Tree-Adjoining Grammars
as Abstract Categorial Grammars

Philippe de Groote

LORIA UMR 1i® 7503 — INRIA

Campus Scientifique, B.P. 239

54506 Vandceuvrés$ Nancy Cedex — France
e-mail: Philippe.de.Groote@Ioria.fr

1. Introduction

We recently introduced abstract categorial grammars (ACGs) (de Groote, 2001) as a new categorial formalism
based on Girard linear logic (Girard, 1987). This formalism, which derives from current type-logical grammars
(Carpenter, 1996; Moortgat, 1997; Morrill, 1994; Oehrle, 1994), offers some novel features:

e Any ACG generates two languages, an abstract language and an object language. The abstract language may
be thought as a set of abstract grammatical structures, and of the object language as the set of concrete forms
generated from these abstract structures. Consequently, one has a direct control on the parse structures of the
grammar.

e The langages generated by the ACGs are sets of likgarms. This may be seen as a generalization of both
string-langages and tree-langages.

e ACGs are based on a small set of mathematical primitives that combine via simple composition rules. Conse-
quently, the ACG framework is rather flexible.

Abstract categorial grammars are not intended as yet another grammatical formalism that would compete
with other established formalisms. It should rather be seen as the kernel of a grammatical framework — in the
spirit of (Ranta, 2002) — in which other existing grammatical models may be encoded. This paper illustrates this
fact by showing how tree-adjoining grammars (Joshi and Schabes, 1997) may be embedded in abstract categorial
grammars.

This embedding exemplifies several features of the ACG framework:

e The fact that the basic objects manipulated by an ACG\aerms allows higher-order operations to be defined.
Typically, tree-adjunction is such a higher-order operation (Abrusci, Foecaret Vauzeilles, 1999; Joshi and
Kulick, 1997; Monnich, 1997).

e The flexibility of the framework allows the embedding to be defined in two stages. A first ACG allows the tree
langage of a given TAG to be generated. The abstract language of this first ACG corresponds to the derivation
trees of the TAG. Then, a second ACG allows the corresponding string language to be extracted. The abstract
language of this second ACG corresponds to the object language of the first one.

2. Abstract Categorial Grammars

This section defines our notion of an abstract categorial grammar. We first introduce the notioearof
implicative typeshigher-order linear signaturglinear A-termsbuilt upon a higher-order linear signature, and
lexicon

Let A be a set of atomic types. The s&t(A) of linear implicative typesbuilt upon A is inductively defined
as follows:

1. ifa € A, thena € T (A);
2. ifa, € T(A), then(a — 8) € T (A).
A higher-order linear signatureonsists of a triple&c = (A, C, 7), where:

1. Ais afinite set of atomic types;

(© 2002 Philippe de Grootdroceedings of the Sixth International Workshop on Tree Adjoining Grammar and Related Frame-
works (TAG+6) pp. 145-150. Universd di Venezia.

146 Proceedings of TAG+6

2. C'is afinite set of constants;
3. 7: C — Z(A)is afunction that assigns to each constan®'ia linear implicative type in7 (A).

Let X be a infinite countable set dfvariables. The sek(X) of linear A\-termsbuilt upon a higher-order linear
signatureX = (A, C, 7) is inductively defined as follows:

1. ifc € C, thenc € A(%);

2. ifz € X, thenz € A(Y);

3. ifz € X, ¢t € A(X), andz occurs free irt exactly once, theh\z.t) € A(X);

4. if t,u € A(X), and the sets of free variablestodindu are disjoint, ther{t u) € A(X).

A(X) is provided with the usual notion of capture avoiding substitutiertonversion, angs-reduction (Baren-

dregt, 1984).
Given a higher-order linear signature = (A, C, 1), each linear\-term in A(X) may be assigned a linear

implicative type in (A). This type assignment obeys an inference system whose judgements are sequents of the

following form:
F'eys t:a

where:

1. Tis a finite set of\-variable typing declarations of the form ¢ 5’ (with 2 € X andg € .7 (A)), such that any
A-variable is declared at most once;

2. te A(X);
3. ae J(A).
The axioms and inference rules are the following:

+yx c:7(c) (cons)

r:ary x:a (var)

rx:avrg t:p
Ty (Az.t): (a—)
Frst:(a—of) Arsu:a

DA w5 (tu):

(abs)

(app)

Given two higher-order linear signaturBs = (A, Cy, 1) andXs = (Ay, Cy, 72), alexicon? : ¥; — %o
is a realization of; into X5, i.e., an interpretation of the atomic typesXf as types built uponi, together with
an interpretation of the constants ¥f as linear\-terms built upon®,. These two interpretations must be such
that their homomorphic extensions commute with the typing relations. More formédlyican.# from X, to X5

is defined to be a pai” = (F, G) such that:
1. F: Ay — J(Ay) is afunction that interprets the atomic typesfas linear implicative types built upaf,;

2. G: C; — A(X.) is a function that interprets the constant$hfas lineari-terms built upori;

3. the interpretation functions are compatible with the typing relaiien,for anyc € C1, the following typing

judgement is derivable: R
s, G(C) : F(Tl(c))a

whereF' is the unique homomorphic extensionfof

We are now in a position of defining the notion of abstract categorial grammaabstnact categorial gram-
maris a quadruple/ = (¥, 3., %, s) where:

Ph. de Groote 147

1. 3; andX; are two higher-order linear signatures; they are callecdbstract vovabularnand theobject vovab-
ulary, respectively ;

2. Z: %, — X is alexicon from the abstract vovabulary to the object vovabulary;
3. sis an atomic type of the abstract vocabulary; it is calleddiséinguished typef the grammar.
Theabstract languaggenerated by (A(¥)) is defined as follows:
A(9) ={t € A(¥1)]| vy, t: sis derivablé

In words, the abstract language generate@liythe set of closed linearterms, built upon the abstract vocabulary
31, whose type is the distinguished type On the other hand, thebject languagegenerated by (O(9)) is
defined to be the image of the abstract language by the term homomorphism induced by the4&xicon

O@)={teAXy)|Tuec A¥Y). t = L (u)}
3. Representing Tree-Adjoining Grammars

In this section, we explain how to construct an abstract categorial grammar that generates the same tree langage
as a given tree-adjoining grammar.

LetG = (¥, N, I, A, S) be atree-adjoining grammar, wheteN, I, A, andS are the set of terminal symbols,
the set of non-terminal symbols, the set of initial trees, the set of auxiliary tree, and the distinguished non-terminal
symbol, respectively. We associatetean ACG¥ ¢ = (X, 2§, 2% s%) as follows.

The set of atomic types d§’ is made of two copies of the set of non-terminal symbols. Given N, we
write g anda 4 for the two corresponding atomic types. Then, we associate a constant

CT 1714 0 Yma o P1g o fng oas

to each initial treél” whose root node is labelled hy, whose substitution nodes are labeleddyy. . ., 3,, and
whose interior nodes are labeled by . . . , v,,,. Similarly, we associate a constant

e i71g4 0 Ymag O B1g =0 Png 04 04

to each auxiliary tre@&” whose root node is labelled lay whose substitution nodes are labeled®by. . ., 3,,, and
whose interior nodes are labeledy, . . ., v,,,. Finally, we also associate to each non-terminal symnbel NV,
a constanf,, of typea 4. This concludes the specification of the abstract vocabulary.

The object vocabulary§ allows labelled trees to be represented. Its set of atomic types contains only one
element ;7 (for tre€). Then, its set of constants consists in:

1. constants of type corresponding to the terminal symbols@f
2. for each non-terminal symbal, constants

Q;:T—0--+T—OT
——
7 times
for 1 < i < k, wherek is the maximal branching of the interior nodes labelled witthat occur in the initial
and auxiliary trees ofy.

Clearly, the terms of type that can be built by means of the above set of constants correspond to trees whose
frontier nodes are terminal symbols and whose interior nodes are labelled with non-terminal symbols.

It remains to define the lexica®“. The rough idea is to represent the initial trees as trees (i.e., terms of type
7) and the auxiliary trees as functions over trees (i.e., terms oftyper). Consequently, for each € N, we let
L% ag) = 7 and L% (a4) = 7 —o 7. Accordingly, the susbstitution nodes will be represented as first-order
variables of type- , and the adjunction nodes as second-opdeariables of type- —o 7. The object representation
of the elementary trees is then straightforward. Consider, for instance, the following initial tree and auxiliary tree:

148 Proceedings of TAG+6

VP

S N AN

VP \ \
SN |
\% NP|
|

loved
According to our construction, the two abstract constants corresponding to these trees have the following types:

Cloved :S4 —oVPy oV, —o NPg —o NPg —o SS and Chas :VP4 oV ,4 —oVPy4 ©oVPy
Then, the realization of these two constants is as follows:

LY (Cloved) = AEANG.AH. Az \y. F (S, 2 (G (VPy (H (V1 loved)) y)))
LG (Chas) = AF.AG.AH.\z.F (VP (G (V1 hag) (H x))

In order to derive actual trees, the second-order variables should eventually disappear. The abstract Epnstants
have been introduced to this end. Consequently they are realized by the identity functigii%i(é.,) = \z. z.

Finally, the distinguished type ¢#“ is defined to beSs. This completes the definition of the AC&“
associated to a TAG'. Then, the following proposition may be easily established.

PROPOSITION LetG be a TAG. The tree-language generateddis isomorphic to the object language of the
ACG % associated t@>. O

4. Example

Consider the TAG with the following initial tree and auxiliary tree:

N
) b/S*\d

It generates a non context-free language whose intersection with the regular langbiag&e* is ab™cd™e™.
According to the construction of Section 3, this TAG may be represented by the ACG(Y,, 35, .Z, S), where:

21 = < {Ssa SA}a {Ciacavl}y
{ei— (84 — Ss),
Ca > (Sa —0 (Sa —0 (Sa —0 54))),
I'— Sa})

¥y =({r},{a,b,c,d,e, S, S3},
{a,b,c,d,e — T,
Sy (1 —oT1),
Sz (T —o (T —o (T —7)))})

£ =({Sg+—m,
Sp— (1 —o71)},
{ei = Af. f(Sie),
Co = Af g Ah Az, f(Ssa(g(Ssb(hz)d))e),
I—dx.xz})

Ph. de Groote 149

5. Extracting the string languages

There is a canonical way of representing strings as lingarms. It consists of encoding a string of symbols
as a composition of functions. Consider an arbitrary atomic typend define the typestring to be (o —o o).
Then, a string such agbbac’ may be represented by the linesterm:

Az.a(b(b(a(cx)))),

where the atomic strings”, ‘', and ‘¢’ are declared to be constants of tyfzge—o o). In this setting, the empty
word is represented by the identity function:

VAN
€ = \r.x

and concatenation is defined to be functional composition:

a+6 = A 3 Ao (Bx),

which is indeed an associative operator that admits the identity function as a unit.

This allows a second AC®&'", to be defined. Its abstract vocabulary is the object vocabillfirgf €. Its
object vocabulary allows string of terminal symbols to be represented. Its lexicon interprets each constant of type
T as an atomic string, and each constanhs a concatenation operator. This second AZG,, extracts the yields
of the trees. Then, by composiagf’ with 4'“ one obtains an ACG which generates the same string-language as
G.

Let us continue the example of Section 4. The second AZG= (X1, ¥5,.¢",S"), is defined as follows:

=%,

5 =({o}.{a,b,c,d, e},
{abc.d, e (0 0)})
L= ({7 (0 <o)},

{a— Az.az,

b+— Ax.bx,

c— A\x.crx,

d— \r.dx,

e— A\r.ex,

S1— Af. Az, fx,

S = Af.Ag. M. f (g (hz))})

6. Expressing Adjoining constraints

Adjunction, which is enabled by second-order variables at the object level, is explicitly controlled at the ab-
stract level by means of types. This typing discipline may be easily refined in order to express adjoining constraints
such as selective, null, or obligatory adjunction.

Consider again the TAG given in Section 4. By adding the following null adjunction constraints on its auxiliary
tree:

SNA

RN

b S\a d
one obtains a grammar that generates exactly the non context-free landwége™e™. These constraints may

be expressed in a simple and natural way. It suffices to exclude the constrained nodes from the arguments of the
A-term corresponding to the auxiliary tree. This gives the following modified ACG:

21 = < {Ss,SA},{Ci,Ca,I},
{ci — (Sa — Ss),
co — (Sa—854),
I— Sa})

150 Proceedings of TAG+6

Yo =({7},{a,b,c,d,e, 51, S5},
{a,b,c,d,e — T,
S+ (1 —o71),
Sz (T —o (T —o (T —7)))})

$=<{Ssl—>77
Sa— (r—o71)},

fei = AL f (S10),
co— M. x.Ssa(f(Ssbxd))e,
I— dx.xz})

The other kinds of adjunction constraints may be expressed in a similar way.

References

Abrusci, M., C. Fouquér and J. Vauzeilles. 1999. Tree-adjoining grammars in a fragment of the Lambek caloinputa-
tional Linguistics 25(2):209-236.

Barendregt, H.P. 1984 he lambda calculus, its syntax and semantiesised edition. North-Holland.

Carpenter, B. 1996Type-Logical Semantic€ambridge, Massachussetts and London England: MIT Press.

de Groote, Ph. 2001. Towards Abstract Categorial Grammar#ssociation for Computational Linguistics, 39th Annual
Meeting and 10th Conference of the European Chapter, Proceedings of the Confpayes 148—155.

Girard, J.-Y. 1987. Linear LogicTheoretical Computer Sciencg0:1-102.

Joshi, A. K. and S. Kulick. 1997. Partial Proof Trees as Building Blocks for a Categorial Grarhimguistic & Philosophy
20:637-667.

Joshi, A. K. and Y. Schabes. 1997. Tree-adjoining grammars. In G. Rozenberg and A. SalomaaHatittivepk of formal
languagesvolume 3. Springer, chapter 2.

Monnich, U. 1997. Adjunction as substitution. In G.-J. Kruijff, G. Morrill and D. Oehrle, edifevanal Grammay pages
169-178. FoLLlI.

Moortgat, M. 1997. Categorial Type Logic. In J. van Benthem and A. ter Meulen, editarglbook of Logic and Language
Elsevier, chapter 2.

Morrill, G. 1994. Type Logical Grammar: Categorial Logic of Sigrn3ordrecht: Kluwer Academic Publishers.

Oehrle, R. T. 1994. Term-labeled categorial type systermguistic & Philosophy17:633-678.

Ranta, A. 2002. Grammatical Framework, a type-theoretical grammar formalism. Working paper, submitted for publication.

