
A Proof System for Tree Adjoining Grammars

Adi Palm
University of Passau

1. Introduction

Many TAG-based systems employ a particular tree adjoining grammar to generate the intended structures of
the set of sentences they aim to describe. However, in most cases, the underlying set of elementary trees is more
or less hand-made or maybe derived from a given tree data-base. We present a formal framework that allow to
specify tree adjoining grammars by logical formulae. Based on this formalism we can check whether a given
specification is TAG-consistent or whether a given TAG meets some particular properties. In addition, we sketch
a method that generates a TAG from a given logical specification. As formal foundation, we employ a particular
version of modal hybrid logic to specify the properties of T/D-trees. Such trees structurally combine a derived
TAG-treeT and its associated derivation treeD. Finally, we sketch a labeled tableau calculus that constructs a
set of tree automata representing the elementary trees of the specified TAG and a special tree automaton for the
corresponding derivation trees.

In literature, we find some approaches specifying TAGs, or more generally, mildly context-sensitive grammar
formalisms, that gradually vary in their underlying framework. Commonly, either starts with a logical description
of recognizable sets of trees (Thatcher and Wright, 1968). However, they differ in their method of leaving the
context-free paradigm. The approach mentioned in (Morawietz and Mönnich, 2001) and (Michaelis, M̈onnich and
Morawietz, 2000) uses a ‘lifting’ function that encodes a TAG into a regular tree grammar. In (Rogers, 1999) (and
related works) we find a logical description of TAGs that is based on a 3-dimensional view of trees. The important
issue of this approach is to combine the derived TAG-tree and its derivation tree to a single 3-dimensional structure.

Similarly, we also consider the derived TAG-tree and its derivation tree employ so-called T/D-trees. However
we only associate the nodes of the derived tree with the corresponding node in the derivation tree. Consequently,
all nodes of the same instance of an elementary tree refer to the same corresponding node in the derived tree.
Therefore, we can specify structural properties of the derived TAG-tree and of the derivation tree at the same time.
Using the links to the derivation tree, we can identify nodes in the TAG tree that belong to the same instance of
some elementary tree. In contrast to the other approaches mentioned above which encode the TAG-tree into other
kind of structures, we keep the original derived TAG tree as a structural unit. Consequently, we can directly access
the nodes and the structural properties of the TAG tree without employing a particular projection function or any
other special coding issues.

In essence, our formalism employs modal hybrid logic that combines the simplicity of modal logic and the
expressivity of classical logic. The use of so-called nominals in hybrid logic offer explicit references to certain tree
nodes which is (directly) possible in modal approaches. We introduce the hybrid languageHLTAG that specifies
properties of the combined structure of derived TAG-trees and their derivation trees. Using this language we
specify a number of TAG axioms which establish a notion of TAG-consistency. Further, we briefly illustrate a
formalism that constructs a number of tree automata representing the underlying TAG for a given TAG-consistent
HLTAG formula.

2. A Hybrid Language for TAGs and their Derivations

Our formalism considers pairs of trees called T/D-trees as introduced in (Palm, 2000) whereT represents a
derived TAG-tree andD denotes the corresponding derivation tree. In general, a derived TAG treeT = (t, Vt) is
made up of akt-tree domaint⊆{1, . . . , kt}∗ for kt > 0 and a labeling functionVt: t → Pow(Pt) decorating tree
nodes with a set of propositions ofPt. The set of propositionsVt(n) of some noden may be viewed as the label
of n. Likewise, a derivation treeD= (d, Vd) is made up of akd-tree domaind⊆ {1, . . . , kd}∗ for somekd > 0
and a labeling functionVd: d → Pow(Pd). In addition, each T/D-tree includes the total linking functionτ : t → d
that associates each node in the derived TAG treeT with the corresponding instance of its elementary tree in the
derivation treeD.

∗ An extended version can be found athttp://www.phil.uni-passau.de/linguistik/palm/papers/

c© 2002 Adi Palm.Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and Related Frameworks
(TAG+6), pp. 137–144. Universit́a di Venezia.



138 Proceedings of TAG+6

S

A : 1 B : 2

α

A

A B

B

β1 β2

............
............
............
............
............
............
............
............
............
............
............
............
............
............
....................................................................................................................................................................

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
.......................................................................................................................... ...........

...........
...........
...........
...........
...........
...........
...........
...........
...........
.........................................................................................................................

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
.......................................................................................................................... ...........

...........
...........
...........
...........
...........
...........
...........
...........
...........
..........................................................................................................................

Figure 1: Sample TAG with the initial treeα and two auxiliary treesβ1 andβ

β1 β2

α

S

A

A B

B

...........
...........
...........
...........
...........
...........
........................................................................................

............
............
............
............
............
............
............
............
............
............
............
............
............
............
....................................................................................................................................................................

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
........................................................................................................................ ...........

...........
...........
...........
...........
...........
...........
...........
...........
...........
........................................................................................................................

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
......................................................................................................................... ...........

...........
...........
...........
...........
...........
...........
...........
...........
...........
.........................................................................................................................

...............
...........
..........
............
...........
............
...........
............
.............
.............
..............
.............
...............
................

................
................

.................
..................

.....................
.........................

..............................
....................................

....................................................
...............................................................................................................................................................

...................................................
....................................................................................

...............................................................................................................................................................................................................................................................................
.....

...............
...........
............
............
...........
............
............
.............
..............
..............
...............
...............

..................
.................

....................
......................

.......................
...........................

.................................
........................................

.....................................................................................................................................................................................................................................................................
......................

................
...............
...............
..................
.....................

..........................................................................................................................................................................................................................................................................................................................................
...........................

......................
...................

.................
.................

................
...............
................
.......................
....................

Figure 2: Resulting T/D-tree after adjoiningβ1 andβ2 in α

The correspondence between either trees works straightforwardly. By the treeT we represented the derived
TAG tree which results from an initial tree after adjoining and substituting auxiliary trees. By the derivation treeD
we graphically represent these operations. Each children position of some noden in D represents a certain place
of adjunction (or substitution) in the elementary tree represented byn. For instance, in Figure 1, the elementary
treeα includes two nodes where we can adjoin another tree; we uniquely associate these nodes with the numbers
1 and 2, respectively . Now if we adjoinβ2 at the second node, this instance ofβ2 in the derivation tree becomes
the second childn.2 of the noden representing the corresponding instanceα. Once we adjoined the treeβ1 at
the first position,n obtains its first childn.1 representing this instance ofβ1. Obviously, we associated each node
of the corresponding instances ofα, β1 andβ2 in the derived TAG-tree with the nodesn, n.1 andn.2 in the
derivation tree, respectively. Figure 2 shows the resulting T/D-tree. Note that for our formalism we assume that
we can only adjoin at the inner nodes of an elementary tree, i.e. there is no adjunction at the root or at some leaves.
This restriction ensures that the parent of the root and the children of the foot are nodes of the tree at which the
adjunction took place.

For the formal foundation of our TAG-specification language we employ hybrid modal logic HL (Blackburn
and Tzakova, 1998), (Blackburn and Tzakova, 1999), (Blackburn, 2000a; Blackburn, 2000b). This formalism ex-
tends modal (or temporal) logic with particular propositions called nominals which enable references to particular
nodes (or terms) in a model. Further, there is an implemented tableau-based prover (Blackburn, Burchard and
Walter, 2001) which is partially based on (Tzakova, 1999). Compared with classical logic we prefer modal and
hybrid approaches since they allow more compact proofs and specifications.

In essence, we employ a modal logic on trees where the reflexive dominance relation denotes the modal
reachability relation. We enhance this language by the next operator#r referring to ther-th child of a node, by the
link operator♥ referring to the associated node in the derivation tree. For the hybrid formulae we include the jump
operatori:ϕ and nominal propositionsi with i ∈ Nom whereNom is an enumerable set of nominal symbols.
Further, the language depends on the finite sets of constant propositionsPT andPD and on the set of nominal



Palm 139

symbolsNom. Altogether, we obtain the hybrid languageHLTAG(Pt,Pd,Nom) which is defined as:

ϕ ::= p | i | i:ϕ | ¬ϕ |ϕ ∧ ϕ |#rϕ |3ϕ | ♥ϕ

where1≤ r≤k (with k = max{kt, kd}), p∈Pt ∪ Pd denotes a propositional constant andi∈NT/D a nominal.
Further, we can define the operators∨,→,↔ and2 in the standard way. In addition, we define thenext-operator
referring to some child by#ϕ ≡ #1ϕ ∨ . . . ∨#kϕ and its dual universal counterpart by~ϕ ≡ ¬#¬ϕ.

For the semantics of hybrid logic, we consider, in general, Kripke-structures which are, for the case ofHLTAG,
T/D-trees. Besides the structural information a T/D-tree associates each tree node of either tree with sets of constant
propositions fromPT andPD, respectively. In addition, we require a nominal denotation functiong:Nom →
(t ∪ d) evaluating the nominals. We interpret a givenHLTAG(Pt,Pd,Nom) formulaϕ at some noden ∈ ∪d of
a treeT/D for a nominal denotation functiong:Nom → t ∪ d whereg is only necessary for formulae including
nominals. For the noden we assume that we know whether it is a member oft or d.

T/D, n |= p iff n ∈ Vt(p) ∪ Vd(p), for p ∈ PT ∪ PD

T/D, n |= ¬ϕ iff T /D, n 6|= ϕ

T/D, n |= ϕ ∧ ψ iff T/D, n |= ϕ and

T/D, n |= ψ

T/D, n |= #rϕ iff T/D, n.r |= ϕ, 1≤r≤k wherek = max{kt, kd}
T/D, n |= 3ϕ iff T/D, n.a |= ϕ for somea∈{1, . . . , k}∗ wherek = max{kt, kd}
T/D, n |= ♥ϕ iff T/D, τ(n) |= ϕ

A T/D-tree satisfies the formulaϕ if ϕ holds for the root ofT . The link operator♥ is self-dual, i.e.♥ϕ ≡ ¬♥¬ϕ.
For the nominal expressions, we define the semantics as follows:

T/D, n, g |= i iff g(n) = i

T/D, n, g |= i:ϕ iff T/D, n′, g |= ϕ

andg(n′) = i

A nominal uniquely denotes a certain tree node where we do not explicitly distinguish the elements ofT andD.
The statementi is true if and only if the nominali denotes the node under consideration. In contrast, ini:ϕ we
refer to the node denoted byi which does not depend on the node considered currently. We say a T/D-treeT/D
satisfies the (nominal) formulaϕ at the noden ∈ t ∪ d, written T/D, n |= ϕ, if there is a nominal denotation
g:Nom → (t ∪ d) such thatT/D, n, g |= ϕ is true. Similarly,T/D satisfiesϕ, writtenT/D |= ϕ if there is a
nominal denotationg such thatT/D, roott, g |= ϕ whereroott denotes the root of the derived TAG treeT . Hence
T/D |= ϕ ∧ 2ϕ states thatϕ must apply to all nodes of the derived TAG tree,T/D |= ♥ϕ states thatϕ applies
to the root of the derivation tree andT/D |= ♥(ϕ ∧ 2ϕ) states thatϕ applies to all nodes of the derivation tree.
Finally, aHLTAG formulaϕ is satisfiable if and only if there is aT/D− tree and a nominal denotationg such that
ϕ satisfiesT/D by g.

Note that employing nominal propositions increases the expressivity of the former language. For instance, we
can define the until-operator “untilϕ is trueψ must apply” or the unique existence operator31ϕ which are not
expressible in ordinary modal logic (Blackburn and Tzakova, 1999).

until(ϕ,ψ) ≡ 3(ϕ ∧ i) ∧2(3i→ ψ)
31ϕ ≡ 3(i ∧ ϕ) ∧2(ϕ→ i)

In the first case we search a descendant node that satisfiesϕ and mark this node by the nominali. Then each
descendant node that dominatesi is an intermediate node that must satisfyψ. Similarly, we specify the unique
existence operator. Again we search a descendant node that satisfiesϕ and employ the nominali in order to identify
this node. Now all descendants that meetϕ must also meeti. In general, by introducing nominal propositions, we
can extend the expressivity of the underlying formalism. As shown in (Blackburn and Seligman, 1995; Blackburn
and Seligman, 1997) hybrid logic is stronger than propositional modal logic. For instance, we can formulate the



140 Proceedings of TAG+6

n2

n1

m1 = m2

...........
.......
.......
.......
.......
.......
.......
.......
......................................................................

..........

..........

..........

......

..........

..........

..........

............................................................................................................................................................................................................
...........................

......................
..................

.................
...............
...............
.............
..............
...............
.....

.........
.....................

.......................................................................................................................................
.........................

..................
.............
..............
.......................

.............................................................................................................................................
.......................
.......

Figure 3: T/D-tree:n1 andn2 are internal nodes of the same elementary represented bym1 andm2.

until operator, or byi∧2¬i we can demand that the underlying modal reachability relation is irreflexive. Either of
these properties fails to be expressible by means of propositional modal logic. On the other hand, we can specify
the standard translation from hybrid logic to classical first-order logic. Therefore hybrid logic cannot be stronger
than first-order logic. Moreover, as shown in (Schlingloff, 1992; Palm, 1997) the expressive power of the first-order
logic for trees and the temporal logic for trees is identical. Since we can formulate the until-operator by means
of hybrid logic, we obviously reach the expressivity of the temporal logic and the first logic on trees. However,
the more crucial aspect of our formalism is the link operator♥ which allows to identify particular sets of tree
nodes in the derived tree by referring to the same node in the derivation tree. Consequently,HLTAG describes first-
order definable sets of derivation trees; the expressivity for the derived tree obviously depends on the properties of
linking functionτ . Next we discuss some restrictions onτ leading to tree adjoining grammars.

3. TAG Axioms for HLTAG

Obviously, by the languageHLTAG we can describe derived TAG trees and their corresponding derivation trees
in an appropriate manner. However, so far it is unclear, what the necessary properties of aT/D tree are in order to
describe valid TAG-trees and their derivations. Likewise, we want to know whether a givenHLTAG formulaϕ is
TAG-satisfiable, i.e. whether the set ofT/D satisfyingϕ represents a certain TAG. The answer to either question
is the set of TAG axioms for the languageHLTAG. Hence, a T/D-tree would be TAG generated if and only if it
meets these axioms, and aHLTAG-formulaϕ is TAG-satisfiable if and only if it is consistent with these axioms,
i.e. ϕ and the axioms are satisfiable.

Before we turn to the axioms in detail, we examine the construction and the structural properties of a T/D-tree
by a given TAG derivation. For simplification purposes we put some restriction on the kind of TAGs considered
here. At first, we restrict our formalism to the adjunction operation and ignore substitution. Nevertheless it is
possible to simulate a substitution by an adjunction. Further, we assume that nodes, where adjunction is possible,
are marked by the special auxiliary propositionadj and, correspondingly, all non-adjunction nodes must failadj.
Moreover, an adjunction node must be an inner node of an elementary tree, i.e. it cannot be the root or some leaf.
As a consequence, we obtain only TAG trees where an adjoined tree is completely surrounded by the elementary
tree it was adjoined to. This leads to the following lemma:

Lemma 3.1
Let T/D = 〈(t, vt), (d, Vd), τ〉 be a TAG-generated T/D-tree and n1, n2 ∈ t, m1,m2 ∈ d with m1 = τ(n1),
m2 = τ(n2) and n2 = n1.r for some 1 ≤ r ≤ kt. Then exactly one of the following cases must be true:

1. m1 = m2

2. m1.s = m2, for some 1 ≤ s ≤ kd

3. m1 = m2.s, for some 1 ≤ s ≤ kd
�

This lemma considers the properties of a pair of immediately dominating nodesn1 andn2 in the derived TAG
tree. In the first case, both nodes belong to the same instance of an elementary tree. Therefore, they are linked to
the same node in the derivation tree, as illustrated in Figure 3. The second casen2 is the root of an adjoined tree.
By the assumption we made above, the parent of a root node must be a node of the tree where the adjunction took
place. Thereforen1 must be linked with the parent of the derivation tree node that is linked withn2, see Figure 4.



Palm 141

m2

m1n1

n2
............
...........................................................................................................................................................................................................

...........................
.....................

.........

...........................
...
...................

........................
..................................

..........................................................................................................................................................................

.........
.......
.......
.......
.......
.......
.......
.......
...............................................................................

.......
.......
.......
.......
.......
.......
.......
......................................................................

Figure 4: T/D-tree:n2 is the root node of the elementary represented bym2

n2

n1

m1

m2

.........
.......
.......
.......
.......
.......
.......
.......
...............................................................................

.......
.......
.......
.......
.......
.......
.......
......................................................................

...................................................................................................................
...................

...............
..............
.............
.............
..........
............
............
.............
............
..............
..............
..............
..............
...............
...............
...............
.................

....................
..............................
...................................................................................................................................................................................................................................................................................................................................................................
..............
.............
.............
....................
......................

Figure 5: T/D-tree:n1 is the foot node of the adjoined elementary tree represented bym1

In the third case,n1 is the foot node of an adjoined tree and, by assumption, each of its children must be a node of
the tree where the adjunction took place. Consequently,m1 must be a child ofm2, see Figure 5. Finally, due to
above assumptions, no other case is possible.

Now we turn to the TAG axioms ofHLTAG which ensure that a given formula describes a TAG. For the general
tree axioms we refer to the similar modal tree logic as presented for example in (Blackburn, Meyer-Viol and de
Rijke, 1996). However, the more interesting issue are the TAG axioms. They should ensure thatHLTAG formulae
only describe TAG-generated T/D-trees. For simplification, we introduce two auxiliary propositionsfoot androot
that mark the corresponding nodes of an adjoined elementary tree. The TAG-axioms standing below assert the
correct distribution of the auxiliary propositionsroot andfoot and the correct linking between the derived and the
derivation tree.

(D1) Troot: root∧ ♥Droot (associating the root nodes)

(D2) (i ∧ root∧ ♥k ∧ j: (root∧ ♥k)) → j: i (unique root)

(D3) (i ∧ foot∧ ♥k ∧ j: (foot∧ ♥k)) → j: i (unique foot)

(D4) (i ∧ ♥k ∧ j: (root∧ ♥k)) → j: (i ∨3i) (root domination)

(D5) #rroot↔ #r♥i ∧ ♥#i (link properties of the root)

(D6) foot↔ ♥i ∧~♥#i (link properties of the root)

(D7) ¬foot∧#r¬root↔ ♥i ∧#r♥i (link properties of the inner nodes)

The first axiom asserts that in a t/d-treeT/D the underlying initial tree of the derive treeT is linked with the
root of the derivation treeD. Actually, it is sufficient that (D1) only links the root node of the derived treeroot with
root of the derivation tree. The correct linking of the remaining nodes of the initial tree follows from (D7). In order
to access the root nodes of either tree, we assume two special nominal propositionsTroot andDroot referring to
the root nodes ofT andD, respectively. The next two axioms (D2) and (D3) ensure that every instance of an
elementary tree occurring inT/D has a unique root and a foot. We consider a root (or foot) node with the nominal
i that is linked with derivation tree with the nominalk. Then every root (or foot) node that is linked withk must be
identical toi. Moreover (D4) asserts that all nodes of the same instance of an elementary tree are dominated by the
root node of this instance. Finally, the axiom (D5), (D6) and (D7) ensure the local structural properties mentioned
in Lemma 3.1. By (D5), ther-th child of a node meets the propositionroot if and only if the successor relationship
also applies to the derivation tree nodes corresponding to them. By (D6), a node is a foot node if and only if it is
linked to the node whose parent is associated with all children of the node considered. Finally, (D7) asserts that all
pairs of immediately dominating nodes share the same instance of an elementary tree, if neither the upper one is
its foot nor the lower one is its root.



142 Proceedings of TAG+6

Obviously, due to Lemma 3.1 and the properties of a TAG derivation, every T/D-tree that is generated by
a given TAG must meet these axioms. Thus, these axioms are sound with respect to tree adjoining grammars.
However, the opposite direction is less obvious. It states that every T/D-tree satisfying these axioms must be
generated by a tree adjoining grammar. Next we describe a tree-extraction formalism that establishes this:

1. We arbitrarily select a leaf of the derivation tree with some nominalk and, further, we consider all nodes in the
derived tree that are linked withk.

2. By the axioms (D2) and (D3) there must be a unique root and foot and by (D4) all nodes the are linked withk
are weakly dominated by the the root. In addition, sincek has no child, no other tree was adjoined. Therefore,
due to (D5), (D6) and (D7) all nodes that are linked withk define a coherent tree section in the treet.

3. We extract the tree section as identified previously, and we replace it by a single adjunction node that is linked
with the parent ofk.

4. We removek in the derivation tree

5. We repeat the steps above until a single node in the derivation tree remains.

6. Due to (D1) the remaining structure defines the underlying initial tree of that TAG-tree. The trees we extracted
above are the corresponding elementary trees.

This formalism illustrates how to construct a TAG for any given t/d-tree satisfying the axioms (D1) to (D7) such
that the resulting TAG generates the given T/D-tree. In general, we obtain that a T/D-tree is TAG generated, if and
only if it meets these axioms at every node of the derived tree.

Moreover this formalism can be extendedt in the following way. So far we know that everyHLTAG formula
that is consistent with the TAG axioms (D1) to (D7) specifies a set of trees where each member is generated by a
certain TAG. We briefly sketch a method that constructs a corresponding TAG for a given TAG-consistentHLTAG

formula. Therefore, we combine the above extraction formalism with an ordinary method of constructing tree
models, especially tree automata, from a given modal tree description. The desired result are two linked tree-
automaton for the derived tree and the derivation tree. Instead of linking to certain tree nodes of the derivation
tree, we employ links to the states of the corresponding tree automaton. Then we can apply a slightly modified
version of the extraction method to these tree automata. Instead of extracting trees, this modified version considers
subtree automata. The final result is a (finite) set of tree automata where each of them represents a set of initial
trees. In addition, the resulting automaton for the derivation tree expresses possible adjunction operations for these
automata.

In order to construct these automata, we can employ, for instance, well-known labeled tableau methods as
described in (Goŕe, 1999), which were adopted for our purposes. The overall goal is to construct a set of simple
tree automata representing the initial trees of the TAG described and another special tree automaton representing
the corresponding derivation trees. Using labeled formulae in the tableau, we can indicate the node and the tree
the formulae considered must apply to. A crucial part of the tableau system concerns the construction of therth

successor of some node by the formula#rϕ:

(#r)
α, σ::#rϕ

α, σ::♥i α, σ::♥#si α, σ::♥i
α, σ.r::ϕ α.s, σ.r::ϕ α′, σ.r::ϕ
α, σ.r::♥i α.s, σ.r::♥i α′, σ.r::♥#si
α, σ::¬foot α, σ.r:: root α, σ:: foot
α, σ.r::¬root

whereα=α′.s. The premise of this rule considers the nodeσ of the derived tree that is associated with the nodeα
of the derivation tree and#rϕ must hold atσ. Obviously this rule states again the situation described in Lemma
3.1. In the first case (see Figure 6), the new successor nodeσ.r belongs to the same elementary tree as its parent,
so both are associated with the same nodeα in the derivation tree. For the second case (see Figure 7), this rule
generates a root node of an adjoined tree, so the new successorσ.r is associated withα.s, i.e. the corresponding
successor. Note that we also construct thes-successor ofα. Finally, in the third case (see Figure 8)σ denotes a
foot node, so the successorσ.r must be associated with the parent ofα.



Palm 143

σ.r:: ϕ

σ:: #rϕ

α:: i
...........

.......
.......
.......
.......
.......
.......
.......
......................................................................

..........

..........

..........

......

..........

..........

..........

............................................................................................................................................................................................................
...........................

......................
..................

.................
...............
...............
.............
..............
...............
.....

.........
.....................

.......................................................................................................................................
.........................

..................
.............
..............
.......................

.............................................................................................................................................
.......................
.......

Figure 6: tableau rule for#rϕ: inner nodes

α.s:: i

α:: #siσ:: #rϕ

σ.r:: ϕ
............
............................ .......... .......... .......... .......... .......... .......... .......... .......... .......... ..........

.......... .....
..... ......

.

...........................
...
...........

................
.................................................................................................................

.........
.......
.......
.......
.......
.......
.......
.......
...............................................................................

.......
.......
.......
.......
.......
.......
.......
......................................................................

Figure 7: tableau rule for#rϕ: root node

σ.r:: ϕ

σ:: #rϕ

α′.s: i

α′:: #si

.........
.......
.......
.......
.......
.......
.......
.......
...............................................................................

.......
.......
.......
.......
.......
.......
.......
......................................................................

...................................................................................................................
...................

...............
..............
.............
.............
..........
............
............
.............
............
..............
..............
..............
..............
...............
...............
...............
.................

....................
..............................
...................................................................................................................................................................................................................................................................................................................................................................
..............
.............
.............
....................
......................

Figure 8: tableau rule for#rϕ: foot node



144 Proceedings of TAG+6

Most other rules of this labeled tableau calculus are more or less straightforward or result from the require-
ments of the TAG axioms. To obtain tree automata from the tableau, we define classes of equivalent labels including
the same set of formulae:

α, σ ≈ α′, σ′ iff {ϕ | α, σ::ϕ} = {ϕ | α′, σ′::ϕ}

Obviously, the number of such equivalence classes is finite, since the number of occurring subformulae is finite
as well. Every class defines some state of a tree automaton, and the immediate dominance relation leads to the
state transition relation. Accordingly, we can extract the tree automaton for each elementary treeα by selecting the
states including the labelα. Then a gap in the immediate dominance relation indicates an adjunction node which
must be handled correspondingly. Eventually, we also obtain a tree automaton for the derivation tree.

4. Conclusions

Specifying sets of trees beyond context-free grammars requires additional structural information. For the
TAG-approach presented here, we combined the derived tree and the derivation tree leading to so-called T/D-trees.
While the derived tree actually is the object of consideration, the derivation tree serves as a kind of storage for the
required additional information. The linking function from the derived tree to the derivation tree combines the TAG
tree nodes sharing the same instance of an elementary tree. Therefore we can access the underlying elementary
trees and, consequently, we can decide whether a tree is TAG-generated.

For the formal description we employed hybrid logic which provides sufficient expressivity to specify TAG
axioms and further constraints on TAGs. On the other hand, the modal foundation of hybrid logic, offers simple
formulations that are easier to handle than classical logic. The result is a simple proof system for TAGs, which
can be used to verify certain formal properties for a given TAG or, as we have sketched briefly, to construct a TAG
from a given formal specification

An open question, so far, is the expressive power of our formalism. Obviously, it is possible to specify sets of
T/D-trees that fall out of the scope of TAGs. For instance, it is possible specify complete binary trees. Nevertheless,
such a specification would violate the TAG axioms.

References

Blackburn, P. 2000a. Internalizing Labelled Deduction.Journal of Logic and Computation, 10(1):137–168.
Blackburn, P. 2000b. Representation, Reasoning, and Relational Structures: a Hybrid Logic Manifesto.Logic Journal of the

IGPL, 8(3):339–365.
Blackburn, P., A. Burchard and S. Walter. 2001. Hydra: a tableaux-based prover for basic hybrid logic. In C. Areces and

M. de Rijke, editors,Proceedings of Methods for Modalities 2, Amsterdam, The Netherlands, November.
Blackburn, P., W. Meyer-Viol and M. de Rijke. 1996. A Proof System for Finite Trees. In H. Kleine Büning, editor,Computer

Science Logic, LNCS, vol. 1092. Springer Verlag, pages 86–105.
Blackburn, P. and J. Seligman. 1995. Hybrid Languages.Logic Journal of Logic, Language and Information, 4(1):251–272.
Blackburn, P. and J. Seligman. 1997. What are Hybrid Languages. In M. Kracht, H. Wansing and M. Zakharyshev, editors,

Advances in Modal Logic ’96. CSLI Publications, Stanford University.
Blackburn, P. and M. Tzakova. 1998. Hybrid Completeness.Logic Journal of the IGPL, 6(4):625–650.
Blackburn, P. and M. Tzakova. 1999. Hybrid Languages and Temporal Logic.Logic Journal of the IGPL, 7(1):27–54.
Goŕe, R. 1999. Tableau Methods for Modal and Temporal Logic. In M. D’Augustino, D. Gabbay, R. Hähnle and J. Posegga,

editors,Handbook of Tableau Methods. Kluwer, Dordrecht, pages 297–396.
Michaelis, J., U. M̈onnich and F. Morawietz. 2000. Derivational Minimalism in Two Regular and Logical Steps. InProceed-

ings of TAG+5, Paris, pages 163–170.
Morawietz, F. and U. M̈onnich. 2001. A Model-Theoretic Description of Tree Adjoining Grammars. InFormal Grammar

Conference/MOL Conference, Helsinki, Electronical Notes in Theoretical Computer Science, vol. 53. Elsevier Science.
Palm, A. 1997.Transforming Tree Constraints into Rules of Grammars. DISKI, volume 173. St. Augustin: infix-Verlag.
Palm, A. 2000. Structure Sharing in Tree-Adjoining Grammars. InProceedings of TAG+5.
Rogers, J. 1999. Generalized Tree-Adjoining Grammars. InProceedings of 6th Meeting on Mathemathics of Language

(MOL6).
Schlingloff, B.-H. 1992. Expressive Completeness of Temporal Logic for Trees.Journal of Applied Non-Classical Logics,

2:157–180.
Thatcher, J.W. and J.B. Wright. 1968. Generalized Finite Automata Theory with an Application to Decision Porblems of

Second-Order Logic.Mathematical System Theory, 2:57–81.
Tzakova, M. 1999. Tableaux calculi for hybrid logics. In N. Murray, editor,Conference on Tableaux Calculi and Related

Methods (TABLEAUX), Saratoga Springs, USA, LNAI, vol. 1617. Springer Verlag, pages 278–292.


