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Abstract  
Ambiguity is very high for location names. For 
example, there are 23 cities named ‘Buffalo’ in the 
U.S.  Based on our previous work, this paper presents 
a refined hybrid approach to geographic references 
using our information extraction engine InfoXtract. 
The InfoXtract location normalization module 
consists of local pattern matching and discourse 
co-occurrence analysis as well as default senses.  
Multiple knowledge sources are used in a number of 
ways: (i) pattern matching driven by local context, 
(ii) maximum spanning tree search for discourse 
analysis, and (iii) applying default sense heuristics 
and extracting default senses from the web. The 
results are benchmarked with 96% accuracy on our 
test collections that consist of both news articles and 
tourist guides. The performance contribution for each 
component of the module is also benchmarked and 
discussed. 
 
1 Introduction 
The task of location normalization is to decode 
geographic references for extracted location  Named 
Entities (NE). Ambiguity is a very serious problem for 
location NEs. For example, there are 23 cities named 
‘Buffalo’, including the city in New York State and in 
the state of Alabama. Country names such as 
‘Canada’, ‘Brazil’, and ‘China’ are also city names in 
the USA. Such ambiguity needs to be properly 
handled before converting location names into normal 
form to support Entity Profile (EP) construction, 
information merging/consolidation as well as 
visualization of location-stamped extracted events on 
a map.  

Location normalization is a special application of 
word sense disambiguation (WSD). There is 
considerable research on WSD. Knowledge-based 
work, such as [Hirst 1987; McRoy 1992; Ng and 
Lee 1996] used hand-coded rules or supervised 
machine learning based on an annotated corpus to 
perform WSD. Recent work emphasizes a 
corpus-based unsupervised approach [Dagon and 
Itai 1994; Yarowsky 1992; Yarowsky 1995] that 
avoids the need for costly truthed training data.  

Location normalization is different from general 
WSD in that the selection restriction often used for 
WSD in many cases is not sufficient to distinguish 
the correct sense from the other candidates. For 
example, in the sentence “The White House is 
located in Washington”, the selection restriction 
from the collocation ‘located in’ can only 
determine that “Washington” should be a location 
name, but is not sufficient to decide the actual sense 
of this location.  

In terms of local context, we found that there are 
certain fairly predictable keyword-driven patterns 
which can decide the senses of location NEs. These 
patterns use keywords such as ‘city’, ‘town’, 
‘province’, ‘on’, ‘in’ or candidate location subtypes 
that can be assigned from a location gazetteer. For 
example, the pattern “X + city” can determine sense 
tags for cases like “New York City”; and the pattern 
“Candidate-city-name + comma + 
Candidate-state-name” can disambiguate cases 
such as “Albany, New York” and “Shanghai, 
Illinois”.  

In the absence of these patterns, co-occurring 
location NEs in the same discourse provide 
evidence for predicting the most probable sense of a 
location name. More specifically, location 
normalization depends on co-occurrence 



constraints of geographically related location entities 
mentioned in the same document. For example, if 
‘Buffalo’, ‘Albany’ and ‘Rochester’ are mentioned in 
the same  document, the most probable senses of 
‘Buffalo’, ‘Albany’ and ‘Rochester’ should refer to 
the cities in New York State.   

For choosing the best matching sense set within a 
document, we simply construct a graph where each 
node represents a sense of a location NE, and each 
edge represents the relationship between two location 
name senses. A graph  spanning algorithm can be used 
to select the best senses from the graph.  

Last but not least, proper assignment of default 
senses is found to play a significant role in the 
performance of a location normalizer. This involves 
two issues: (i) determining default senses using 
heuristics and/or other methods, such as statistical 
processing for semi-automatic default sense extraction 
from the web [Li et al. 2002]; and (ii) setting the 
conditions/thresholds and the proper levels when 
assigning default senses, to coordinate with local and 
discourse evidence for enhanced performance. The 
second issue can be resolved through experimentation. 

In the light of the above overview, this paper 
presents an effective hybrid location normalization 
approach which consists of local pattern matching and 
discourse co-occurrence analysis as well as default 
senses. Multiple knowledge sources are used in a 
number of ways: (i) pattern matching driven by local 
context, (ii) maximum spanning tree search for 
discourse analysis, and (iii) applying heuristics-based 
default senses and web-extracted default senses in 
proper stages.  

In the remaining text, Section 2 introduces the 
background for this research. Section 3 describes our 
previous work in this area and Section 4 presents the 
modified algorithm to address the issues with the 
previous method. Experiment and benchmarks are 
described in Section 5. Section 6 is the conclusion. 

 
2 Background 
The design and implementation of the location 
normalization module is an integrated part of 
Cymfony’s core information extraction (IE) engine 
InfoXtract. InfoXtract extracts and normalizes entities, 
relationships and events from natural language text.  
Figure 1 shows the overall system architecture of 
InfoXtract, involving multiple modules in a pipeline 
structure.  

InfoXtract involves a spectrum of linguistic 
processing and relationship/event extraction. This 
engine, in its current state, involves over 100 levels of 
processing and 12 major components. Some 
components are based on hand-crafted pattern 
matching rules, some are statistical models or 
procedures, and others are hybrid (e.g. NE, 

Co-reference, Location Normalization). The basic 
information extraction task is NE tagging [Krupka 
and Hausman 1998; Srihari et al. 2000].  The NE 
tagger identifies and classifies proper names of type 
PERSON, ORGANIZATION, PRODUCT, 
NAMED-EVENTS, LOCATION (LOC) as well as 
numerical expressions such as MEASUREMENT 
(e.g. MONEY, LENGTH, WEIGHT, etc) and time 
expressions (TIME, DATE, MONTH, etc.). 
Parallel to location normalization, InfoXtract also 
involves time normalization and measurement 
normalization.  
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 Figure 1:  System Architecture of InfoXtract 
 

InfoXtract combines the Maximum Entropy 
Model (MaxEnt) and Hidden Markov Model for 
NE tagging [Srihari et al. 2000]. Maximum 
Entropy Models incorporate local contextual 
evidence to handle ambiguity of information from a 
location gazetteer. In the Tipster Location 
Gazetteer used by InfoXtract, there are many 
common words, such as I, A, June, Friendship, etc. 
Also, there is large overlap between person names 
and location names, such as Clinton, Jordan, etc. 
Using MaxEnt, systems learn under what situation 
a word is a location name, but it is very difficult to 
determine the correct sense of an ambiguous 
location name. The NE tagger in InfoXtract only 
assigns the location super-type tag LOC to the 
identified location words and leaves the task of 
location sub-type tagging such as CITY or STATE 
and its disambiguation to the subsequent module 
Location Normalization.  

Beyond NE, the major information objects 
extracted by InfoXtract are Correlated Entity (CE) 
relationships (e.g. AFFILIATION and POSITION), 
Entity Profile (EP) that is a collection of extracted 
entity-centric information, Subject-Verb-Object 
(SVO) which refers to dependency links between 



logical subject/object and its verb governor, General 
Event (GE) on who did what when and where and 
Predefined Event (PE) such as Management 
Succession and Company Acquisition.  

It is believed that these information objects capture 
the key content of the processed text. When 
normalized location, time and measurement NEs are 
associated with information objects (events, in 
particular) based on parsing, co-reference and/or 
discourse propagation, these events are stamped. The 
processing results are stored in IE Repository, a 
dynamic knowledge warehouse used to support 
cross-document consolidation, text mining for hidden 
patterns and IE applications. For example, 
location-stamped events can support information 
visualization on maps (Figure 2); time-stamped 
information objects can support visualization along a 
timeline; measurement-stamped objects will allow 
advanced retrieval such as find all Company 
Acquisition events that involve money amount greater 
than 2 million US dollars. 

 
Event type: <Die: Event 200>
Who:       <Julian Werver Hill: PersonProfile 001>
When:     1996-01-07
Where:    <LocationProfile103>
Preceding_event: <hospitalize: Event 260>
Subsequent_event: <bury: Event 250>
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Figure 2:  Location-stamped Information 
Visualization 

 
3 Previous Work and Issues 
This paper is follow-up research based on our previous 
work [Li et al. 2002]. Some efficiency and 
performance issues are identified and addressed by the 
modified approach.  

The previous algorithm [Li et al. 2002] for location 
normalization consisted of five steps. 

 
Step 1. Look up location names in the 
gazetteer to associate candidate senses for 
each location NE; 

Step 2. Call the pattern matching sub-module 
to resolve the ambiguity of the NEs involved 
in local patterns like “Williamsville, New 
York, USA” to retain only one sense for the 
NE as early as possible; 

Step 3. Apply the ‘one sense per discourse’ 
principle [Gale et al.1992] for each 
disambiguated location name to propagate 
the selected sense to its other mentions 
within a document; 

Step 4. Call the discourse sub-module, 
which is a graph search algorithm 
(Kruskal’s algorithm), to resolve the 
remaining ambiguities; 

Step 5. If the decision score for a location 
name is lower than a threshold, we choose a 
default sense of that name as a result. 

In this algorithm, Step 2, Step 4, and Step 5 
complement each other, and help produce better 
overall performance.  

Step 2 uses local context that is the co-occurring 
words around a location name. Local context can be 
a reliable source in deciding the sense of a location. 
The following are the most commonly used 
patterns for this purpose.  
 

(1) LOC + ‘,’ + NP (headed by ‘city’)  
e.g. Chicago, an old city  

(2) ‘city of’ + LOC1 + ‘,’ + LOC2 
e.g. city of Albany, New York 

(3) ‘city of’ + LOC 
(4) ‘state of’ + LOC  
(5) LOC1+ ‘,’ + LOC2 + ‘,’ + LOC3 

e.g. (i) Williamsville, New York, USA 
       (ii) New York, Buffalo, USA 

     (6) ‘on’/ ‘in’ + LOC 
 e.g. on Strawberry � ISLAND 
 in Key West � CITY 
 
Patterns (1) , (3), (4) and (6) can be used to decide if 
the location is a city, a state or an island, while 
patterns (2) and (5) can be used to determine both 
the sub-tag and its sense. 

Step 4 constructs a weighted graph where each 
node represents a location sense, and each edge 
represents similarity weight between location 
names. The graph is partially complete since there 
are no links among the different senses of a location 
name. The maximum weight spanning tree (MST) 
is calculated using Kruskal’s MinST algorithm 
[Cormen et al. 1990]. The nodes on the resulting 
MST are the most promising senses of the location 
names.  

Figure 3 and Figure 4 show the graphs for 
calculating MST. Dots in a circle mean the number 
of senses of a location name. 

Through experiments, we found an efficiency 
problem in Step 4 which adopted Kruskal’s 
algorithm for MST search to capture the impact of 
location co-occurrence in a discourse. While this 



algorithm works fairly well for short documents (e.g. 
most news articles), there is a serious time complexity 
issue when numerous location names are contained in 
long documents. A weighted graph is constructed by 
linking sense nodes for each location with the sense 
nodes for other locations. In addition, there is also an 
associated performance issue: the value weighting for 
the calculated edges using the previous method is not 
distinctive enough.  We observe that the number of 
location mentions and the distance between the 
location names impact the selection of location senses, 
but the previous method could not reflect these factors 
in distinguishing the weights of candidate senses. 
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Figure 3:  Graph and its Spanning Tree 
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Figure 4:  Max Spanning Tree 

 
Finally, our research shows that default senses play 

a significant role in location normalization. For 
example, people refer to “Los Angeles” as the city in 
California more than the city in the Philippines, Chile, 
Puerto Rico, or the city in Texas in the USA. 
Unfortunately, the available Tipster Gazetteer 
(http://crl.nmsu.edu/cgi-bin/Tools/CLR/clrcat) does 
not mark default senses for most entries. It has 
171,039 location entries with 237,916  senses, among 
which 30,711 location names are ambiguous. 
Manually tagging the default senses for over 30,000 
location names is difficult; moreover, it is also subject 
to inconsistency due to the different knowledge 

backgrounds of the human taggers. This problem 
was solved by developing a procedure to 
automatically extract default senses from web 
pages using the Yahoo! search engine [Li et al. 
2002]. Such a procedure has the advantage of 
enabling ‘re-training’ of default senses when 
necessary. If the web pages obtained through Yahoo! 
represent a typical North American ‘view’ of what 
default sense should be assigned to location names, 
it may be desirable to re-train the default senses of 
location names  using other views (e.g. an Asian 
view or African view) when the system needs to 
handle overseas documents that contain many 
foreign location names.  

In addition to the above automatic default sense 
extraction, we later found that a few simple default 
sense heuristics, when used at proper levels, can 
further enhance performance. This finding is 
incorporated in our modified approach described in 
Section 3 below.  

 
4 Modified Hybrid Approach 
To address the issues identified in Section 2, we 
adopt Prim’s algorithm, which traverses each node 
of a graph to choose the most promising senses. 
This algorithm has much less search space and 
shows the advantage of being able to reflect the 
number of location mentions and their distances in 
a document.  

The following is the description of our adapted 
Prim’s algorithm for the weight calculation.  

The weight of each sense of a node is calculated 
by considering the effect of linked senses of other 
location nodes based on a predefined weight table 
(Table 1) for the sense categories of co-occurring 
location names. For example, when a location name 
with a potential city sense co-occurs with a location 
name with a potential state/province sense and the 
city is in the state/province, the impact weight of 
the state/province name on the city name is fairly 
high, with the weight set to 3 as shown in the 3rd 
row of Table 1.   

Table 1. Impact weight of Sense2 on Sense1 

Sense1 Sense2 Condition  Weight 
City City in same state 2 
 City in same country 1 
 State in same state 3 
 Country in country without 

state (e.g. in Europe) 
4 

 
Let W(Si) be the calculated weight of a sense Sj of 

a location; weight(Sj->Si) means the weight of Si 
influenced by sense Sj; Num(Loci) is the number of 
location mentions; and β/dist(Loci, Locj) is the 

http://crl.nmsu.edu/�cgi-bin/Tools/CLR/clrcat


measure of distance between two locations.  The final 
sense of a location is the one that has maximum 
weight. A location name may be mentioned a number 
of times in a document.  For each location name, we 
only count the location mention that has the maximum 
sense weight summation in equation (1) and 
eventually propagate the selected sense of this 
location mention to all its other mentions based on one 
sense per discourse principle.  Equation (2) refers to 
the sense with the maximum weight for Loci. 
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Through experiments, we also found that it is 
beneficial to select default senses when candidate 
location senses in the discourse analysis turn out to be 
of the same weight. We included two kinds of default 
senses: heuristics-based default senses and the default 
senses extracted semi-automatically from the web 
using Yahoo. For the first category of default senses, 
we observe that if a name has a country sense and 
other senses, such as “China” and “Canada”, the 
country senses are dominant in most cases. The 
situation is the same for a name with province sense 
and for a name with country capital sense (e.g. London, 
Beijing). The updated algorithm for location 
normalization is as follows. 

 
Step 1. Look up the location gazetteer to 
associate candidate senses for each location 
NE; 

Step 2. If a location has sense of country, then 
select that sense as the default sense of that 
location (heuristics); 

Step 3. Call the pattern matching sub-module 
for local patterns like “Williamsville, New 
York, USA”; 

Step 4. Apply the ‘one sense per discourse’ 
principle for each disambiguated location 
name to propagate the selected sense to its 
other mentions within a document; 

Step 5. Apply default sense heuristics for a 
location with province or capital senses; 

Step 6. Call Prim’s algorithm in the 
discourse sub-module to resolve the 
remaining ambiguities (Figure 5); 

Step 7. If the difference between the sense 
with the maximum weight and the sense 
with next largest weight is equal to or lower 
than a threshold, choose the default sense of 
that name from lexicon.  Otherwise, choose 
the sense with the maximum weight as 
output. 
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 Figure 5:  Weight assigned to Sense Nodes 
 

5 Experiment and Benchmark 
With the information from local context, discourse 
context and the knowledge of default senses, the 
location normalization process is  efficient and 
precise.  

The testing documents were randomly selected 
from CNN news and from travel guide web pages. 
Table 2 shows the preliminary testing results using 
different configurations.  

As shown, local patterns (Column 4) alone 
contribute 12% to the overall performance while 
proper use of defaults senses and the heuristics 
(Column 5) can achieve close to 90%. In terms of 
discourse co-occurrence evidence, the new method 
using Prim’s algorithm (Column 7) is clearly better 
than the previous method using Kruskal’s 
algorithm (Column 6), with 13% enhancement 
(from 73.8% to 86.6%). But both methods cannot 
outperform default senses.  Finally, when using all 
three types of evidence, the new hybrid method 
presented in this paper shows significant 
performance enhancement (96% in Column 9) over 
the previous method (81.9% in Column 8), in 
addition to a satisfactory solution to the efficiency 
problem.  



Table 2. Experimental evaluation for location normalization 
File # of 

ambiguous 
location 
names 

# of 
mentions 

Pattern 
hits 

Def-
senses 

 

Kruskal 
Algo. 
only 

Prim 
Algo 
only  

Kruskal 
+Pattern 

+Def 
(previous) 

Prim 
+Pattern 

+Def 
(new) 

Cnn1 26 39 4 20 21 24 26  26 
Cnn2 12 20 5 11 7 10 11 11 
Cnn3 14 29 0 12 10 12 10 14 
Cnn4 8 14 2 8 4 4 4 8 
Cnn5 11 26 1 9 5 8 5 9 
Cnn6 19 35 6 16 11 16 13 18 
Cnn7 11 27 0 11 4 7 6 10 
Calif. 16 30 0 16 16 16 16 16 
Florida 19 28 0 19 19 19 18 19 
Texas 13 13 0 12 13 13 13 12 
Total 149 261 12% 89.9% 73.8% 86.6% 81.9% 96% 

 
We observed that if a file contains more 

concentrated locations, such as the state introductions 
in the travel guides for California, Florida and Texas, 
the accuracy is higher than the relatively short news 
articles from CNN.  

 
6 Conclusion and Future Work 
This paper presented an effective hybrid method of 
location normalization for information extraction with 
promising experimental results. In the future, we will 
integrate an expanded location gazetteer including 
names of landmarks, mountains and lakes such 
as Holland Tunnel (in New York, not in Holland) and 
Hoover Dam (in Arizona, not in Alabama), to enlarge 
the system coverage. Meanwhile, more extensive 
benchmarking is currently being planned in order to 
conduct a detailed analysis of different evidence 
sources and their interaction and contribution to 
system performance.  
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