
© 2002 Maribel Romero. Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and Related

Frameworks (TAG+6), pp. 108-117. Universitá di Venezia.

Quantification Over Situation Variables in LTAG: Some

Constraints*

Maribel Romero
University of Pennsylvania

1. Introduction

Some natural language expressions –namely, determiners like every, some, most, etc.— introduce

quantification over individuals (or, in other words, they express relations between sets of individuals).  For

example, the truth conditions of a sentence like (1a) are represented in Predicate Logic (PrL) by binding the

occurrences of the individual variable x with the quantifier ∀, as in (1b).
1

(1) a. Every professor run the marathon.

b. ∀x [ professor(x)  → run-the-marathon(x) ]

In a similar way, it has been argued that certain expressions introduce quantification over possible worlds or

possible situations (Lewis 1973, among many others).  The set of possible worlds includes the actual world --

where the individuals are the way they actually are-- and any other logically possible world --where individuals

may have different properties from the ones they have in actuality.  In this paper, I assume a Situation Semantic

framework (Barwise-Perry 1983, Kratzer 1989, von Fintel 1994) and do not quantify over entire possible

worlds, but over parts of possible worlds, i.e., over possible situations.2  In (2a), e.g., the speaker predicates the

property of being in the Bahamas by 5pm of Jorge in all the (actual or non-actual relevant) situations s where all

my actual obligations are fulfilled.  This is informally represented in (2b).  The variable s0 stands for the

situation at which the sentence as a whole is evaluated (the actual situation), and the variable s ranges over the

possible (actual or non-actual) situations considered.

(2) a. Jorge has to be in the Bahamas by 5pm.

b. [[(2a)]](s0) = 1   iff   ∀s [ all my actual obligations in s0 are fulfilled in s  →  in(jorge, bahamas, 5pm, s) ]

The present paper has two goals.

The first one is to implement in LTAG the semantics of some natural language expressions that quantify

over possible situations.  In particular, I will propose lexical entries for the modal auxiliary must, for the

intensional adverb probably and for the adverb of quantification sometimes.
3
  The proposal will model insights

from the philosophical and linguistic literature (Stalnaker 1968, Lewis 1973, Cresswell 1990, Kratzer 1979) into

the LTAG quantificational schemata developed in Kallmeyer-Joshi (2001).

The second, more important aim is to account, within LTAG, for a certain constraint on binding of situation

variables discussed in Percus (2000) (see also Musan 1995 for related observations on time variables).  In an

nutshell, this binding constraint requires the following. Whereas predicates within (simple) Noun Phrases (NPs)

can be evaluated with respect to a non-local situation binder, the situation variable of the main predicate in the

Verb Phrase (VP) has to be bound by the closest c-commanding situation operator.  It will be argued that this

constraint follows automatically if, using the LTAG denotations proposed in this paper, the compositional

semantics is computed on the derivation tree rather than on the derived tree.

The paper is organized as follows.  In section 2, I will briefly present Kallmeyer-Joshi’s (2001) proposal for

quantifiers over individuals and extend it to quantifiers over situations.  Semantic denotations for must, probably

and sometimes will be spelled out in LTAG.  Section 3 introduces the core data on the behavior of NPs versus

                                                            

1. (1b) is a simplified version. Once we add situation variables, the denotation of (1a) for a given evaluation situation s0 is

represented as in (i). [[.]] is the interpretation function from linguistic expressions to their intensions.

(i) [[(1a)]](s0) = 1  iff  ∀x [ professor(x,s0)  → run-the-marathon(x,s0) ]

2. The choice of situations instead of worlds is orthogonal to the arguments in this paper. Situations are best fitted to

account for adverbs of quantification (always, sometimes, often, etc. ) involving indefinites and donkey-anaphora (see von

Fintel 1994).

3. The denotation of other members of each category can, of course, be easily modeled after the proposed entries (e.g., for

modals like can, might, would, should; intensional adverbs like necessarily, possibly, perhaps, unlikely; and adverbs of

quantification like always, usually, often, rarely.)



Romero 109

VPs with respect to situation binding.  Section 4 derives the asymmetric behavior of NPs and VPs with respect

to situation binding. We will consider a simple case with one situation adverb. It will be shown that the freedom

of the NP situation variable and the locality of the VP situation variable follow in a straightforward way if we

apply the compositional semantics to the derivation tree instead of the derived tree.  A more complex case will

be briefly considered, where two situation adverbs are at issue.  Section 5 concludes.

2. Quantification over possible worlds in LTAG

A sentence α denotes a proposition, [[α]], i.e., a function from possible worlds to the truth values in {0,1}.

A way to encode the denoted proposition [[α]] is to equate with a Ty2 formula the conditions under which [[α]]

applied to the actual situation s0 will yield 1.  This is done for a simple example in (3), and its LTAG

correspondent is given next to it.  Note that, in a Ty2 formula (Gallin 1975), all logical predicates (formal

translations of nouns, adjectives and verbs) include a situation argument, represented using the variables s0 (by

convention, the actual situation, the evaluation situation of the sentence as a whole), and s, s’, s”, etc.

(3) [[Pat visits Kate]](s0) =1   iff   visit(p,k,s0)
l0: visit(x,y,s0)
pat(x)
kate(y)
arg: -

Let us introduce quantificational determiners into this Ty2 intensional framework. Kallmeyer-Joshi propose

that the contribution of a quantificational determiner consists of two parts: on the one hand, the quantificational

NP adds an argument to the predicate-argument structure of the sentence; on the other, it introduces a scopal

element, a logical operator which takes scope over (at least) that predicate-argument structure.  For each

quantificational determiner, these two components are separated into two trees, as exemplified in (4)-(5): the

predicate-argument component substitutes into the appropriate argument slot in the verb’s tree, and the scopal

component adjoins to the root node of the verb tree.

(4) Some / A:

β1 S∗

α1 NP
     ei

  Det                   N↓
    g

some

l1: some(x,h1,h2)
r1 ≤ h2
arg: r1

l2: p2(x,s’)

l2 ≤ h1

arg: <p2, 01>

(5) Every:

β2 S∗

α2 NP
     ei

  Det                   N↓
    g

every

l3: every(y,h3,h4)
r2 ≤ h4
arg: r2

l4: p4(y,s”)

l4 ≤ h3

arg: <p4, 01>

An example sentence is given in (6).  The remaining basic trees and their LTAG denotations are spelled out

in (7)-(9).  Following the derivation tree in (10), these denotations compose to yield the final denotation in (11).

Note that the relative scope of two quantifiers every and some remains underspecified in this output denotation.



Proceedings of TAG+6110

The two possible scopal readings are determined by the disambiguation functions δ1 and δ2 in (12).
4

(6) A student visited every club.

                                                            
4. I will ignore the semantic contribution of tense throughout the paper.

(7) Visited:

α0 S
      ru

  NP↓ VP
       ty

  V      NP↓
   g

      visited

(8) Student:

α3 N
 g

  student

(9) Club:

α4 N
 g

     club

lo: visit(x,y,s”’)
arg :  <x,  00>,

<y,011>

q1: student
arg: -

q2: club
arg: -

(10) Derivation tree:

 α0
qtyp

β1   α1 α2     β2
   g  g

  α3 α4

(11) Output denotation:

l1: some(x,h1,h2),   l3: every(y,h3,h4),
lo: visit(x,y,s”’),   l2: (q1: student)(x,s’),   l4: (q2: club)(y,s”)
lo ≤ h2,   l2 ≤ h1,   l0 ≤ h4,   l4 ≤ h3
arg: -

(12) Scope disambiguation functions:

a. δ1  for the scope some >> every   =   { <h1,l2>, <h2,l3>,<h3,l4>,<h4,l0>}

b. δ2  for the scope every >> some   =   { <h1,l2>, <h2,l0>,<h3,l4>,<h4,l1>}

The semantic representations above are faithful to Kallmeyer-Joshi’s proposal expect for the fact that we

have introduced a situation variable for each predicate, namely s’, s”, s”’. In this case, since there is no situation

binder in the sentence, all three situations variables are identified with the evaluation situation s0. The result of

this variable identification is spelled out in (13).

(13) [[A student visited every club]](s0) = 1   iff   ∃x [student(x,s0) ∧ ∀y [club(y,s0) → visit(x,y,s0)] ]   or

      ∀y [club(y,s0) → ∃x [student(x,s0) ∧ visit(x,y,s0)] ]

l1: some(x,h1,h2),   l3: every(y,h3,h4),
lo: visit(x,y,s0),   l2: (q1: student)(x,s0),   l4: (q2: club)(y,s0)
lo ≤ h2,   l2 ≤ h1,   l0 ≤ h4,   l4 ≤ h3
arg: -



Romero 111

Let us now extend Kallmeyer-Joshi’s quantification procedure, already intensionalized, to quantification

over situations. In the same way that quantificational NPs introduce quantification over individuals, it has been

argued that modal auxiliaries, intensional adverbs and adverbs of quantification quantify over possible situations

(Kratzer 1979, 1989, von Fintel 1994). A small difference between the two quantification procedures concerns

the so called “restrictor”. The restrictor subformula for NPs –e.g., club(y,s0) in (13)-- originates from the noun
inside it, whereas the restrictor for modals is (mostly) contextually given. For example, (14) can be understood

as quantifying over deontic situations (roughly, situations where all our actual obligations are fulfilled) or over

epistemic situations (roughly, situations such that, as far as the speaker knows, could be the actual situation s0).

These two readings are encoded in the Ty2 formulae (14a)-(14b) by placing the 2-place predicates Deo and Epi

--defined in (15)-- in the restrictor of the situation quantifier.

(14) John must run.

a. ∀s’ [ Deo(s’,s0)  →  run(j, s’) ]

b. ∀s’ [ Epi(s’,s0)  →  run(j, s’) ]

(15) a. Deo(s”,s’) =1   iff   s” is a situation accessible from s’ such that all the obligations in s’ are fulfilled in s”.

b. Epi(s”,s’)  =1   iff   s” is a situation accessible from s’ such that, for all the speaker knows, s’ could be s”.

Following Kallmeyer-Joshi’s quantification schemata, I propose to implement quantification over situations

in LTAG as follows. The semantic contribution of the tree for run and the tree for John is given in (16)-(17).

The double semantic contribution of must under its deontic reading is provided in (18). Note that must carries

universal quantificational force, that is, the scopal part of must includes the quantifier every, this time applied to
a situation variable s’. Other items like may or perhaps, expressing existential force, would yield a comparable

double semantic value.  Furthermore, note that, whereas every in (5) needs to look for its restrictor in its 01
address, I have spelled out the restrictor of must –contextually provided—directly in the predicate-argument part

of must itself, for simplicity reasons.

(16) Run:

α1 S
   ei

NP↓           VP
            g

          run

(17) John:

α2 NP
  g

John

(18) Must:

β1 S*

β2 VP
     ei

must             VP*

l0: run(x,s’)
arg: <x, 00>

john(x)
arg: -

l1: every(s”’,h1,h2)
r1 ≤ h2
arg: r1

l2: Deo(s”’,s”)
l2 ≤ h1
arg: <s“‘, 01>

The reader may have noticed a further difference between the predicate-argument value of must in (18) and

the predicate-argument value of every in (5): must’s β2 has an address for one of its internal variables (namely

s”’, marked in boldface), but every’s α2 does not. This difference stems from the fact that the predicate-

argument part of every will be substituted into the verb’s tree, whereas the predicate-argument part of must will

be adjoined to the verb’s tree. Now, recall that the difference between a substituted element and an adjoined

element yields the following effect in (L)TAG. The to-be-adjoined element can identify one or more of the

variables within its semantic value with the variables (of the appropriate type) provided at a given address in its

tree. But the to-be-substituted element does not have any address in its tree for the tree it is substituting into.

Hence, there is no way it can force any such variable identification. For the case at issue, this means that the

predicate-argument part of every in (5) cannot force identification of y or s” with any variable in the tree for



Proceedings of TAG+6112

visit. The predicate-argument part of must in (18), instead, is allowed to identify s”’ with a variable provided at

the 01 address, that is, with the situation variable provided by the tree of run. This difference, as we will see, will
play a crucial role to capture the data forthcoming in section 3.

The denotations in (16)-(18) are combined following the derivation tree in (19). The result is (20).

(19) Derivation tree for (14):

  α1
qgp

α2   β1         β2

(20) [[John must run]](s0) = 1   iff

∀s’ [ Deo(s’,s0)  →  run(j, s’) ]

l1: every(s”’,h1,h2)
l2: Deo(s”’,s0),  l0: run(x,s”’’),  john(x)
l2 ≤ h1, l0 ≤ h2
arg: -

Finally, before turning to the data in section 3, let me introduce the double semantic value of two situation

adverbs that will be needed later in the paper: probably and sometimes. The restrictor predicate for sometimes is

described in (21).

(21) Part(s”,s’)  =1   iff   the situation s” is part of the situation s’.

(22) Probably:

β1 S*

β2 VP
     ei

probably             VP*

l1: most(s”’,h1,h2)
r1 ≤ h2
arg: r1

l2: Epi(s”’,s”)
l2 ≤ h1
arg: <s“‘, 01>

(23) Sometimes:

β3 S*

β4 VP
     ei

sometimes             VP*

l1: every(s”’,h1,h2)
r1 ≤ h2
arg: r1

l2: Part(s”’,s”)
l2 ≤ h1
arg: <s“‘, 01>

3. An asymmetry with situation variables: NPs can be transparent or opaque, but VPs must be opaque

Take the sentence in (24) under the reading where every has scope inside the if-clause. Farkas (1997)

–among others-- notes that there is still an ambiguity, rooted on the situation variable that we assign to the

complex predicate poor child: we may be talking about the set of poor children in the hypothetical situations s’

introduced by the conditional (opaque reading), or, interestingly, we may interpret it as the set of poor children

in the actual situation s0 (transparent reading). The transparent reading is particularly salient in (25), since (25)’s

opaque reading yields a contradiction in the hypothetical situations and, hence, is pragmatically odd.

(24) If you fed every poor child, I would be happy.

a. Opaque NP: In every situation s’ accessible to s0: if you fed in s’ all the poor children in s’, I am happy

in s’.



Romero 113

b. Transparent NP: In every situation s’ accessible to s0:  if you fed in s’ all the people who are poor

children in the actual situation s0, I am happy in s’.

(25) If every poor child was very rich instead, I would be happy

a. # Opaque NP: In every situation s’ accessible to s0:  if all the poor children in s’ are very rich in s’, I am

happy in s’.

b. Transparent NP: In every situation s’ accessible to s0:  if all the people who are poor children in the

actual situation s0 are very rich in s’, I am happy in s’.

The same ambiguity obtains in simpler sentences with modals and intensional adverbs. Take (26)-(27)

under the reading where the indefinite determiner scopes under the (deontic) modal must (or should). Still, the

complex predicate poor child can be interpreted with respect to the deontic situations s’ (opaque reading) or

with respect to the actual situation s0 (transparent reading). Again, the transparent reading is particularly clear in

(27), since the opaque reading is pragmatically out.

(26) A poor person must / should be fed.

a. Opaque NP: In every situation s’ accessible to s0 where all our obligations in s0 are fulfilled:  a poor

person in s’ in fed in s’.

b. Transparent NP: In every situation s’ accessible to s0 where all our obligations in s0 are fulfilled:  a person

who is a poor person in the actual situation s0 is fed in s’.

(27) A poor person must / should be rich.

a. # Opaque NP: In every situation s’ accessible to s0 where all our obligations in s0 are fulfilled:  a poor

person in s’ is rich in s’.

b. Transparent NP: In every situation s’ accessible to s0 where all our obligations in s0 are fulfilled:  a person

who is a poor person in the actual situation s0 is rich in s’.

Percus (2000) adds the interesting observation that a transparent reading of the main predicate in the VP is

impossible. That is, even if we give the subject NP scope under the relevant intensional operator and we

interpret it opaquely (so that the intensional operator binds at least one situation variable and it does not yield

vacuous quantification), the VP predicate cannot be interpreted as transparent:

(24) If every poor child was fed, I would be happy.

c. * Transparent VP (and opaque NP): In every situation s’ accessible to s0:  if all the poor children in s’ are

fed in s0, I am happy in s’.

(25) If every poor child was very rich instead, I would be happy

c. * Transparent VP (and opaque NP): In every situation s’ accessible to s0:  if all the poor children in s’ are

rich in s0, I am happy in s’.

(26) Some poor person must / should be fed.

c. * Transparent VP (and opaque NP): In every situation s’ accessible to s0 where all our obligations in s0
are fulfilled:  a poor person in s’ in fed in s0.

(27) Some poor person must / should be rich.

c. * Transparent VP (and opaque NP): In every situation s’ accessible to s0 where all our obligations in s0
are fulfilled:  a poor person in s’ in rich in s0.

The readings (24c-27c) are simply impossible. Let us take sentence (26) and judge it in the scenario Σ26.

The sentence is judged false. But the reading (26c) is true in this scenario. Since a sentence with reading (26c)

should be judged true in the all scenarios that make the reading (26c) is true, and since (26) is not judged true in

one such scenario, (26) lacks the reading (26c).

(28) Scenario Σ26 for (26) :

In the actual situation s0, Pat, Lucy, Miguel and nobody else are fed. Our obligation (as evil witches and

wizards) is to make at least one of them (any of them) poor. There are no further obligations in s0. In

particular, there is no obligation to feed anybody.

The same reasoning applies to (27) and the scenario Σ27. Sentence (27) is false in Σ27, whereas the reading

(27c) is true in Σ27. Hence, sentence (27) lacks reading (27c).



Proceedings of TAG+6114

(29) Scenario Σ27 for (27) :

In the actual situation s0, Pat, Lucy, Miguel and nobody else are rich. Our obligation (as evil witches and

wizards) is to make at least one of them (any of them) poor. There are no further obligations in s0. In

particular, there is no obligation to make anybody rich.

I leave examples (24)-(25) and the construction of the relevant scenarios as an exercise for the reader.

However, before concluding this section, let me illustrate the asymmetry between the situation variables in NPs

and VPs with adverbs of quantification as well. The following example, from Percus (2000), has a transparent

NP reading ((30a)), but it lacks a transparent VP reading ((30b)). The sentence is judged true in scenario Σ30a –a

scenario that makes the transparent NP, opaque VP reading true-- but false in scenario Σ30b –a scenario where

the opaque NP, transparent VP reading is true.

(30) The winner sometimes lost.

a. Transparent NP, opaque VP reading: In some (relevant) situations s’ that are part of s0:  the winner in s0
lost in s’.

b. * Opaque NP, transparent VP reading: In some (relevant) situations s’ that are part of s0:  the winner in s’

lost in s0.

(31) Scenario Σ30 for (30):

We are in a situation s0 that contains a game among five participants. The game is such that there is exactly

one winner of the game and exactly one loser of the game. The other three participants neither win nor lose

(e.g., if the winner receives money and the loser pays, the other three participants neither receive nor pay

money). The game consists of fifteen rounds (each of which can be considered a natural sub-situation s’ of

s0). Each round has exactly one winner and exactly one looser, and, as before, the other three participants of

each round neither win nor lose. The winner of the game is the person that wins more rounds, and the loser

of the game is the person who loses more rounds. (In case of tie, the relevant participants play until there is

no tie.).

a. Σ30a: This time, in situation s0, Sue, the winner of the game, lost rounds 2 and 3, whereas Mario, the loser

of the game, won no round at all.

b. Σ30b: This time, in situation s0, Sue, the winner of the game, lost no round at all, whereas Mario, the loser

of the game, won rounds 6 and 9.

In sum, the question we need to answer is the following: Why is the main predicate in a VP necessarily

opaque with respect to the immediate situation operator, whereas predicates embedded in an NP can be

interpreted as opaque or transparent?

4. Capturing the asymmetry in LTAG semantics

To rephrase the question in LTAG terms, take the semantic representation in (32). Why is there a choice

between l4: poor-person(x, s0) and l4: poor-person(x, s’), whereas only the opaque situation option l2:

rich(x, s’) is available?.

(32)  [[Some poor person must be rich]](s0) = 1

 iff    ∀s’ [Deo(s’,s0) →

         ∃x [ poor-person(x, s0/s’) ∧ rich(x,s’) ] ]

δ (for must>>every) =

   {<h4,h2>, <h2,l3>, <h1,l1>, <h3,l4>}

l0: every(s’,h1,h2)
l3: some(x,h3,h4)
l1: Deo(s’,s0),  l2: rich(x, s’),  l4: poor-child(x, s0 / s’)
l1 ≤ h1,  l2 ≤ h2,  l4 ≤ h3,  l2 ≤ h4

arg: -

The question is particularly puzzling for grammars where the compositional semantics is performed on the

derived tree. Take a GB Logical Form tree or an LTAG derived tree where the modal must takes scope over the

determiner some. We have assumed, as proven in Gallin (1975), that the expressive power needed to generate

intensional readings in natural language amounts to a Ty2 formal language where we have direct quantification

over situation (or world) variables. Furthermore, following Percus (2000), every predicate in a sentence is in

principle allotted its own situation variable. That yields, roughly, the syntactico-semantic representation in (33).

Note that, in the derived tree, the situation operator [[must]] combines with the denotation of its sister as a

whole. Why should [[must]], then, make a distinction between NP situation variables and verbal situation



Romero 115

variables if they are all equally available within its sister’s denotation? How could we possibly account for the

fact that [[must]] will necessarily bind s”’ in rich(x,s”’) and will only optionally bind s” in poor-person(x,s”)?5

(33) Some poor person must be rich.

  IP
           q       p

     every(s’,h1,h2)      must   IP / VP
q        p

          NP       VP / V
          wo g

     some poor-person       (be) rich

some(x,h3,h4) poor-person(x,s”) rich(x,s”’)

If, instead, we perform the semantic computation on the LTAG derivation tree using the proposed

denotations, the asymmetry between NPs and main predicates follows straightforwardly from the way the

derivation proceeds. Take the denotations below and the derivation tree in (38):

                                                            
5. A reviewer suggested the possibility that situation variables are not indices generated as sister of predicates, but indices

introduced by the determiner in the NP.  This way, NPs would have a free situation variable that may be optionally bound

higher up, whereas the main predicate in a VP would not have a free situation variable at any point (e.g. [[(be) rich]] would

be λxλs.rich(x,s)).  However, being introduced by a determiner is neither a necessary nor a sufficient condition for an NP to

be optionally transparent.  First, bare plurals can have a transparent reading, as Kratzer’s (i) illustratres.  Second, NPs with a

determiner acting as main predicates in copular sentences cannot be transparent: (ii) lacks the VP transparent reading as

much as (25) and (27).

(i) Sue wanted to put belladonna berries in the salad because she mistook them for raspberries.

(ii) If some poor child was the richest child instead, I would be happy.

In fact, Percus (2000), who assumes a GB Logical Form derived tree as the input to the semantics, does not capture the

binding asymmetry in the semantics. He proposes, instead, a syntactic constraint on LF, basically a Binding Theory for

situation variables.

(34)  (Be) rich:

α1 S
   ei

NP↓            AP
     6

(be)-rich

l0: rich(x,s”)
arg: <x, 00>

(35) Must

β1 S*

β2 VP
     ei

must             VP*

l1: every(s’,h1,h2)
r1 ≤ h2
arg: r1

l2: Deo(s’,s)
l2 ≤ h1
arg: <s‘, 01>

(36) Some / A:

β3 S∗

α2 NP
     ei

  Det                   N↓
    g

some

l3: some(x,h3,,h4)
r2 ≤ h4
arg: r2

l4: p2(x,s”’)

l4 ≤ h3

arg: <p2, 01>



116 Proceedings of TAG+6

(37) Poor-person:

α3 N
 g

poor-person

q1: poor-person
arg: -

(38) Derivation tree for Some poor people must be rich:

 α1
qtyp

β1   β2 β3     α2
                                  g

                                 α3

In this derivation tree, β2 (the semantic part of must in charge of identifying the variable s’ with another

situation variable at the address 01) applies to α1, the main predicate’s denotation, and it ensures that the two

situation variables are identified. β2 never applies to the denotation α2 of the NP some poor people, thus it

cannot enforce variable identification with it. In fact, given that we follow the derivation tree and not the derived

tree, β2 does not even apply to a semantic object that includes the contribution of α2. That is, β2 only finds α1 at

the 01 address, and not α1 composed with α2. Hence, the obligatory situation variable identification encoded in

the denotation β2 cannot choose a variable from α2, but only from the main predicate’s denotation α1 found at

the 01 address.
This way, the main predicate in Some poor people must be rich, namely rich, is necessarily opaque with

respect to must, whereas no such constraint can be imposed for the predicate poor-people buried in the NP. The

NP is, hence, free to be interpreted as transparent or as opaque with respect to the modal. If it is transparent, we

take the option of identifying its situation variable with the actual situation s0; if it is opaque, we identify it with

the situation variable s’ introduced by the modal. This derives the existing readings of the sentence represented

in (32), and it successfully excludes the non-existing ones.

To conclude this section, I will briefly consider a more complicated case involving two situation

quantifiers, about which I will tentatively make some speculations. Recall example (30), repeated below with

the added intensional adverb probably. Besides the readings discussed in section 3, Percus (2000:214ff) notes

that, in examples with two situation operators in a c-command relation, the c-commanding one necessarily binds

the second situation variable of the immediately c-commanded one. In our example (39), this means that the

second situation variable introduced by sometimes cannot be identified with the actual situation s0, but it has to

be identified with the situation variable that probably quantifies over, namely s’. This is shown in (40): the

second situation variable in l3:Part(s”,s’) (in boldface) has to be locally bound by the quantifier most introduced
by sometimes.6

(39) The winner probably sometimes lost.

                                                            
6. The NP the winner can now be evaluated with respect to any of the tree situations s0, s’ and s”, though the last one

yields a pragmatically odd reading.

(40) [[The winner probably sometimes lost]](s0) = 1

iff

MOST s’ [Epi(s’,s0) ]

[∃s” [Part(s”,s’) ∧ ιy.winner(y, s0/s’/#s”)=x  ∧

lost(x,s”) ] ]

l0: most(s’,h1,h2)
l2: some(s”,h3,h4)
l1: Epi(s’,s0),  l3: Part(s”,s’),  l4: lost(x, s”)
l5: ιy.winner(y, s0/s’/#s”)=x
l1 ≤ h1,  l4 ≤ h2,  l3 ≤ h3,  l4 ≤ h4
arg: -

Using the denotations of probably and sometimes provided in (22) and (23), this result can be easily

achieved if the β2 denotation of probably in (22) adjoins to the β4 denotation of sometimes in (23), and β4
adjoins to the tree for lost. This type of dependent adjunction is defended in Vijay-Shanker 1987. The



Romero 117

mandatory identification obtains straightforwardly. I leave to the reader the compositional semantic computation

of this example.

A second possibility, presented in Schabes-Shieber (1991), consists of performing multi-adjunction of both

adverbs at the same node of the main predicate’s tree. If this syntactic approach is pursued, both the β2
denotation of probably and the β4 denotation of sometimes apply to the meaning of lost. The mandatory

identification of variables encoded in β2 and β4 would then yield the wrong result in (41):

(41) MOST s” [Epi(s”,s0) ]

[∃s” [Part(s”,s0/s”) ∧ ιy.winner(y, s0/#s”)=x  ∧

lost(x,s”) ] ]

l0: most(s”,h1,h2)
l2: some(s”,h3,h4)
l1: Epi(s”,s0),  l3: Part(s”, s0/s’),  l4: lost(x, s”)
l5: ιy.winner(y, s0/#s”)=x
l1 ≤ h1,  l4 ≤ h2,  l3 ≤ h3,  l4 ≤ h4
arg: -

This is what the wrong result consists of: the variable identification instructions in β2 and β4 force both

most and some to try to bind the same variable occurrence s”. This is not just an empirical wrong result, but an
impossible task in Predicate Logic (PrL): one variable occurrence can only be bound by one quantifier. Hence, if

this type of multi-adjunction is pursued, perhaps it is possible to ban this result on principled logical grounds, by

appealing to a secondary variable identification procedure when the default one cannot be successfully

implemented in PrL. I leave the issue open at this point.

5. Conclusions

We have seen that situation variables in NPs and in main predicates behave asymmetrically:  NPs can be

transparent and opaque with respect to the immediately c-commanding situation operator, whereas main

predicates can only be opaque.  Following Kallmeyer-Joshi’s (2001) quantification procedure, I have proposed a

double semantic value for the modal must, for the intensional adverb probably and for the adverb of

quantification sometimes.  The asymmetry between NPs and main predicates has been shown to follow if we

apply the proposed denotations to the derivation tree.

References

Barwise, Jon and John Perry. 1983. Situations and Attitudes, Cambridge, Mass.: MIT Press.

Cresswell, M. 1990. Entities and indices, Dordrect: Kluwer.

von Fintel, Kai. 1994. Restrictions on Quantifier Domains, Amherst, Mass: GLSA.

Farkas, Donca. 1997. Evaluation indices and scope. In: A. Szabolcsi (ed.), Ways of scope taking, Drodrecht: Kluwer.

Gallin, Daniel. 1975. Intensional and Higher-Order Modal Logic: with Application to Montague Semantics, Oxford: North-

Holland.

Kallmeyer, Laura and Aravind Joshi. 2001. Factoring Predicate Argument and Scope Semantics: Underspecified Semantics

with LTAG. Penn- Univ. Paris 7 manuscript.

Joshi, Aravind. and K. Vijay-Shanker. 1999. Compositional semantics with LTAG: How much underspecification is

necessary? In: Blunt H. C. and E.G.C. Thijsse, eds., Proceedings of the third international workshop on computational

semantics, Tilburg.

Kratzer, Angelika. 1979. Conditional necessity and possibility. In: Baeuerle, Egli and von Stechow, eds., Semantics from

different points of view, Berlin: Springer.

Kratzer, Angelika. 1989. An Investigation of the Lumps of Thought. Linguistics and Philosophy 12: 607-653.

Lewis, D. 1973. Counterfactuals, Oxford: Blackwell.

Musan, R. 1995. On the temporal interpretation on noun phrases, MIT Ph. D. diss.

Percus, O. 2000. Constraints on some other variables in syntax. Natural Language Semantics 8:173-229.

Schabes, Yves and Stuart M. Shieber. 1991. An Alternative Conception of Tree-Adjoining Derivation. Computational

Linguistics 20.1: 91-124.

Stalnaker, R. 1968. A theory of conditionals. In: Rescher, ed., Studies in Logical Theory, Oxford: Blackwell.

Vijay-Shanker, K. 1987. A Study of Tree Adjoining Grammars, University of Pennsylvania Ph. D. dissertation.


