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The introduction of the adjoining operation to context-free grammars comes at high costs: The worst case time
complexity of (Earley, 1968) is O

�
n3 � , whereas Tree Adjoining Grammars have O

�
n6 � ((Schabes, 1990)). Thus,

avoiding adjoining as far as possible seems to be a good idea for reducing costs (e.g. (Kempen and Harbusch,
1998)). Tree Insertion Grammars (TIGs, (Schabes and Waters, 1995)) address this problem more radically by
restricting the adjoining operation of TAGs such that it is no context-sensitive operation anymore. The result
is O

�
n3 � worst case parseability which stems from TIG’s context-freeness. However, to preserve TAG’s mildly

context-sensitiveness the adjoining operation must not be restricted in any way. Another solution would be simply
to call the adjoining operation less frequently: The production of items directly depends on the fashion of the
underlying grammar and often adjoining is used to make the grammar more comprehensible or more adequate to
the linguistic phenomenon even if there would be simpler representations as, for instance, left- or right recursion.

This abstract (1st) sketches a way of reducing item generation through grammar transformation by using
Schema-TAGs (S-TAGs, as introduced by (Weir, 1987), where tree sets are enumerated by regular expressions)
which in contrast to TIGs keeps weak equivalence and performs better than factoring as proposed by (Harbusch,
Widmann and Woch, 1998), and (2nd) provides a proof of the average case time complexity of S-TAGs based on
the proposed transformation.

In the following, adressing of nodes occurs in the fashion of (Gorn, 1967), i.e. each node of a tree gets a
unique number – beginning with zero – which preserves the structure of the tree. For example, 1 � 2 points to the
second daughter of the first daughter of a root node, and in grammar G1 of Fig. 2,

�
A2 � 2 � identifies the foot node

of A2. The regular expressions of S-TAGs are defined as “schema descriptors”: Let g be a Gorn number, then

��� g � is a schema descriptor.� If µ and ν are schema descriptors, then µ � ν , describing the alternative between µ and ν , is a schema descriptor.� If µ and ν are schema descriptors, then µ � ν , describing the concatenation of µ and ν , is a schema descriptor.� If µ is a schema descriptor, so are
�
µ � (bracketing), µ � (arbitrary iteration) and µ 	 0 
 n � � n ��
 (n times iteration)

schema descriptors.� If � g � is a schema descriptor, so is � n � n � g � � n ��
 a schema descriptor (the via g addressed subtree is cut out
from the via n addressed (sub)tree).

Reduction of item production by factoring

A first idea of circumventing adjoining is to avoid it by reducing generation of items, on which Predict can be
applied. Thus, the idea is to aggregate common substructures appropriately, i.e. to condense the grammar in order
to get rid of redundancies (Harbusch, Widmann and Woch, 1998).

In general, factoring is applied to the schema descriptors (the regular expressions) of the S-TAG and can be
done by applying, e.g., the following rules:

(1) α � γ 	 l 
 k � � γ � β � α � γ � γ 	 l 
 k � � β � α � γ 	 l � 1 
 k � 1 � � β
(2) α � � γ � δ1

� � β ��������� α � � γ � δm
� � β � α � γ � � δ1 ��������� δm

� � β
(3) α � γ � β � α � β � α � γ 	 0 
 1 � � β
(4) α � � γ � γ � � β � α � γ � β

where α � β � γ � δ1 � ����� � δm are arbitrary complex schema descriptors. Rule (1) saves nothing, since the amount
of predictions remains the same, as well as the amount of alternatives k � l. However, applying it reversely, in
combination with rule (4) in case of alternatives it is probably possible to factor γ up to l times, such that γ 	 0 
 k � l �
remains as infix, which is not reduce-able any more. The factoring of rule (2) not only saves m � 1 predictions of γ ,
but also of α and β . Thus, rule (2) saves 3

�
m � 1 � predictions. Finally, rule (3) reduces the number of predictions

of α and β down to 1, while rule (4) divides the number of predictions caused by γ by 2.
Generally, the above rules save ∑ 
N 
i � 1

c �ADJ
�
ηi
� � predictions and ∑ 
N 
i � 1

mic
�ADJ

�
ηi
� � completions with mi being

the number of occurrences of node ηi � N, which can be factored out c times. Obviously, each circumvented

c
�
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prediction saves the whole cycle of left and right prediction, resp. completion. Additionally, and much more
important, it reduces the amount of hypothesis checking needed within the operations, as expressed by the factor
mi of the above sum.

Factoring, however, is not able to effectively prevent (unnecessary) adjoinings, it simply reduces redundancies.
This strategy only pays back if direct processing mechanisms are applied, who do not explicitely iterate alternatives
of schemata as instances of trees (cf. (Harbusch and Woch, 2000)).

Preventing adjoining (at least, partially)

A more promising approach to circumvent adjoining is to prevent it. The use of null- and selective constraints,
which restrict adjoining at the node, at which they are attached, perform this very good, but the application of
constraints always should be linguistically motivated. However, adjoining is often used for modelling simple
left, resp. right recursion of the context-free form S � αS, resp. S � Sα . Auxiliary trees, whose terminal nodes
are unexceptional either to the left or to the right of the root-to-foot spine are modelling exactly this behaviour.
Transforming those trees do not compromise the underlying linguistic concept. Those trees can be merged with
the help of schema descriptors into the trees, in which they should adjoin and after merging can completely be
removed from the auxiliary tree set. Hence their prediction is effectively prevented.

Definition 1 (Simplified S-TAG (S2-TAG)) Let the 6-tuple G � �
N � T � S � I � A � Σ � be a Schema-TAG.

� The tree schema β � A is called right recursive, if and only if for each tree t 
β holds, that the foot node of t is the
rightmost node of the frontier of t.� The tree schema β � A is called left recursive, if and only if for each tree t 
β holds, that the foot node of t is the
leftmost node of the frontier of t.

G is called Simplified S-TAG, or S2-TAG, if for each β � A holds, that β is neither left nor right recursive.

Theorem 1 (L(S2-TAG) = L(S-TAG)) Let G be an S-TAG and G
�
be an S2-TAG. Then L

�
G � � L

�
G

� � .
This is shown by transforming auxiliary left and right recursive tree schemata into equivalent schema descrip-

tor representations and vice versa. Def. 1 states, that an auxiliary schema β is right/left recursive, if and only if all
t 
 β are right/left recursive. With other words, for the decision whether a schema is right/left recursive, its schema
descriptor has to be investigated. To make things easier, this aspect is not mentioned in the following discussion,
but should be kept in mind.
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Figure 1: Avoiding (right-recursive) adjoining by iteration

L(S-TAG) � L(S2-TAG):
Case 1: Right recursion
To be applied to each β � ADJ

�
η � � η � N, where β is right recursive. Fig. 1 shows the elimination of an auxiliary

schema, which effectively performs right recursion at node
�
S1 � Y � 1. Without loss of generality, the descriptors

1. It is not possible to give correct absolute Gorn addresses for nodes of S1 in that example, because it is not known, whether
X is the root node or not. Hence, for the time being, the Gorn number is replaced with the node label, e.g. � S1 � Y � , which also
should be non-ambiguous in Fig. 1.
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shown in Fig. 1 are simple enumerations of the respective children nodes, in order to make the relocation arith-
metics clear, but they could be arbitrary complex, as long as the position of the foot node does not change.

Given that S2 is adjoinable at
�
S1 � Y � , the substructures of

�
S2 � 0 � (without foot node), namely Y1 ... Yr , are

copied over as children of
�
S1 � Y � to the left of its own children Z1 ... Zq, giving the sibling’s sequenceY1 �����YrZ1 ����� Zq.

Then the descriptor
� � 1 � ����� � r � � � , which licenses the arbitrary repetition of S2’s children Y1 ... Yr , is added as prefix

to the descriptor of
�
S1 � Y � . After that, the Gorn numbers � 1 � ����� � q � , which referred to the now right-shifted nodes

Z1 ... Zq, are updated to � r � ����� � r � q � . Apply this to any node Y of grammar G, except for foot nodes, because they
would be destroyed by attaching children to it2. See Fig. 2 for an example how the right-recursive auxiliary tree
A1 is eliminated through the transformation process.

S
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S

S

cb
* *

G1

S  |1|  .|2|

ε

I:G2

a

*

A1
� A: A2 � A:

� S

S   |1|  .|2|.|3|.|4|

cb
*

A:

Sa

*

Figure 2: L
�
G1
� ��� w �w ��� a � b � � cn � � b � � � c � � = L

�
G2
� ��� w �w � � a � b � na � cn �

However, things are getting more complicated, if �ADJ
�
η � �	� 1, i.e. there exist more than one auxiliary schema

β with root node η : The prefixes, which iterate the substructures of the auxiliary schemata have to be combined as
alternatives: Having the descriptors σi � ����� � σ j from the root node of auxiliary schemata βi � ����� � β j would result in
descriptor σ � �

σ
�
i � ������� σ

�
j
� � � σ �

r . The respective Gorn numbers � � 1 � � ����� � � βimi

� � � σi � ����� � � � 1 � � ����� � � β jm j

� � � σ j,

would be relocated to

� � 1 � � ����� � � βimi

� � � σ
�
i

...

� � βimi
��������� β j � 1m j 
 1

� 1 � � ����� � � βimi
��������� β jm j

� � � σ
�
j

� � βimi
��������� β jm j

� 1 � � ����� � � βimi
��������� β jm j

� q � � � σ
�
r

This relocation reveals an important characteristics of the transformation process: Either the transformation
is done simultaneously, or later transformations lead to unhealthy grammars: If, e.g., after transforming βi � ����� � β j
the auxiliary tree β j � 1 has to be transformed, then the resulting descriptor σ falsely would be

�
σ j � 1

� � � � σi ������� �
σ j
� � � σr instead of

�
σi ��������� σ j � σ j � 1

� � � σr .

Case 2: Left recursion
Analogue.

Case 3: Both recursions
To be applied to each β � ADJ

�
η � � η � N holds, that, where β is either right or left recursive. This case is

performed like left and right recursion, but simultaneously: Let σi � ����� � σ j be schema descriptors from the root
node of left recursive auxiliary schemata βi � ����� � β j, and σk � ����� � σl schema descriptors from the root node of
right recursive auxiliary schemata βk � ����� � βl , each without the Gorn number for their foot nodes. Let σr be
the original descriptor of the node, in which βi � ����� � βl may adjoin. Then the resulting schema descriptor is�
σ

�
i ��������� σ

�
j
� � � σ �

r �
�
σ

�
k � ����� � σ

�
l
� � with the Gorn number relocations are performed as described above.

2. This suffices, because the children are attached as well to the node, in which adjoining occurs.
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After applying case 1,2 or both for each node η � N, ADJ
�
η � is either empty, or

�
β � ADJ

�
η � with β is neither

left nor right recursive. See Fig. 3 for an example how the right-recursive auxiliary tree A1 and the left-recursive
auxiliary tree A2 or eliminated simultaneously through the transformation process.

S

a

S

ε

I:

S

S

bS
* *

G1

S  |1|  .|2| .|3|

ε

I:G2

a b

* *

A1 � A: A2 � A:

�

Figure 3: G2 is the result of transforming G1

L(S2-TAG) � L(S-TAG):
Trivial, since each S2-TAG is an S-TAG per definition. �

Gentle application of rules (1)–(4) of page 102 to σ might be advisable. As a side note, transforming the grammar
G � � S � γ , S � Sβ , S � αS � simultaneously is not the same as transforming G

� � � S � γ , S � αSβ �
(which is not allowed, anyway). The former grammar G expresses α nγβ m, whereas G

�
expresses αnγβ n, but fa-

tally, after transformation the resulting descriptors would be identical for G and G
�
: Something according to α � γβ � .

Whilst the method of transforming whenever possible auxiliary schemata greatly reduces the costs as shown
below, there are two aspects to consider:

� Rewriting of auxiliary tree schemata raises the redundancies of the grammar, such that maintainability suffers.� Furthermore, as side effect of the last point: The principle of locality of TAGs may get lost, where (groups
of) auxiliary schemata are completely replaced with that method. Thus, the intended linguistic concept of that
(group of) auxiliary schemata is scattered throughout the grammar.
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S

S

cb
* *
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ε

I1:G3

U
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� S
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cb
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U  |1|  I2:

a

*

Figure 4: Transformation of G1 of Fig. 2 with substitution

A solution to get rid of those drawbacks is to introduce unique substitution tree schemata for each transformed
auxiliary schema as shown in Fig. 4. The modularisation effect of substitution remedies the redundancies similar
to adjoining and preserves the locality of simple left or right auxiliary schemata.
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Theorem 2 (Average Case of S2-TAGs) The average case for S2-TAGs is O
�
n4 � .

The assumption here is that in S2-TAGs adjoining rarely happens, since the most common, i.e. pure left or
right auxiliary schemata are not existent. Those non-transformable schemata, which are neither left nor right
recursive, however, are very seldom even in large grammars. The XTAG grammar ((Doran et al., 1994)), for
example, consists of more than 1000 trees and only about three non-transformable ones. Therefore, the average
case assumption is that there are barely any adjoining operations at all.

According to (Schabes, 1990), Right Completion and Move Dot Up are by far the most expensive operations:
Their worst case complexity is O

�
n5 � and this is the reason for the overall worst case complexity of O

�
n6 � . Assum-

ing that there are no adjoinings, the left/right prediction and completion operations (LP1, LC, RP1, RC) as well
as move dot up (MU2.2) (the dotted node subsumes a foot node) do not apply to any state. The latter ommission
reduces the complexity of MU to the complexity of MU2.1(the dotted node does not subsume a foot node), which
is O

�
n3 � . Following from the worst case behaviour of S-TAGs, MU is still the most expensive operation. There-

fore, the algorithm takes at most O
�
n3 � time to process a given state set Si. Having at most n state sets, the overall

complexity for S2-TAGs under above assumption is O
�
n4 � . As a side note, Schabes’ algorithm performs worse

than Earley for complete context-free TALs.

Further investigations

Whilst L
�
G1
� � L

�
G2
� � � w �w � anbm � (cf. Fig. 3), attaching indices to the terminals in the order of their

prediction makes clear that the number of hypotheses varies heavily between G1 and G2: aabb can be predicted
by G2 in the sequence a1a2b3b4 only. G1, however, is able to predict it as any sequence of � aia jbkbl

� i jkl �
PERM

�
1234 � � . The consequence is the prediction of all possible sequences, which leads to heavily interconnected

derivation graphs. Applying null constraints at
�
A1 � 2 � and

�
A2 � 1 � would help to reduce the number of predictions

by the half, because the sequence of a and b would be determined to a j ����� ai, bk ����� bl with i
�

j and k
�

l, but
nevertheless the prediction order of a’s and b’s would be mixed up. The transformed grammar G2, however, only
permits one derivation, and that is linear from left to right. Thus, the total number of items produced by G2 is a
fraction of that of grammar G1, as depicted in Fig. 5 and 6, in which the relative growth of time (TR), number
of items (IR) and number of operations performed (OR) are shown. In G1, e.g. for n � 20 approx. 5500 times
more operations are performed than for n � 2. The time behaviour of G2 is linear, and that is not surprising,
since the only production rule left in G2 is regular. In G2, e.g. for n � 20 only about 7 times more operations are
performed than for n � 2. The open question is whether this is an artifact of the example’s simplicity, or whether
this behaviour can be expected and to what degree in larger grammars after transforming them into S2-TAGs.

Figure 5: Relative growth of item numbers (IR), operations (OR) and time consumption (TR) for G1
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Figure 6: Relative growth of item numbers (IR), operations (OR) and time consumption (TR) for G2
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