈i, j, d〉 above,i represents a “split point”
in the SL sentenceS, j is the analog for TL sentenceT ,
andd is the “direction of correspondence”:d = 1 denotes
a “parallel correspondence”, i.e.s1...si corresponds to
t1...tj andsi+1...sm corresponds totj+1...tn; d = −1
denotes a “crossing correspondence”, i.e.s1...si corre-
sponds totj+1...tn andsi+1...sm corresponds tot1...tj .

The triple〈I, J,D〉 produced by this procedure refers
to the most probable alignment betweenS and T , un-
der the hypothesis that both sentences are made up of
two independent parts (s1...sI andsI+1...sm on the one
hand,t1...tJ andtJ+1...tn on the other), that correspond
to each other two-by-two, following directionD. Such
an alignment suggests that translationT was obtained
by “composing” the translation ofs1...sI with that of
sI+1...sm.

This “splitting” process can be repeated recursively on
each pair of matching segments, down to the point where
each SL segment contains a single token. (TL segments
can always be split, even when empty, because IBM-style
alignments make it possible to connect SL tokens to the
“null” TL token, which is always available.) This gives
rise to a word-alignment procedure that we callCompo-
sitional word alignment.

This procedure actually produces two different out-
puts: first, a parallel partition ofS andT into m pairs of
segments〈si, t

k
j 〉, where eachtkj is a (possibly null) con-

tiguous sub-sequence ofT ; second, an IBM-style align-
ment, such that each SL and TL token is linked to at most
one token in the other language: this alignment is actually
the concatenation of individual Viterbi alignments on the
〈si, t

k
j 〉 pairs, which connects eachsi to (at most) one of

the tokens in the correspondingtkj .
Of course, such alignments face even worst problems

than ordinary IBM-style alignments when confronted
with non-compositional translations. However, when
adapting this procedure to the TS task, we can hypoth-
esize that compositionality applies, at least to the level of
the SL query. This adaptation proceeds along the follow-
ing modifications to the alignment procedure described
above:

1. forbid splittings within the SL query:i1 ≤ i ≤ i2;

2. at each level of recursion, only consider that pair of
segments which contains the SL query;

3. stop the procedure as soon as it is no longer possible
to split the SL segment, i.e. it consists ofsi1 ...si2 .

The TL segment matched withsi1 ...si2 when the proce-
dure terminates is the TL answer. We call this proce-
dure Compositional TS. It can be shown that it can be
carried out inO(m3n2) operations in the worst case, and
O(m2n2 log m) on average. Furthermore, by limiting the
search to split points yielding matching segments of com-
parable sizes, the number of required operations can be
cut by one order of magnitude (Simard, 2003).

Figure 5 shows how this procedure splits the example
pair of figure 2 (the query is shown in italics).

4 Evaluation

We describe here a series of experiments that were car-
ried out to evaluate the performance of the TS methods
described in section 3. We essentially identified a num-
ber of SL queries, looked up these segments in a TM to
extract matching pairs of SL-TL sentences, and manually
identified the TL tokens corresponding to the SL queries
in each of these pairs, hence producing manual TS’s. We
then submitted the same sentence-pairs and SL queries
to each of the proposed TS methods, and measured how
the TL answers produced automatically compared with
those produced manually. We describe this process and
the results we obtained in more details below.

4.1 Test Material

The test material for our experiments was gathered from a
translation memory, made up of approximately 14 years
of Hansard (English-French transcripts of the Canadian
parliamentary debates), i.e. all debates published be-
tween April 1986 and January 2002, totalling over 100
million words in each language. These documents were
mostly collected over the Internet, had the HTML markup
removed, were then segmented into paragraphs and sen-
tences, aligned at the sentence level using an implementa-
tion of the method described in (Simard et al., 1992), and
finally dumped into a document-retrieval system (MG
(Witten et al., 1999)). We call this theHansard TM.

To identify SL queries, a distinct document from the
Hansard was used, the transcript from a session held
in March 2002. The English version of this document
was segmented into syntactic chunks, using an imple-
mentation of Osborne’s chunker (Osborne, 2000). All
sequences of chunks from this text that contained three
or more word tokens were then looked up in the Hansard
TM. Among the sequences that did match sentences in
the TM, 100 were selected at random. These made up the
test SL queries.



Recursion
Level SL segment TL segment direction (d)

1 [Let us see] [wherethe government ’s
commitmentis really at in terms of the
farm community]

←→ [Voyons] [quel est le v́eritable engage-
ment du gouvernement envers la com-
munaut́e agricole]

d = 1

2 [where the government ’s commitment
is really at] [in terms of the farm com-
munity]

←→ [quel est le v́eritable engagement du
gouvernement] [envers la communauté
agricole]

d = 1

3 [where] [the government ’s commitment
is really at]

←→ [quel] [est le v́eritable engagement du
gouvernement]

d = 1

4 [the government ’s commitment] [is re-
ally at]

←→ [est le v́eritable] [engagement du gou-
vernement]

d = −1

Answers: rq(S) =the government ’s commitment←→ rq(T ) =engagement du gouvernement

Figure 5: Compositional TS Example

While some SL queries yielded only a handful of
matches in the TM, others turned out to be very produc-
tive, producing hundreds (and sometimes thousands) of
couples. For each test segment, we retained only the 100
first matching pair of sentences from the TM. This pro-
cess yielded 4100 pairs of sentences from the TM, an av-
erage of 41 per SL query; we call this ourtest corpus.
Within each sentence pair, we spotted translations manu-
ally, i.e. we identified by hand the TL word-tokens cor-
responding to the SL query for which the pair had been
extracted. These annotations were done following the TS
guidelines proposed by V́eronis (1998); we call this the
reference TS.

4.2 Evaluation Metrics

The results of our TS methods on the test corpus were
compared to the reference TS, and performance was mea-
sured under different metrics. Given each pair〈S, T 〉
from the test corpus, and the corresponding reference and
evaluated TL answersr∗ andr, represented as sets of to-
kens, we computed:

exactness: equal to 1 ifr∗ = r, 0 otherwise;

recall : |r∗ ∩ r|/|r∗|

precision : |r∗ ∩ r|/|r|

F-measure : 2 |r∩r∗|
|r|+|r∗|

In all the above computations, we considered that
“empty” TL answers (r = ∅) actually contained a single
“null” word. These metrics were then averaged over all
pairs of the test corpus (and not over SL queries, which
means that more “productive” queries weight more heav-
ily in the reported results).

4.3 Experiments

We tested all three methods presented in section 3, as
well as the three “post-processings” on Viterbi TS pro-
posed in section 3.2. All of these methods are based on

IBM Model 2. The same model parameters were used for
all the experiments reported here, which were computed
with the GIZA program of the Egypt toolkit (Al-Onaizan
et al., 1999). Training was performed on a subset of about
20% of the Hansard TM. The results of our experiments
are presented in table 1.

Metric
method exact precision recall F
Viterbi 0.17 0.60 0.57 0.57
+ Expansion 0.26 0.51 0.71 0.55
+ Longest-sequence 0.03 0.63 0.20 0.29
+ Zero-tolerance 0.20 0.28 0.28 0.28
Contiguous 0.36 0.75 0.66 0.68
Compositional 0.40 0.72 0.70 0.69

Table 1: Results of experiments

The Zero-tolerancepost-processing produces empty
TL answers whenever the TL tokens are not contigu-
ous. On our test corpus, over 70% of all Viterbi align-
ments turned out to be non-contiguous. These empty
TL answers were counted in the statistics above (Viterbi
+ Zero-tolerancerow), which explains the low perfor-
mance obtained with this method. In practice, the in-
tention ofZero-tolerancepost-processing is to filter out
non-contiguous answers, under the hypotheses that they
probably would not be usable in a TM application. Table
2 presents the performance of this method, taking into
account only non-empty answers.

Metric
method exact precision recall F
Viterbi
+ Zero-tolerance 0.56 0.83 0.82 0.81

Table 2: Performance ofzero-tolerancefilter on non-
empty TL answers

4.4 Discussion

Globally, in terms of exactness, compositional TS pro-
duces the best TL answers, with 40% correct answers, an



improvement of 135% over plain Viterbi TS. This gain
is impressive, particularily considering the fact that all
methods use exactly the same data. In more realistic
terms, the gain inF -measure is over 20%, which is still
considerable.

The best results in terms of precision are obtained with
contiguous TS, which in fact is not far behind composi-
tional TS in terms of recall either. This clearly demon-
strates the impact of a simple contiguity constraint in this
type of TS application. Overall, the best recall figures
are obtained with the simpleExtensionpost-processing
on Viterbi TS, but at the cost of a sharp decrease in preci-
sion. Considering that precision is possibly more impor-
tant than recall in a TM application, the contiguous TS
would probably be a good choice.

TheZero-tolerancestrategy, used as a filter on Viterbi
alignments, turns out to be particularily effective. It is in-
teresting to note that this method is equivalent to the one
proposed by Marcu (Marcu, 2001) to automatically con-
struct a sub-sentential translation memory. Taking only
non-null TS’s into consideration, it outclasses all other
methods, regardless of the metric. But this is at the cost
of eliminating numerous potentially useful TL answers
(more than 70%). This is particularily frustrating, con-
sidering that over 90% of all TL answers in the reference
are indeed contiguous.

To understand how this happens, one must go back to
the definition of IBM-style alignments, which specifies
that each SL token is linked to at most one TL token.
This has a direct consequence on Viterbi TS’s: if the SL
queries containsK word-tokens, then the TL answer will
itself contain at most that number of tokens. As a re-
sult, this method has systematic problems when the ac-
tual TL answer is longer than the SL query. It turns out
that this occurs very frequently, especially when aligning
from English to French, as is the case here. For exam-
ple, consider the English sequenceairport security, most
often translated in French assécurit́e dans les áeroports.
The Viterbi alignment normally produces linksairport→
aéroportandsecurity→ sécurit́e, and the sequencedans
les is then left behind (or accidentally picked up by er-
roneous links from other parts of the SL sentence), thus
leaving a non-contiguous TL answer.

TheExpansionpost-processing, which finds the short-
est possible sequence that covers all the tokens of the
Viterbi TL answer, solves the problem in simple sit-
uations such as the one in the above example. But
in general, integrating contiguity constraints directly in
the search procedure (contiguous and compositional TS)
turns out to be much more effective, without solving the
problem entirely. This is explained in part by the fact that
these techniques are also based on IBM-style alignments.
When “surplus” words appear at the boundaries of the
TL answer, these words are not counted in the alignment

probability, and so there is no particular reason to include
them in the TL answer. Consider the following example:

• These companiesindicated their support for the
government ’s decision.

• Ces compagnies ont déclaŕe qu’ elles appuyaient la
décision du gouvernement .

When looking for the French equivalent to the English
indicated their support, we will probably end up with an
alignment that linksindicated→ déclaŕe andsupport→
appuyaient. As a result of contiguity constraints, the TL
sequencequ’ ellewill naturally be included in the TL an-
swer, possibly forcing a linktheir→ ellesin the process.
However, the only SL that could be linked toont is the
verb indicated, which is already linked todéclaŕe. As a
result,ontwill likely be left behind in the final alignment,
and will not be counted when computing the alignment’s
probability.

5 Conclusion

We have presented different translation spottings meth-
ods, specifically adapted to a sub-sentential translation
memory system that proposes TL translations for SL
sequences of syntactic chunks, as proposed by Planas
(2000). These methods are based on IBM statistical trans-
lation Model 2 (Brown et al., 1993), but take advantage
of certain characteristics of the segments of text that can
typically be extracted from translation memories. By im-
posing contiguity and compositionality constraints on the
search procedure, we have shown that it is possible to per-
form translation spotting more accurately than by simply
relying on the most likely word alignment.

Yet, the accuracy of our methods still leave a lot to be
desired; on closer examination most of our problems can
be attributed to the underlying translation model. Com-
puting word alignments with IBM Model 2 is straightfor-
ward and efficient, which made it a good choice for ex-
perimenting; however, this model is certainly not the state
of the art in statistical translation modeling. Thenagain,
the methods proposed here were all based on the idea
of finding the most likely word-alignment under various
constraints. This approach is not dependent on the under-
lying translation model, and similar methods could cer-
tainly be devised based on more elaborate models, such
as IBM Models 3–5, or the HMM-based models proposed
by Och et al. (1999) for example.

Alternatively, there are other ways to compensate for
Model 2’s weaknesses. Each IBM-style alignment be-
tween two segments of text denotes one particular expla-
nation of how the TL words emerged from the SL words,
but it doesn’t tell the whole story. Basing our TS meth-
ods on a set of likely alignments rather than on the single
most-likely alignment, as is normally done to estimate the



parameters of higher-level models, could possibly lead to
more accurate TS results. Similarly, TS applications are
not bound to translation directionality as statistical trans-
lation systems are; this means that we could also make
use of a “reverse” model to obtain a better estimate of the
likelihood of two segments of text being mutual transla-
tion.

These are all research directions that we are currently
pursuing.
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