
Reranking an N-Gram Supertagger

John Chen*, Srinivas Bangalore*, Michael Collins*, and Owen Rambowt
*AT&T Labs-Research, t University of Pennsylvania
{jchen,srini,mcollins}@research.att.com,rarnbow@unagi.cis.upenn.edu

1. Introduction

As shown by Srinivas (1997), standard n-gram modeling may be used to perfonn supertag disambiguation with
accuracy that is adequate for partial parsing, but in general not sufficient for füll parsing. A serious problem is that
n-gram modeling usually considers a very small, fixed context and does not perfonn weil with large tag sets, such
as those generated by automatic grammar extraction (Xia, 1999; Chen and Vijay-Shanker, 2000; Chlang, 2000).
As an alternative, Chen, Bangalore and Vijay-Shanker (1999) introduce class-based supertagging. An example of
class tagging is n-best trigram-based supertagging, which assigns to each word the top n most likely supertags as
detennined by an n-gram supertagging model. Class-based supertagging can be performed much more accurately
than supertagging with only a small increase in ambiguity. In a second phase, the most likely candidate from the
class is chosen.

In this paper, we investigate an approach to such a choice based on reranking a set of candidate supertags
and their confidence scores. RankBoost (Freund et al., 1998) is the boosting algorithm that we use in order to
learn to rerank outputs. lt also has been used with good effect in reranking outputs of a statistical parser (Collins,
2000) and ranking sentence plans (Walker, Rambow and Rogati, 2001). RankBoost may learn to correct biases
tbat are inherent in n-gram modeling which lead to systematic errors in supertagging (cf. (van Halteren, 1996)).
RankBoost can also use a variety of local and long distance features more easily than n-gram-based approaches
(cf. (Chen, Bangalore and Vijay-Shanker, 1999)) because it makes sparse data less ofan issue.

The outline of this paper is as follows. First, we develop the background and motivations behlnd the task of
reranking the output of an n-best trigrarn supertagger. Second, we introduce RankBoost as the approach that we
adopt in order to train the reranker. Third, we perform an initial set of experiments where the reranker is trained
with different feature subsets. Fourth, we perform an in-depth analysis of several reranking models. Fifth, after
pointing out causes that at times render the reranker ineffective, we develop and test some new models that attempt
to sidestep these limitations. Lastly, after some significance testing results, we state our conclusions and remark
on potential füture directions.

2. Background and Motivation

In this section, we motivate the desirability of exploring the use of n-best reranking of supertags. Although
we give multiple motivations, we focus on justifying our approach as a promising alternative in improving the
perfonnance of a füll parser. First, we review the supertagging task and its applications. Because supertagging
requires the existence of a particular TAG, we subsequently introduce automatically extracted TAGs and motivate
their use. Although extracted grammars have their advantages, supertagging using automatically extracted TAGs
runs into damaging sparse data problems. We review n-best supertagging as one means of alleviating these prob-
lems. Lastly, we run experiments that show supertagging is potentially a viable option in order to speed up a füll
parser. Throughout this section, we describe the kinds oflinguistic resources that we use in all of our experiments
and the kinds of notation that we will employ in the rest of this paper.

2.1. Supertagging

Supertagging (Bangalore and Joshl, 1999) is the process of assigning the best TAG elementary tree, or su-
pertag, to each word in the input sentence. lt performs the task of parsing disambiguation to such an extent that it
may be characterized as providing an almost parse. There exist linear time approaches to supertagging, providing
one promising route to linear time parsing disambiguation. However, Srinivas (1997) shows that standard n-grarn
modeling may be used to perform supertagging with accuracy that is adequate for partial parsing, but not for füll
parsing. On the other hand, n-gram modeling of supertagging has been found tobe usefül in other applications such
as infonnation retrieval (Chandrasekhar and Srinivas, l 997b) and text simplification (Chandrasekhar and Srinivas,
1997a).

© 2002 John Chen, Srinivas Bangalore, Michael Collins, and Owen Rarnbow. Proceedings of the Sixth International Workshop
on Tree Adjoining Grammar and Related Frameworks (TAG+6), pp. 259-268. Universitä di Venezia.

260 Proceedings ofTAG+6

2.2. Automatically Extracted Grammars

Recently, procedures have been developed that automatically extract TAGs from broad coverage treebanks
(Xia, 1999; Chen and Vijay-Shanker, 2000; Chiang, 2000). They have the advantage that linguistically motivated
TAGs can be extracted from widely available treebanks without a huge investment in manual labor. Furthermore,
because of their direct extraction from a treebank, parameters can be easily and accurately estimated for building
statistical TAG models for parsing (Chiang, 2000; Sarkar, 2001) or geoeration (Bangalore, Chen and Rambow,
2001).

In our experiments, we use an automatically extracted TAG grammar similar to the ones described by Chen
and Vijay-Shanker (2000). This grammar has been extracted from Sections 02-21 of the Penn Treebank (Marcus,
Santorini and Marcinkiewicz, 1993). lt contains 3964 tree frames (non-lexicalized elementary trees). The param-
eters of extraction are set as follows. Each tree frame contains nodes that are labeled using a label set similar to
the XTAG (XTAG-Group, 2001) label set. Furthermore, tree frames are extracted corresponding to a "moderate"
domain of Jocality. Also, only those empty elements in the Penn Treebank that are usually found in TAG (subject
and object trace, for example) are included in this grammar.

2.3. N-best Supertagging

The efficacy of n-gram modeling of supertagging is limited by sparse data problems of very large TAGs, such
as those that are automatically extracted from broad coverage treebanks. Chen and Vijay-Shanker (2000) show that
supertagging using extracted TAGs is perfonned at a lower accuracy (around 80%) than accuracies that have been
published for supertagging using hand-written TAGs (around 90%). Faced with this evidence, it might seem that
it is a hopeless task to use supertagging using extracted TAGs as a preprocessing step to accelerate full parsing.
On the other band, Chen, Bangalore and Vijay-Shanker (1999) investigate class-based supertagging, a variant of
supertagging where a small set of supertags are assigned to each word instead of a single supertag. The idea is to
make the sets small enough to represent a significant reduction in ambiguity so as to speed up a füll parser, but to
construct the sets so that class-based supertagging is much more accurate than supertagging.

One such promising class-based supertagging model is n-best supertagging, where a trigram model assigns up
to n supertags for each word of the input sentence. Let W = w1, ... , Wn represent the sequence of words that is
the input to a supertagger. Let Ttri = ti ,1, ... , tn,1 be the output ofthe (!-best) trigram supertagger. The output
of the n-best supertagger is a sequence of n-best supertags NBEST(i) = t i,1, ... , ti,n(i) for each word Wi such
that each supertag ti,j has an associated confidence score Ci,;. Assume that each sequence NBEST(i) is sorted in
descending order according to tbese confidence scores.

The n-best supertagger is obtained by a modification of the (1-best) trigram model of supertagging. Both
supertaggers first use the Viterbi algorithm to find Ttri by computing the most likely path p(Ttri) through a lattice
of words and pairs of supertags. In the trigram supertagger, each node k along the path p(Ttri) is associated with
exactly one prefix probability (the highest). In contrast, the corresponding node k in the n-best supertagger is
associated with the n highest prefix probabilities. This difference allows the n-best supertagger to associate up to
n supertags for each word Wi. The confidence score Ci,i of supertag ti,j is the jth-best prefix probability of a node
k divided by the least best prefix probability ofthe same node.

2.4. Parsing with N-best Supertagger Output

We claim that supertagging is a viable option to explore for use as a preprocessing step in order to speed up
füll parsing. In order to substantiate this claim, we perform exploratory experiments that show the relationship
between n-best supertagging and parsing performance. Using the grammar that is described in Section 2.2, we
train n-best supertaggers on Sections 02-21 of the Perut Treebank. For each supertagger, we supertag Section 22,
which consists of about 40,100 words in 1,700 sentences. We then feed the resulting output through the LEM
parser, a head-driven TAG chart parser (Sarkar, 2000). Given an input sentence and a grammar, this parser either
outputs nothing, or a packed derivation forest of every parse that can be assigned to the sentence by the grammar.
lt does not retum partial parses.

The results of these experiments are shown in Table 1. The input to the parser can be the output of either a
1, 2, or 4-best supertagger. lt can also be sentences where each word is associated with all of the supertags with
that word's part of speech, as detennined by a trigram part of speech tagger. This is labeled as "POS-tag" in the
table. Lastly, it can simply be sentences where each word is associated with the correct supertag. This is labeled
as "Key." The table shows the supertagging accuracy of each corpus that is input to the parser. lt also shows each

Chen, Bangalore, Collins, and Rarnbow 261

Table 1: Relationships between n-best supertagging and parsing

Input % Supertagging Ambiguity % Sentences Timeto
to Parser Accuracy (supertags/word) Receiving Parse

SomeParse Corpus
1-best 81.47 1.0 28.2 < 3 hours
2-best 88.36 1.9 53.6 < 2 days
4-best 91.41 3.6 76.7 2-3 weeks
8-best 92.77 6.3 - -

POS-tag 97.30 441.3 - -
Key 100.00 1.0 97.0 < 5 hours

% Sen!ences Parsed Versus% Supertagging Accuracy
100

% Supertagging l'IX:J.Jr8f:Y -+--

90

80

-g
I!! „
Q.

70

„
"' 60 c:
!!l c:
"' "' 50

*
40

30

20
80 82 84 86 86 90 92 94 96 96 100

% Supertagglng Accuracy

Figure 1: Percentage ofSentences That Were Parsed Versus Percent Supertagging Accuracy

corpus's ambiguity in supertags per word, the percentage of sentences in the corpus which the parser successfülly
found a parse, and also the time to parse the corpus. Parsing results are not available for "8-best" and "POS-tag"
because of the unreasonable amount of time the parser takes for those kinds of corpora.

Table l reveals some interesting aspects of the relationship between supertagging and parsing. For example,
it shows that merely doing part of speech tagging is inadequate as a preprocessing step ifthe purpose is to signif-
icantly speed up füll parsing. In contrast, it also shows that the ! -best supertagger does speed up füll parsing, but
at the cost of missing many parses of sentences. Row "Key" shows that if supertagging works accurately enough,
then it would indeed fülfill the promise of speeding up a füll parser.

The second column of Table 1 is plotted against its fourth column in Figure 1. It shows how the percentage
ofparsed sentences in the test corpus increases as the supertagging accuracy on the test corpus increases. There is
the obvious result that a high er supertagging accuracy · always leads to a greater percentage of sentences being able
tobe parsed. There is apparently a less obvious result that this relationship is non-linear; the steepest increase in
percentage ofparseable sentences occurs for supertagging accuracies between 88% and 92%.

We have seen that füll parsing of automatically extracted TAG grammars is apparently quite slow. We have
also seen that simply part of speech tagging the input sentences as a preprocessing step does not seem to reduce
ambiguity to a sufficient degree in order to speed up füll parsing to a desirable extent. On the other hand, we
have shown that 1-best supertagging does indeed speed up füll parsing considerably-at least more than tenfold.
However, in order for supertagging to fully parse a considerable portion of a corpus, it is necessary to achieve
sufficiently high supertagging accuracies. Regarding the use ofn-best supertagged input to a parser, we have seen
that it is best to keep n :'.5 3 in order to prevent extreme degradation in parsing performance.

262 Proceedings ofTAG+6

2.5. Summary

We have seen that reranking the output of an n-best supertagger based on a TAG extracted from a treebank
is attractive for a variety of reasons. Use of such a TAG is justified because parameters for stochastic models can
be estimated easily and accurately. Use of an n-best supertagger is justified because of the considerable potential
etror reduction and its implications. In particular, it can be clearly seen from Table 1 that an optimal reranking
of the output of an 8-best supertagger would achieve a more than 50% reduction in supertagging error. lt is not
unreasonable to believe that this would greatly improve the perfoxmance of applications based on supertagging,
such as infonnation retrieval and text simplification. Furthennore, Figure 1 shows that this error reduction would
greatly increase the viability of using supertagging as a preprocessing step to speed up parsing.

3. Reranking an N-Best Supertagger

Our reranker takes as input a set of sentences that has been supertagged by an 8-best supertagger, including a
confidence score for each selected supertag. lt then ranks them according to its model. This model is trained using
the machine learning program RankBoost (Freund et al„ 1998) which learns from sets of correctly supertagged
sentences the same sentences that have been supertagged using an 8-best supertagger.

We use the variant ofRankBoost introduced by (Collins, 2000). Further information aboutRank:Boost is found
in (Schapire, 1999). RankBoost leams from a set of examples. For our purpose, an example is an occurrence of a
word wi in a particular sentence along with its supertag ti,j selected by an n-best supertagger and its confidence
score Ci,j. Each example is associated with a set of m binary indicator functions h8 (ti,j) for 1 ｾ＠ s ｾ＠ m. For
example, UNI(w,s) is a two-argument feature template that states that the current word w has supertag s. When
this template is instantiated with Wi =book and ti,j = aNXN, we obtain the following indicator function: function
mightbe

h (t· ·) _ { 1 i/ t i,j == aNXN ｡｟ｾ､ｷｩ＠ = book (l)
1234

i,3 - 0 otherwise ·

Each indicator function hs is associated with its own parameter a8 • There is also a parameter ao associated with
the confidence score. Training is a process of setting the parameters a to minimize the loss function:

loss(a) = L e-(ao(ln(c1,1}-ln(c„;)}+ 2:. a.(h.(t;,1}-h.(t;,;)))

i,j

(2)

At the start of training, no features are selected, i.e„ all of the a8 's are set to zero. The optimization method that
is used in training is greedy; at each iteration it picks a feature h8 which has the most impact on the loss function.
The result is a set of indicator functions whose output on a given candidate is summed. These sums are used to
rerank a set of candidates. Another set of examples-tuning data-is used to choose when to stop.

4. Initial Experiments

A set of features is required in order to train RankBoost to rerank supertags. As pointed out by Srinivas (1997),
the traditional n-gram modeling of supertagging suffers from the fl.aw of only considering local dependencies when
deciding how to supertag a given word. This is counter to one of the attractions of the TAG fonnalism, namely
that even Iong distance dependencies are Iocalized within a given TAG (Schabes, Abeille and Joshi, 1988). Chen,
Bangalore and Vijay-Sbanker (1999) provide an example sentence where non-Iocal context is needed to detennine
the correct supertag: "Many Indians feared their country might split again." Here, tbe supertag for the word feared
is partially detennined by the proximity ofthe word might. Cben, Bangalore and Vijay-Shanker (1999) introduce
the notion of head supertag context which they show increases supertagging accuracy when suitably folded into a
stochastic model. While the notion ofhead supertags can be useful, it cannot be straightforwardly applied to our
current situation; determining head supertags was feasible in (Chen, Bangalore and Vijay-Shanker, 1999) because
they used the XTAG grammar, whereas it is not immediately clear which supertags should be bead supertags in
our extracted grammar, which is an order of magnitude larger than the XTAG grammar (3964 tree frames in the
extracted grammar versus 500 tree frames in the XTAG gra.mmar).

Chen, Bangalore and Vijay-Shanker (1999) make it clear, however, that both local and long distance features
are important. In that spirit, we bave designed an initial set of feature templates that is sbown in Table 2. For
example, UNI is a two-argument feature template that states that the current word w0 has the supertag to,1. Feature

Chen, Bangalore, Collins, and Rambow 263

Table 2: Feature Templates Used In Initial Experiments

Wi ith word in input sentence relative to current word which is wo
ti supertag of ith word in input sentence relative to current word which is Wo

Name Parameter List Example oflnstantiation

UNI wo, to,j w0 =book, to,j = a:NXN
BI wo, t-1,1, to,j Wo =book,L1,1 = ßNn,to,j = aNXN
TRI wo, t-2,1, t-1,1, to,j wo =book, L2,1 = ßDnx, t-1,1 = ßNn, to,j = a:NXN
FORWARD-BI wo,to,j,t1,1 Wo =book, to,j = aNXN, t1,1 = anxOV
FORWARD-TRI wo, to,j, t1,1, t2,1 wo =book,to,; = aNXN,t1,1 = anxOV,t2,1 = ßvxN
LEFT-FAR-BI:i: (3 s X s 8) t-:i: ,i. t0.; L:i: ,1 = ßDnx, to,3 = a:NXN
RIGHT-FAR-BI:i: (3 S x S 8) to,j , t:i: ,l to,; = aNXN, t:i:,1 = ßnxPnx
LEFT-WIN:i: (x E { 4, 8, 16 }) Ly,i.to,j L 11 = a:nxOVnxl, 0 < y ｾ＠ x, to,j = aNXN
RIGHT-Wll'{ z: (x E { 4, 8, 16 }) to,;, t11,1 to,j = a:NXN, ty,l = ßnxPnx, 0 < y $ x

Figure 2: Sets ofFeatures That Are Used In Various Experiments

templates exist that take into account local context and others that take into account long distance context. Local
feature templates basically take into consideration the same context that a trigram model considers. They are UNI,
BI, TRI, FORWARD-BI, and FORWARD-TRI. Long distance feature templates take into consideration extra-
trigram context. There are two kinds oflong distance feature templates: *-FAR-BI:i: and *-WIN:i:. The *-FAR-BI:i:
kind states that the current word has the supertag to,j and there exists a supertag afixed distance x away from
the current word having supertag l:i:,l· The *-WIN:i: kind offeature template states that the current word has the
supertag to,j and there exists a supertag t 11,1 which lies within some distance y, 0 < y $ x, of the current word.

The list of feature templates in Table 2 is somewhat long and unwieldy. In order to simplify our exposition of
different reranking models, we have given names to various subsets of these feature templates. These are shown
in Figure 2. The set of all *-FAR-BI:i: feature templates is called PART: The set of all *-WIN:i: feature templates
is called WIN. PARTUWIN yields LONG. SHORT is the set of all trigram-context feature templates. NEAR is
SHORT- UNI.

Training RankBoost for reranking supertags requires n-best supertagged data. This is obtained by first ex-
tracting a TAG from the Penn Treebank as described in Section 2.2. 8-best supertaggers are then used to derive
training, tuning, and test data. Ten-fold cross validation of Sections 02-11 and part of 12 provides the training
data (475197 words). 8-best supertagged versions of the rest of Section 12 and Sections 13-14 serve as tuning
data (94975 words). Testdata is derived from the output ofan 8-best supertagger trained on Sections 02-14 on
Section 22 (40117 words). Note that for these experiments, a truncated version of the usual Penn Treebank train-
ing data-Sections 02-21, are used. This is done merely to expedite the training and testing of different reranking
models.

Table 3 shows the supertagging accuracy results for the n-best supertagger, before and after reranking by

264 „Proceedings ofTAG+6

Table 3: N-best supertagger results and Reranker results using different feature sets on Section 22.

% Supertag Accuracy
n-best Before SH ORT LONG LONG LONG W1N PART

Re rank U SHORT UUNI UUNI UUNI
l 80.20 80.77 80.13 81.73 81.39 81.63 81.04
2 87.13 87.67 87.13 88.59 88.38 88.55 88.09
3 89.24 89.73 89.24 90.24 90.16 90.25 89.88
4 90.28 90.63 90.28 90.95 90.88 90.98 90.77
5 90.84 91.07 90.83 91.33 91.27 91.33 9l.19
6 91.22 91.38 91.20 91.54 91.50 91.54 91.44
7 91.52 91.57 91.52 91.66 91.64 91.65 91.62
8 91.73 91.73 91.73 91.73 91.73 91.73 91.73

RankBoost. The n-best results for 1 $ n < 8 are derived by considering only the top n supertags proposed by
the 8-best supertagger. The left half of the table shows three different models are trained using RankBoost, one
that uses SHORT features only, one that uses LONG features only, and another that uses both LONG and SHORT
features. The rules that are leamed by RankBoost are then applied to the 8-best supertags to rerank them.

The results are encouraging. The 1-best supertagger achieves an accuracy of only 80.20%. Nevertheless, the
8-best accuracy is 91. 73% which shows that an optimal reranking procedure would halve the error rate. Reranking
using SHORT features results in a statistically significant errorreduction (p <0.05) of2.9% for 1-best. Reranking
also using LONG features results in an error reduction of 7.7% for 1-best (and an error reduction of 13.3% with
respect to the RankBoost topline of 91.73%). Therefore RankB'oost is obviously able to use LONG features
effectively in conjunction with the SHORT features, despite a big increase in the number of parameters of the
model. Note also that reranking improves the accuracy for all n-best results, 1 $ n < 8.

Apparently, there is some interaction between LONG and SHORT features which makes model
LONGUSHORT effective whereas model LONG is useless. In order to study this interaction, and also to detennine
what kinds of LONG features help the most, we have tested models LONGUUNI, WINUUNI, and PARTUUNI.
The results are shown in the righthalfofTable 3. Model LONGUUNiachieves much ofthe performance ofmodel
LONGUSHORT, even though it only considers the uni gram feature. One possible explanation for this phenomenon
is that SHORT features aid LONG features not because the local trigram context that is modeled by SHORT is so
much more important, but instead it is lexicalization that is important, SHORT features being lexicalized whereas
LONG features are not. Also note that model WINUUNI outperforms model PARTUUNI. This seems to indicate
that PART feature templates are less useful in supertag disambiguation than W1N feature templates.

5. Analysis of Some Initial Experiments

At first glance, there does not seem to be much of a difference between model LONGUSHORT and model
SHORT. The difference between them in terms of accuracy of 1-best supertagging reranking is slightly less than
one percent, about five percent in terms of reduction in error. On the other hand, as Table 6 shows, this small
difference is still statistically significant. In order to get a better grasp on the differences in behavior of model
LONGUSHORT and model SHORT, and also to get a feeling about how one might improve reranking models for
supertagging, we perfonn a semi-qualitative analysis of the 1-best reranked output of these two models.

The ten most frequently mistagged supertags (i.e. those supertags that were most misclassified by the
reranker), sorted by frequency, for model SHORT and model LONGUSHORT are shown in Table 4. At first
glance, there is not much difference between the two models; they both mistag mostly the same kinds of supertags,
and the supertags' rankings are about the same. However, certain differences can be discemed. Notably, the fre-
quency of mistagging o:NXN is 25% less in LONGUSHORT than it is in SH ORT. Also, there is somewhat less of
a PP attachment problem in LONGUSHORT than there is in SHORT, as can be seen by the frequencies ofthe PP
attachment supertags ßnxPnx and ßvx.Pnx. The fact that the frequency of mistaggings of o:nxOVnx 1 drops from
168 in SHORT to 130 in LONGUSHORT is also noteworthy; apparently LONGUSHORT is performing better at
resolving NP versus S subcat ambiguity.

For each of several supertags in Table 4, we proceed to determine the most important features that

Chen, Bangalore, Collins, and Rambow 265

Table 4: Ten Most Frequently Mistagged Supertags, By Frequency, for SHORT and LONGUSHORT

SH ORT LONGUSHORT
Frequency Supertag Frequency Supertag Frequency Supertag Frequency Supertag

650 aNXN 167 ßnxN 474 aNXN 155 ßVnx
410 ßNnx 162 ßnxPunct 356 ßNnx 151 ßnx:Pnx
303 ßvxPnx 148 ßnxPnx 289 ßvxPnx 147 aN
216 ßAnx 130 ßucpPunct 203 ßAnx 144 ßnxPunct
168 anxOVnxl 117 aN 166 ßnxN 130 anxOVnxl

LONGUSHORT uses in order to choose the correct supertag. Our methodology is as follows. Given a supertag
/, we determine the set of instances in the test corpus where LONGUSHORT reranked / to first place from an
originally lower ranking. For each instance, we determine the features that caused LONGUSHORT to rank / more
highly, tabulating the number of times each feature is used. We also record the multiset ef>(/) of supertags 1' :f:. 1
such that LONGUSHORT replaced 1' with 'Y as the first ranked supertag.

Consider supertag anxOVnx 1. Most frequently occurring members of ef>(anxOVnxl) include ßVvx, ßnxOVsl,
O!INnxOVnxl (declarative transitive supertag with complernentizer), and ßvxINnxOVnxl. The most frequently
used features that are used to rank o:nxOVnxl more highly are LEFT-WIN16(EOS,anx0Vnxl) and LEFT-
WIN8(EOS,anx0Vnxl), where EOS is a sentence delimiter, in this case the left sentence delimiter. Intu-
itively, these features seem to suggest that a:nxOVnxl should appear nearer to the beginning of the sentence
than for example, ßvxINnxOVnxl, being a verbal postmodifier, should. Another frequently used feature is
LEFT-WIN4(o:NXN,a:nxOVnxl). lt is apparently used to make sure there exists an NP to the left of the cur-
rent word that would fit in the subject slot of o:nxOVnxl. The existence :·of the frequently used feature LEFT-
WIN16(ßMDvx,O!nx0Vnxl) is also ofinterest. Apparently, this feature occurs because anxOVnxl often serves
as the sentential complement of another verb to its left. This verb can take a variety of supertags, including
ßnxOVsl and ßNOnxOVsl for example. Having a separate feature for each of these supertags would possibly
lead to suboptimal rerank:ing perfonnance because of sparse data. Instead, apparently based on the generaliza-
tion that these supertags are usually modified by a modal verb ß:MDvx, RankBoost chooses the feature LEFT-
WIN 1s (ßMDvx,0!nxOVnx l).

All of the features that we have discussed are LONG. In fact, there is a preponderance of LONG features
used to rank a:nxOVnxl: the ten most frequent features are LONG. There are however, some SHORT features
that are heavily weighted, although they are not used quite as often. One notable SHORT feature is FORWARD-
Bl(has,ßVvx,ßDnx). Intuitively, it resolves the ambiguity between ßVvx and anxOVnxl by seeing whether an NP
(prefixed by a detenniner) immediately follows the current word.

Supertag aNXN presents another interesting case. The most frequently occurring members of ef>(aNXN)
include anxON, ßnxN, and ßvxN. The most frequently used features that are used to prefer aNXN in-
clude LEFr-WIN1s(o:NXN,aNXN), RIGHT-WIN1s(aNXN,ßsPeriod), RIGHT-WIN16(0!NXN,ßnxPnx), LEFT-
WlN4(ßNn,aNXN). These features seem to encode the context that is likely to surround aNXN. Of course, these
features also seem likely to surround other members of ef>(aNXN). Perhaps these features are chosen because of a
general bias that the n-best supertagger has against supertagging head nouns appropriately.

6. Further, Exploratory Experiments

Based on our experience with reranking of n-best supertags, we have drawn some possible avenues for im-
provement of the reranking procedure. In the following, we list some common reasons for lack of optimum
reranking performance and discuss how they might be eliminated.

• The feature that would perfonn the appropriate reranking is not chosen because of sparse data. Note that the
supertags that do instantiate feature templates tend to be very common. lt is not surprising, therefore, that there
exists a feature such as LEFT-WIN4(o:NXN,anx0Vnxl). Recall that this appears to ensure that o:nxOVnxl has
an NP subject to the left. An analogous feature is not Iikely to appear for an infrequently occurring supertag,
such as ßNOnxOVsl. One possible solution would be to instantiate feature templates with certain aspects of
supertags instead of entire supertags. Along this line, we perform some exploratory experiments in Section 6.1.

266 Proceedings ofTAG+6

• The correct supertag for word w0 does not exist in the n-best supertagged output. One way to ameliorate this
problem is to improve the performance ofthe first stage n-best trigram supertagger. Along this line, we perform
some exploratory experiments in Section 6.2.

• For words other than the current word, the feature template is instantiated only from the 1-best supertag output,
which is not always correct. For example, the feature LEFT-WIN4(aNXN,anxOVnxl), depends on the fact that
the supertags to the immediate left of the current word are, in fact, correctly supertagged, whereas they are only
correctly supertagged about 80% of the time. Now, the training process should compensate for this somewhat
because the inputs to the training process are (ftawed) supertagged sentences. On the other hand, perhaps a
different approach would be more effective in tackling this problem. One avenue would be to rerank n-best
paths of supertags, instead of n-best per word supertagged output. Along this line, we have implemented an
n-best paths supertagger, based on a trigram model, but employing a search strategy similar to (Ratnaparkhi,
1996). Trained on Sections 02-21 ofthe Penn Treebank, this supertagger achieves about 89% supertag accuracy
only when the top 100 paths are chosen. lt remains tobe seen whether this will cause difficulties in terms of
memory or space resources for training the reranker.

6.1. Training the Reranker with Part of Speech Features

Having features consider entire supertags is a limiting factor in contributing to the performance of the reranker
not in the least because of sparse data. One possible solution is to base features on aspects of supertags instead of
entire supertags. For example, one might take the approach of breaking down each supertag into a feature vector
(Srinivas, 1997; Xia et al„ 1998; Xia et al„ 2000; Chen, 2001), and to base RankBoost features on elements ofthat
vector. Another approach would be to consider each supertag as generated by a Markov process (Collins, 1997;
Collins, 1999). In this case, one would base RankBoost features on individual steps in that process. Here, we
consider using part of speech as a component in feature space.

As implied by Section 2.2, the preterminal tag set for our extracted grammar is similar to the XTAG part of
speech tag set. For our features, we can either choose to retain the XTAG parts of speech or use the more detailed
Penn Treebank part of speecb tagset. This choice displays the usual tradeoffbetween assuaging sparse data (the
fonner) and having detailed enough features to make appropriate decisions (the latter). We have chosen the latter
because the Penn Treebank part of speech tagset (about 45 tags) is already an order of magnitude smaller than the
supertag tagset (about 3900 tags), although we believe that it would also be interesting to repeat our experiments
using the XTAG part of speech tagset (about 20 tags).

For each feature template in LONGUSHORT, an analogous feature template is created with supertag parame-
ters other than the current word replaced with part of speech parameters. For example, LEFT-WIN4-POS(py,to,cur)
is a feature template that states that the current word is supertagged with to,cur and there exists a word to the left
that has part of speech Pu within a distance of four words of the current word. Furthennore, we give the same
name to these new subsets offeature templates as is given to the previous subsets, affixed with -POS. For example,
WIN-POS is the set offeature templates consisting ofLEFT-WIN:i:-POS and RIGHT-WIN:i:-POS.

After the RankBoost training, tuning, and test corpora were suitably annotated using a trigram model Penn
Treebank part of speech tagger, models NEAR-POSUSHORT and LONG-POSULONGUSHORT were trained
and tested. The results are shown in the left half ofTable 5. Although the 1-best reranking accuracies are not
significantly higher for the *-POS models than for the corresponding non-POS models (Table 6), it is important
to keep in mind that these are preliminary results. We believe that the higher accuracies for the *-POS models
indicate that there may exist other, untried models which use part of speech information more effectively.

6.2. Reranking of Smoothed N-Best Supertagging

There are many cases where the reranker cannot give the correct supertag the top ranking because it does not
exist in the n-best output. One possible solution to this problem is to enhance the n-best supertagger by smoothing
its ernit probability p(w!t), and then mn the reranker on the resulting output. Here, we perfonn such an experiment.

Our experiment proceeds as follows. We choose to smooth p(wlt) using the approach mentioned in (Chen,
2001). lt accounts especially forthe fairly large set of cases (about 5%) in which the word and the correct supertag
have both been seen in the training data, but not in com.bination. These cases would nonnally be assigned a prob-
ability of zero by the supertagging model. Using this approach, we prepared training, tuning, and test data using
the smoothed version of the n-best supertagger as appropriate. We subsequently trained model LONGUSHORT
on this training and tuning data, and then tested the reranker as usual.

Chen, Bangalore, Collins, and Rambow 267

Table 5: N-best supertagger results, smoothing, and smoothing plus LONG U SH ORT reranker results

% Supertag Accuracy
Before NEAR-POS LONG-POSU Smoothed Smoothed and

n-best Re rank USHORT LONGUSHORT LONGUSHORT
1 80.20 80.97 82.04 81.64 82.99
2 87.13 87.77 88.83 89.02 90.42
3 89.24 89.77 90.38 91.24 92.31
4 90.28 90.63 91.04 92.37 93.14
5 90.84 91.07 91.34 93.07 93.59
6 91.22 91.37 91.53 93.54 93.88
7 91.52 91.57 91.65 93.84 94.05
8 91.73 91.73 91.73 94.14 94.14

Table 6: Differences in 1-best supertagging accuracy for all pairs of reranking models. Significant differences
(p < 0.05) are marked with "*"

Before s L LUS LUU wuu PUU SM SM& NPOS
Re rank LUS US

s +0.57
L -0.07 -0.64

LUS +l.53* +o.96* +1.60* '
LUU +1.19* +o.62 +l.26* -0.34 ..
wuu +1.43* +0.86 +l.50* -0.10* +0.24
PUU +0.84 +0.27 +0.91* -0.69 -0.35 -0.59
SM +l.44* +o.87 +l.51 * -0.09 +o.25 +0.01 +0.60

SM&LUS +2.79* +2.22* +2.86* +1.26* +1.60* +1.36* +1.95* +1.35*
NPOSUS +o.77 +0.20 +0.84 -0.76 -0.42 -0.66 -0.07 -0.67 -2.02*
LPOSU
LUS +l.84* +l.27* +l.91* +o.31 +o.65 +0.41 +l.00* +0.40 -0.95* +l.07*

The smoothing technique was successful in raising the 8-best supertagging accuracy to 94.14% from 91.73%.
And, as can be seen in Table 5 Rank.Boost can still improve on the output, though to a slightly lesser extent. Overall,
the error reduction increases to 14.1% over tbe unsmoothed, non-reranked 1-best supertags (ofwhich RankBoost
contributes 6.9% absolute). As far as we know, these are the currently best results for supertagging using !arge
supertag sets.

7. Significance Testing

We performed a one-way analysis of variance on tbe 1-best supertagging results of aU of the reranking models
that are mentioned in this paper. Table 6 tabulates the differences between 1-best supertagging accuracies of the
various models and marks significant differences, p < 0.05, with "*." The F-value is 18.11; the critical value for
the Tukey test is 0.89.

8. Conclusions and Future Work

This paper has explored the use of RankBoost in order to rerank an n-gram supertagger. We have seen that
such a reranking, perfonned effectively, is potentially useful in a variety of applications, including speeding up
a parser. We have perfomled experiments that show that RankBoost can indeed produce models that perfonn
reranking weil, to a statistically significant degree. We have identified specific features that explain why the
reranker performs effectively. We have also identified causes that limit the reranker's perfonnance. Finally, we
have perfonned other, exploratory experiments that ameliorate these limitations.

268 Proceedings of TAG+6

An advantage of using RankBoost is that numerous candidate features can be added robustly because Rank-
Boost learns to choose only the relevant ones. This invites the possibility of investigating kinds of features for
reranking other than the ones mentioned in this paper. Bilexical features may be useful, along with features that
take into account tree families, different kinds of parts of speech, punctuation, or the results of chunkers or even
parsers. lt is also important to keep in mind that the performance of the reranker is limited by the performance of
the n-best supertagger. Thus, novel means to increase the n-best supertagger's accuracy should also be explored.
We also intend to investigate other ways of obtaining candidate supertag sets using other notions of class-based
supertagging presented in (Chen, Bangalore and Vijay-Shanker, 1999).

References

Bangalore, Srinivas, John Chen and Owen Rambow. 2001. Impact of Quality and Quantity of Corpora on Stochastic Genera-
tion. In Proceedings of the 2001 Conference on Empirical Methods in Natural Langauge Processing, Pittsburgh, PA.

Bangalore, Srinivas and A. K.. Joshi. 1999. Supertagging: An Approach to Almost Parsing. Computational Li11guistics, 25(2).
Chandrasekhar, R. and B. Srinivas. 1997a. Automatie Induction of Rules for Text Simplification. Knowledge-Based Systems,

10:183-190.
Chandrasekhar, R. and B. Srinivas. 1997b. Using Supertags in Document Filtering: The Effect of Increased Context on

Information Retrieval. In Proceedings ofRecent Advances in NLP '97.
Chen, John. 2001. Towards Efficient Statistical Parsing Using Lexicalized Grammatical Information. Ph.D. thesis, University

ofDelaware.
Chen, John, Srinivas Bangalore and K. Vijay-Shanker. 1999. New Models for Improving Supertag Disambiguation. In

Proceedings of the 9th Conference of the European Chapter of the Association for Computational Linguistics, Bergen,
Norway.

Chen, John and K. Vijay-Shanker. 2000. Automated Extraction ofTAGs from the Penn Treebank. In Proceedings of the Sixth
International Workshop on Parsing Technologies, pages 65-76.

Chiang, David. 2000. Statistical Parsing with an Automatically-Extracted Tree Adjoining Grammar. In Proceedings of the the
38th Annual Meeting of the Associationfor Computational Linguistics, pages 456-463, Hong Kong.

Collins, Michael. 1997. Three Generative Lexicalized Models for Statistical Parsing. In Proceedings of the 35th Annual
Meeting of the Associationfor Computational Linguistics. ·

Collins, Michael. 1999. Head-Driven Statistical Modelsfor Natural Language Parsing. Ph.D. thesis, University of Permsyl-
vania.

Collins, Michael. 2000. Discriminative Reranking for Natural Language Parsing. In Proceedings of the 17th International
Conference on Machine Learning.

Freund, Yoav, Raj Iyer, Robert E. Schapire and Yoram Singer. 1998. An Efficient Boosting Algorithm for Combining Prefer-
ences. In Machine Leaming: Proceedings of the Fifteenth International Conferece.

Marcus, Mitchell, Beatrice Santorini and Mary Ann Marcinkiewicz. 1993. Building a Large Annotated Corpus ofEnglish: the
Penn Treebank. Computational Linguistics, 19(2):313-330.

Ratnaparkhi, Adwait. 1996. A Maximum Entropy Model for Part-of-Speech Tagging. In Proceedings of the Conference on
Empirica/ Methods in Natural Language Processing, pages 133-142, Somerset, NJ.

Sarkar, Anoop. 2000. Practical Experiments in Parsing using Tree Adjoining Grammars. In Proceedings of the Fifth Interna-
tional Workshop on Tree Adjoining Grammars and Related Frameworks, Paris, France.

Sarkar, Anoop. 2001. Applying Co-Training Methods to Statistical Parsing. In Proceedings of Second Annua/ Meeting of the
North American Chapter of the Associatwn for Computational Linguistics, Pittsburgh, PA.

Schabes, Yves, AMe Abeille and Aravind K. Joshi. 1988. Parsing Strategies with 'Lexicalized' Grammars: Application to
Tree Adjoining Grammars. In Proceedings of the l 2th International Conference 011 Computational Linguistics, Budapest,
Hungary.

Schapire, Robert E. 1999. A Briefintroduction to Boosting. In Prdceedings of the 16th International Joint Conference on
Artificial Intel/igence.

Srinivas, B. 1997. Performance Evaluation of Supertagging for Partial Parsing. In Proceedings of the Fifth International
Workshop on Parsing Techno/ogies, pages 187-198, Cambridge, MA.

van Halteren, H. 1996. Comparison ofTagging Strategies: A Prelude to Democratic Tagging. In Research in Humanities
Computing 4. Clarendon Press, Oxford, England.

Walker, Marilyn A„ Owen Rambow and Monica Rogati. 2001. SPoT: A Trainable Sentence Planner. In Proceedings of the
Second Meeting of the North American Chapter of the Associationfor Computational Linguistics, pages 17-24.

Xia, Fei. 1999. Extracting Tree Adjoining Grammars from Bracketed Corpora. InFifth Natural Language Processing Pacific
Rim Symposium (NLPRS-99), Beijing, China.

Xia, Fei, Chung hye Han, Martha Palmer and Aravind Joshi. 2000. Comparing Lexicalized Treebank Grammars Extracted
from Chinese, Korean, and English Corpora. In Proceedings of the Second Chinese Language Processing Workshop
(CLP-2000), Hong Kong, China.

Xia, Fei, Martha Palmer, K. Vijay-Shanker and Joseph Rosenzweig. 1998. Consistent Grammar Development Using Partial-
Tree Descriptions for Lexicalized Tree Adjoining Grammars. In Fourth International Workshop on Tree Adjoining Gram-
mars and Re/ated Frameworks, pages 18()-183.

XTAG-Group, The. 2001. A Lexicalized Tree Adjoining Grammar for English. Technical report, University of Pennsylvania.
Updated version available at http://www.cis.upenn.edwxtag.

