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1. Introduction

Many TAG-based systems employ a particular tree adjoining grammar to generate the intended structures of
the set of sentences they aim to describe. However, in most cases, the underlying set of elementary trees is more
or less hand-made or maybe derived from a given tree data-base. We present a formal framework that allow to
specify tree adjoining grammars by logical formulae. Based on this formalism we can check whether a given
specification is TAG-consistent or whether a given TAG meets some particular properties. In addition, we sketch
a method that generates a TAG from a given logical specification. As formal foundation, we employ a particular
version of modal hybrid logic to specify the properties of T/D-trees. Such trees structurally combine a derived
TAG-treeT" and its associated derivation trée Finally, we sketch a labeled tableau calculus that constructs a
set of tree automata representing the elementary trees of the specified TAG and a special tree automaton for the
corresponding derivation trees.

In literature, we find some approaches specifying TAGs, or more generally, mildly context-sensitive grammar
formalisms, that gradually vary in their underlying framework. Commonly, either starts with a logical description
of recognizable sets of trees (Thatcher and Wright, 1968). However, they differ in their method of leaving the
context-free paradigm. The approach mentioned in (Morawietz amhih, 2001) and (Michaelis, &hnich and
Morawietz, 2000) uses a ‘lifting’ function that encodes a TAG into a regular tree grammar. In (Rogers, 1999) (and
related works) we find a logical description of TAGs that is based on a 3-dimensional view of trees. The important
issue of this approach is to combine the derived TAG-tree and its derivation tree to a single 3-dimensional structure.

Similarly, we also consider the derived TAG-tree and its derivation tree employ so-called T/D-trees. However
we only associate the nodes of the derived tree with the corresponding node in the derivation tree. Consequently,
all nodes of the same instance of an elementary tree refer to the same corresponding node in the derived tree.
Therefore, we can specify structural properties of the derived TAG-tree and of the derivation tree at the same time.
Using the links to the derivation tree, we can identify nodes in the TAG tree that belong to the same instance of
some elementary tree. In contrast to the other approaches mentioned above which encode the TAG-tree into other
kind of structures, we keep the original derived TAG tree as a structural unit. Consequently, we can directly access
the nodes and the structural properties of the TAG tree without employing a particular projection function or any
other special coding issues.

In essence, our formalism employs modal hybrid logic that combines the simplicity of modal logic and the
expressivity of classical logic. The use of so-called nominals in hybrid logic offer explicit references to certain tree
nodes which is (directly) possible in modal approaches. We introduce the hybrid language that specifies
properties of the combined structure of derived TAG-trees and their derivation trees. Using this language we
specify a number of TAG axioms which establish a notion of TAG-consistency. Further, we briefly illustrate a
formalism that constructs a number of tree automata representing the underlying TAG for a given TAG-consistent
HL74c formula.

2. A Hybrid Language for TAGs and their Derivations

Our formalism considers pairs of trees called T/D-trees as introduced in (Palm, 2000)Whegreesents a
derived TAG-tree and denotes the corresponding derivation tree. In general, a derived TAG tre@, V;) is
made up of &:;-tree domairnt C{1,..., k;}* for k; > 0 and a labeling functio;: ¢ — Pow(P;) decorating tree
nodes with a set of propositions . The set of propositiong; () of some node: may be viewed as the label
of n. Likewise, a derivation tre® = (d, V) is made up of &,-tree domain C {1, ..., kq}* for somek,; > 0
and a labeling functio;: d — Pow(P;). In addition, each T/D-tree includes the total linking functiort — d
that associates each node in the derived TAG Tredth the corresponding instance of its elementary tree in the
derivation treeD.

*

An extended version can be foundhtp://www.phil.uni-passau.de/linguistik/palm/papers/
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Figure 1: Sample TAG with the initial tre@ and two auxiliary treeg; ands

S

Figure 2: Resulting T/D-tree after adjoinifty and3; in «

The correspondence between either trees works straightforwardly. By thE treerepresented the derived
TAG tree which results from an initial tree after adjoining and substituting auxiliary trees. By the derivatidn tree
we graphically represent these operations. Each children position of some mode represents a certain place
of adjunction (or substitution) in the elementary tree represented [Bor instance, in Figure 1, the elementary
tree« includes two nodes where we can adjoin another tree; we uniguely associate these nodes with the numbers
1 and 2, respectively . Now if we adjoj#y at the second node, this instancesefin the derivation tree becomes
the second chilck.2 of the noden representing the corresponding instanceOnce we adjoined the treg at
the first positiony obtains its first childh.1 representing this instance gf. Obviously, we associated each node
of the corresponding instances @f 5; and 3, in the derived TAG-tree with the nodes n.1 andn.2 in the
derivation tree, respectively. Figure 2 shows the resulting T/D-tree. Note that for our formalism we assume that
we can only adjoin at the inner nodes of an elementary tree, i.e. there is no adjunction at the root or at some leaves.
This restriction ensures that the parent of the root and the children of the foot are nodes of the tree at which the
adjunction took place.

For the formal foundation of our TAG-specification language we employ hybrid modal logic HL (Blackburn
and Tzakova, 1998), (Blackburn and Tzakova, 1999), (Blackburn, 2000a; Blackburn, 2000b). This formalism ex-
tends modal (or temporal) logic with particular propositions called nominals which enable references to particular
nodes (or terms) in a model. Further, there is an implemented tableau-based prover (Blackburn, Burchard and
Walter, 2001) which is partially based on (Tzakova, 1999). Compared with classical logic we prefer modal and
hybrid approaches since they allow more compact proofs and specifications.

In essence, we employ a modal logic on trees where the reflexive dominance relation denotes the modal
reachability relation. We enhance this language by the next opevata@ferring to the--th child of a node, by the
link operatorQ referring to the associated node in the derivation tree. For the hybrid formulae we include the jump
operator:: ¢ and nominal propositionswith i € Nom where Nom is an enumerable set of nominal symbols.
Further, the language depends on the finite sets of constant propogttioasd P, and on the set of nominal
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symbolsNom. Altogether, we obtain the hybrid languagé s (P;, P4, Nom) which is defined as:

o = plilitp| e[ Ap[Orp| Ol Qp

wherel <r <k (with & = maxz{ki, kq}), p € P, U P4 denotes a propositional constant arel\,» a nominal.
Further, we can define the operators—, < andd in the standard way. In addition, we define tlextoperator
referring to some child bypy = O190 V... V Ogp and its dual universal counterpart Byy = -O-p.

For the semantics of hybrid logic, we consider, in general, Kripke-structures which are, for the eldseof
T/D-trees. Besides the structural information a T/D-tree associates each tree node of either tree with sets of constant
propositions fromPr andPp, respectively. In addition, we require a nominal denotation funcgioom —

(t U d) evaluating the nominals. We interpret a givehrag (P, Py, Nom) formulap at some node € Ud of
a treeT'/ D for a nominal denotation functiogt Nom — ¢ U d whereg is only necessary for formulae including
nominals. For the node we assume that we know whether it is a memberafd.

T/D,nkEp iff neVilp)UVy(p),forpe PrUPp
T/D,n k= —p iff 7T/D,nlEe
T/D,nl=pAy iff T/D,nk=pand
T/D,n =1
T/D,nk=Opp iff T/D,nrE e, 1<r<kwherek = max{k, kq}
T/D,nE <p iff T/D,n.a = pforsomeac{l,... k}* wherek = max{k:, kq}
T/D,n = Qp iff T/D,7(n)E=e

A T/D-tree satisfies the formula if ¢ holds for the root off". The link operatof is self-dual, i.eQp = =Q-p.
For the nominal expressions, we define the semantics as follows:

T/D,n.gl=i  iff g(n)=1
T/D,n,g=ip iff T/D,n.gk¢
andg(n’) =1

A nominal uniquely denotes a certain tree node where we do not explicitly distinguish the elem&rasaD.
The statement is true if and only if the nominal denotes the node under consideration. In contrast,jnve
refer to the node denoted hywhich does not depend on the node considered currently. We say a T/DAfee
satisfies the (nominal) formula at the noden € ¢t U d, writtenT/D,n = ¢, if there is a nominal denotation
g:Nom — (tUd) such thatl'/D,n,g | ¢ is true. Similarly,T/D satisfiesp, writtenT'/D = ¢ if there is a
nominal denotatioy such thafl’/ D, root;, g = » whereroot; denotes the root of the derived TAG trée Hence
T/D [ ¢ A Oy states thatr must apply to all nodes of the derived TAG tr&&,D | Q states thap applies
to the root of the derivation tree affd/ D = Q(p A Oyp) states thap applies to all nodes of the derivation tree.
Finally, aHL 14 formulay is satisfiable if and only if there is'/B/ D — tree and a nominal denotatignsuch that
o satisfiesI'/ D by g.

Note that employing nominal propositions increases the expressivity of the former language. For instance, we
can define the until-operator “untf is truev must apply” or the unique existence operatarp, which are not
expressible in ordinary modal logic (Blackburn and Tzakova, 1999).

until(p, ) = O(pAi) ADO(CT — )
O1p O(iNp) ND(p — 1)

In the first case we search a descendant node that satisdied mark this node by the nominalThen each
descendant node that dominatds an intermediate node that must satigfy Similarly, we specify the unique
existence operator. Again we search a descendant node that satesfiemploy the nominalin order to identify
this node. Now all descendants that mgethust also meet In general, by introducing nominal propositions, we
can extend the expressivity of the underlying formalism. As shown in (Blackburn and Seligman, 1995; Blackburn
and Seligman, 1997) hybrid logic is stronger than propositional modal logic. For instance, we can formulate the
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Figure 3: T/D-treen; andn, are internal nodes of the same elementary represented landms.

until operator, or by A O0—i we can demand that the underlying modal reachability relation is irreflexive. Either of
these properties fails to be expressible by means of propositional modal logic. On the other hand, we can specify
the standard translation from hybrid logic to classical first-order logic. Therefore hybrid logic cannot be stronger
than first-order logic. Moreover, as shown in (Schlingloff, 1992; Palm, 1997) the expressive power of the first-order
logic for trees and the temporal logic for trees is identical. Since we can formulate the until-operator by means
of hybrid logic, we obviously reach the expressivity of the temporal logic and the first logic on trees. However,
the more crucial aspect of our formalism is the link oper&towhich allows to identify particular sets of tree

nodes in the derived tree by referring to the same node in the derivation tree. Consetillentdydescribes first-

order definable sets of derivation trees; the expressivity for the derived tree obviously depends on the properties of
linking functionr. Next we discuss some restrictions-oteading to tree adjoining grammars.

3. TAG Axioms for HL 745

Obviously, by the languadél -4 we can describe derived TAG trees and their corresponding derivation trees
in an appropriate manner. However, so far it is unclear, what the necessary propertiédotrae are in order to
describe valid TAG-trees and their derivations. Likewise, we want to know whether aldiver, formulay is
TAG-satisfiable, i.e. whether the setBf D satisfyingy represents a certain TAG. The answer to either question
is the set of TAG axioms for the languabg 4. Hence, a T/D-tree would be TAG generated if and only if it
meets these axioms, andth 4 -formula ¢ is TAG-satisfiable if and only if it is consistent with these axioms,

i.e. p and the axioms are satisfiable.

Before we turn to the axioms in detail, we examine the construction and the structural properties of a T/D-tree
by a given TAG derivation. For simplification purposes we put some restriction on the kind of TAGs considered
here. At first, we restrict our formalism to the adjunction operation and ignore substitution. Nevertheless it is
possible to simulate a substitution by an adjunction. Further, we assume that nodes, where adjunction is possible,
are marked by the special auxiliary propositadj and, correspondingly, all non-adjunction nodes mustddjl
Moreover, an adjunction node must be an inner node of an elementary tree, i.e. it cannot be the root or some leaf.
As a consequence, we obtain only TAG trees where an adjoined tree is completely surrounded by the elementary
tree it was adjoined to. This leads to the following lemma:

Lemma 3.1
Let T/D = {((t,v), (d, Vq),T) be a TAG-generated T/D-tree and n1,n2 € t, my,me € d withm; = 7(n1),
me = 7(n2) and ng = ny.r for some 1 < r < k;. Then exactly one of the following cases must be true:

1. m1 = mo
2. m1.8 = mo, forsomel < s < ky

3. m1 = ma.s, forsomel < s < ky

This lemma considers the properties of a pair of immediately dominating mqdmsdn, in the derived TAG
tree. In the first case, both nodes belong to the same instance of an elementary tree. Therefore, they are linked to
the same node in the derivation tree, as illustrated in Figure 3. The secone,dagbe root of an adjoined tree.
By the assumption we made above, the parent of a root node must be a node of the tree where the adjunction took
place. Therefore; must be linked with the parent of the derivation tree node that is linkedmwitsee Figure 4.



Palm 141

Figure 5: T/D-treen; is the foot node of the adjoined elementary tree represented, by

In the third casey, is the foot node of an adjoined tree and, by assumption, each of its children must be a node of
the tree where the adjunction took place. Consequemtjymust be a child ofn,, see Figure 5. Finally, due to
above assumptions, no other case is possible.

Now we turn to the TAG axioms dflL4¢ which ensure that a given formula describes a TAG. For the general
tree axioms we refer to the similar modal tree logic as presented for example in (Blackburn, Meyer-Viol and de
Rijke, 1996). However, the more interesting issue are the TAG axioms. They should enstitkthatormulae
only describe TAG-generated T/D-trees. For simplification, we introduce two auxiliary propogamtrandroot
that mark the corresponding nodes of an adjoined elementary tree. The TAG-axioms standing below assert the
correct distribution of the auxiliary propositionsot andfoot and the correct linking between the derived and the
derivation tree.

(D1) Tyoot:root A QO Droot (associating the root nodes)
(D2) (i Aroot A QFk A j: (root A Qk)) — j:¢  (unique root)

(D3) (i AfootA Qk A j: (footA Qk)) — j:i  (unique foot)

(D4) (i AQk A j:(root A Qk)) — j: (i vV &i) - (root domination)

(D5) Oy root «— 0,.Qi A QO (link properties of the root)
(D6) foot«— Qi A ®V0O1 (link properties of the root)
(D7) —footA O,—root «— Qi A O,Qi (link properties of the inner nodes)

The first axiom asserts that in a t/d-trf€¢D the underlying initial tree of the derive tr&eis linked with the
root of the derivation tre®. Actually, itis sufficient that (D1) only links the root node of the derived toes with
root of the derivation tree. The correct linking of the remaining nodes of the initial tree follows from (D7). In order
to access the root nodes of either tree, we assume two special nominal prop@stigiend Dygot referring to
the root nodes of" and D, respectively. The next two axioms (D2) and (D3) ensure that every instance of an
elementary tree occurring ifi/ D has a unique root and a foot. We consider a root (or foot) node with the nominal
i that is linked with derivation tree with the nominal Then every root (or foot) node that is linked withmust be
identical toi. Moreover (D4) asserts that all nodes of the same instance of an elementary tree are dominated by the
root node of this instance. Finally, the axiom (D5), (D6) and (D7) ensure the local structural properties mentioned
in Lemma 3.1. By (D5), the-th child of a node meets the propositimot if and only if the successor relationship
also applies to the derivation tree nodes corresponding to them. By (D6), a node is a foot node if and only if it is
linked to the node whose parent is associated with all children of the node considered. Finally, (D7) asserts that all
pairs of immediately dominating nodes share the same instance of an elementary tree, if neither the upper one is
its foot nor the lower one is its root.
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Obviously, due to Lemma 3.1 and the properties of a TAG derivation, every T/D-tree that is generated by
a given TAG must meet these axioms. Thus, these axioms are sound with respect to tree adjoining grammars.
However, the opposite direction is less obvious. It states that every T/D-tree satisfying these axioms must be
generated by a tree adjoining grammar. Next we describe a tree-extraction formalism that establishes this:

1. We arbitrarily select a leaf of the derivation tree with some nondreadd, further, we consider all nodes in the
derived tree that are linked with

2. By the axioms (D2) and (D3) there must be a unique root and foot and by (D4) all nodes the are linkied with
are weakly dominated by the the root. In addition, sihdeas no child, no other tree was adjoined. Therefore,
due to (D5), (D6) and (D7) all nodes that are linked witHefine a coherent tree section in the tree

3. We extract the tree section as identified previously, and we replace it by a single adjunction node that is linked
with the parent ok.

4. We removek in the derivation tree
5. We repeat the steps above until a single node in the derivation tree remains.

6. Due to (D1) the remaining structure defines the underlying initial tree of that TAG-tree. The trees we extracted
above are the corresponding elementary trees.

This formalism illustrates how to construct a TAG for any given t/d-tree satisfying the axioms (D1) to (D7) such
that the resulting TAG generates the given T/D-tree. In general, we obtain that a T/D-tree is TAG generated, if and
only if it meets these axioms at every node of the derived tree.

Moreover this formalism can be extendeuh the following way. So far we know that eveHL 4z formula
that is consistent with the TAG axioms (D1) to (D7) specifies a set of trees where each member is generated by a
certain TAG. We briefly sketch a method that constructs a corresponding TAG for a given TAG-cordlstent
formula. Therefore, we combine the above extraction formalism with an ordinary method of constructing tree
models, especially tree automata, from a given modal tree description. The desired result are two linked tree-
automaton for the derived tree and the derivation tree. Instead of linking to certain tree nodes of the derivation
tree, we employ links to the states of the corresponding tree automaton. Then we can apply a slightly modified
version of the extraction method to these tree automata. Instead of extracting trees, this modified version considers
subtree automata. The final result is a (finite) set of tree automata where each of them represents a set of initial
trees. In addition, the resulting automaton for the derivation tree expresses possible adjunction operations for these
automata.

In order to construct these automata, we can employ, for instance, well-known labeled tableau methods as
described in (Gdr, 1999), which were adopted for our purposes. The overall goal is to construct a set of simple
tree automata representing the initial trees of the TAG described and another special tree automaton representing
the corresponding derivation trees. Using labeled formulae in the tableau, we can indicate the node and the tree
the formulae considered must apply to. A crucial part of the tableau system concerns the constructioff of the
successor of some node by the formalae:

(©1) a,0::Opp
T . . .
a,0:: Q1 a,0: Q041 | a,0:: Qi
Q, 0P a.s,orip | o
a, o.r: Qi a.s,07:91 | o, 0.r:: V041

«a,0::—~foot | o, o.r::r00t | o, 0:: foot
a, 0.r:: root

wherea=c'.s. The premise of this rule considers the nedef the derived tree that is associated with the nede

of the derivation tree and,. must hold aiz. Obviously this rule states again the situation described in Lemma
3.1. In the first case (see Figure 6), the new successornodm®longs to the same elementary tree as its parent,
so both are associated with the same nade the derivation tree. For the second case (see Figure 7), this rule
generates a root node of an adjoined tree, so the new suceess®associated witkv.s, i.e. the corresponding
successor. Note that we also constructdfsiccessor ofv. Finally, in the third case (see Figure 8)denotes a
foot node, so the successor must be associated with the parentof
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Figure 6: tableau rule fap,.: inner nodes

Figure 7: tableau rule fap,.: root node

Figure 8: tableau rule fap,.¢: foot node
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Most other rules of this labeled tableau calculus are more or less straightforward or result from the require-
ments of the TAG axioms. To obtain tree automata from the tableau, we define classes of equivalent labels including
the same set of formulae:

a,o=d o iff {p|a,op}={p|d,o":p}

Obviously, the number of such equivalence classes is finite, since the number of occurring subformulae is finite
as well. Every class defines some state of a tree automaton, and the immediate dominance relation leads to the
state transition relation. Accordingly, we can extract the tree automaton for each elementarfyytisslecting the

states including the label. Then a gap in the immediate dominance relation indicates an adjunction node which
must be handled correspondingly. Eventually, we also obtain a tree automaton for the derivation tree.

4, Conclusions

Specifying sets of trees beyond context-free grammars requires additional structural information. For the
TAG-approach presented here, we combined the derived tree and the derivation tree leading to so-called T/D-trees.
While the derived tree actually is the object of consideration, the derivation tree serves as a kind of storage for the
required additional information. The linking function from the derived tree to the derivation tree combines the TAG
tree nodes sharing the same instance of an elementary tree. Therefore we can access the underlying elementary
trees and, consequently, we can decide whether a tree is TAG-generated.

For the formal description we employed hybrid logic which provides sufficient expressivity to specify TAG
axioms and further constraints on TAGs. On the other hand, the modal foundation of hybrid logic, offers simple
formulations that are easier to handle than classical logic. The result is a simple proof system for TAGs, which
can be used to verify certain formal properties for a given TAG or, as we have sketched briefly, to construct a TAG
from a given formal specification

An open question, so far, is the expressive power of our formalism. Obviously, it is possible to specify sets of
T/D-trees that fall out of the scope of TAGS. For instance, itis possible specify complete binary trees. Nevertheless,
such a specification would violate the TAG axioms.
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