Learning Mirror Theory
Gregory M. Kobele, Travis Collier, Charles Taylor, Edward P. Stabler

University of California, Los Angeles

1. Mirror Theory

Mirror Theory is a syntactic framework developed in (Brody, 1997), where it is offered as a consequence of
eliminating purported redundancies in Chomsky’s minimalism (Chomsky, 1995). A fundamental feature of Mirror
Theory is its requirement that the syntactic head-complement relation mirror certain morphological relations (such
as constituency). This requirement constrains the types of syntactic structures that can express a given phrase; the
morphological constituency of the phrase determines part of the syntactic constituency, thereby ruling out other,
weakly equivalent, alternatives. A less fundamental, but superficially very noticeable feature is the elimination of
phrasal projection. Thus the X-bar structure on the left becomes the mirror theoretic structure on the right:

XP X
YN /\
YP X Y Z
AN
X ZP

(Brody, 1997) calls this systematic collapse of X, X' and X P nodes ‘telescope’. Every node may now have
phonetic content, and children are identified as specifiers or complements depending on their direction of branch-
ing; left-daughters are specifiers and right-daughters are complements (previously, specifiers were children of X P,
and complements were children of X'). Furthermore, the complement relation is a “word-forming” relation, where
according to the “mirroring” relation, the phonetic content of each head follows the phonetic content of its com-
plement. For example, MTGs can generate trees like the following, which given the “mirror” relation between
morphology and syntax, is pronounced John sleep -s:

-S
John; sleep
t;

1.1. Trees

A mirror theoretic tree (MTT) can be viewed as a standard binary branching tree together with two functions;
one, a function f from branches to a two element set {right, left}, the other, a function g from nodes to a two
element set {strong, weak}. If a is the parent of a', then a’ is a specifier (or left child) of a if f({a,a)) = left,
and a complement (or right child) of a otherwise. Formally, we represent a MTT as a particular kind of tree
domain:

Definition 1
AMTT 7 = (T, S) where T', S C {0,1}* such that

1. SCT
2. T is prefix closed (ifz € T and x = yz theny € T')

Domination corresponds to the initial substring relation with 2 dominating y iff 2 is an initial substring of y. The
greatest node dominating both z and y, x A y, is their longest common initial substring. The function g from nodes
to {strong, weak} is the characteristic function of the set S:

| strong,ifte S
9(t) = { weak, ift ¢ S

© 2002 Gregory M. Kobele, Travis Collier, Charles Taylor, Edward P. Stabler. Proceedings of the Sixth International Workshop
on Tree Adjoining Grammar and Related Frameworks (TAG+6), pp. 66—73. Universita di Venezia.

Kobele, Collier, Taylor and Stabler 67

From Definition 1 we define f from branches to {right,left} as follows. A child is a left child if itendsina ‘1’,
and it is a right child if it ends ina “0’.

| leftifn=1
@, zn)) = { right,ifn =10

As even internal nodes may have phonetic content, the standard definitions of the yield of a tree will not
suffice. We want a node to be spellt out after its left subtree, and before its right subtree. We define a total order
~< on the nodes of T, such that z << y whenever z is visited before y in an in-order tree traversal of 7'. Thus
2 << y holds between z and y just in case one of the following is true:

1. y <*z and z is in the left subtree of y
2. x <y and y is in the right subtree of x
drz<kzxAyandz Ay <y

This gives us a strict SPEC - HEAD - cOMP ordering. But wait. There’s more. The partitioning of branches into
left branches and right branches is not just to determine a reletive precedence with respect to a parent. Right
branches are different from left branches in kind; a maximal sequence of right branches is what Brody (1997) calls
a morphological word (MW), and a morphological word has a special status with respect to spellout - all the nodes
in a MW are spellt out as a single unit. The relation << determines the relative ordering of MWs at spellout.

We define a morphological word to be a block in (the partition induced by) the equivalence relation = defined
on T in the following manner:

z =~y iffy € 2z0* vz € y0O*

Two nodes are equated by this relation just in case one is the complement of (...the complement of) the other.
As trees are binary branching, the immediate domination relation totally orders each MW. With each MW B, we
associate an element p(B) € B and call p(B) the spellout position of B. Given two MWs B, B, every y € B
is spellt out before any z € B iff p(B) << p(B'). At this point the nodes in each MW must be spellt out in a
contiguous manner (as << totally orders T'), but nothing has been said about the relative order in which they are
spellt out. In keeping with (Brody, 1997) (but see (Kobele, forthcoming) for alternatives), we adapt Brody’s mirror
principle (whence ‘Mirror Theory’) to our terminology:

(1) The Mirror Principle
if z is the complement of y then y is spellt out before z.

Thus, each MW is spellt out in ‘reverse domination order’ (z is spellt out before y iff y <t).

1.2. Mirror Theoretic Grammars

A formal treatment of mirror theory inspired by Minimalist Grammars (Stabler, 1997) is given in (Kobele,
forthcoming), where an empirically grounded restriction of the formalism therein is shown to be weakly equivalent
to MCTAGs (Joshi, 1987).2A mirror theoretic expression is defined to be a mirror theoretic tree along with a
labeling function from the nodes of the tree to a set of labels. A label consists of a phonetic part (which is opaque
to the syntax) and a finite sequence of syntactic features. A mirror theoretic grammar consists of a finite lexicon
of “‘basic’ expressions, together with two structure building operations, merge and move, which build expressions
from others either by adjoining structures, or by displacing sub-parts of structures. Each operation is feature driven,
and “‘checks’ features (and thus a derived expression will have fewer features than the sum total of the features of
the expressions (tokens) used to derive it). The expressions generated by the grammar are those in the closure of
the lexicon under the structure building functions. A complete expression is one all of whose features have been
checked, save for the category feature of the root, and the string language at a particular category is simply the
yields of the complete expressions of that category.

1. The element so picked out, p(B), is defined in (Brody, 1997) to be the ‘deepest’ node, if no nodes in B are strong. If some
nodes in B are strong, then p(B) is the ‘highest’ one of the strong nodes. In other words, if SN B # @, then p(B) = z, where
Vye SNBzxz <*y. IfSNB=0,thenp(B) =z suchthatVy € By <* z

2. Because of the “mirroring” and the relative flexibility in where MWs get spellt out in relation to the other material, even the
movement-free subset of the framework defines a proper superset of the context free languages. See (Michaelis, this volume)
for a discussion closely related to this issue.

68 Proceedings of TAG+6

Definition 2
AMTG G = (%, Syn, Lex, {merge, move}), where

1. 3 is a non-empty set (the pronounced elements)

2. Syn is the disjoint union of the following sets (the syntactic features):

(a) base, a non-empty finite set.
(b) cselect = {=b|b € base}
(c) sselect = {b=|b € base}
(d) licensees = {-b|b € base}
(e) licensors = {+b|b € base}

An expression is a pair ({T', S), p), where (T, S) isaMTT, and x : T — ¥* x Syn* is the labelling function.

3. Lex is a finite set of expressions {(T', S),), such that®

(@ |T|=1,and
(b) p:T — =* x cselect’ (sselect + licensors)”® base licensees*

The shape of the lexical labels is partly determined by the nature of MTTs (and the particular generating func-
tions we have).*The precategory sequence (the features before the base category) allows for up to one com-
plement (cselection features) and up to one specifier (sselection or licensor features). Each lexical item has a
category (a base feature), and no more than one, as nodes in any tree have only at most one parent. There are no
restrictions as to the number of licensee features - movement is ad libitum.

merge merge is a function from pairs of expressions to single expressions. We divide the presentation of the
function definition into two cases according to whether the merged item is merged into the specifier (smerge)
or the complement (cmerge) position.

SMERGE smerge is defined on the pair of expressions ((T1,S1), 1), {{(T2, Sa), uo) iff all of the following
obtain:
- the root of 77 has an available specifier position (1 & T7)
- the first syntactic feature of the root of 77 is b=, and
- the first syntactic feature of the root of 7% is b
In this case, smerge is defined on the pair, and it maps to the expression ({(T', S), u), where
T=T,U1T,
S=5U1S;
the label of the root of T is gotten from the label of the root of T} by deleting the first syntactic feature
the label of the left child of T" is gotten from the label of the root of T, by deleting the first syntactic feature
otherwise, for z € T4, p(x) = p1(z), and for x € T, u(lx) = pao(x)
CMERGE cmerge is defined on the pair of expressions ({7, S1), u1), {{T2, Sa}, uo) iff all of the following
obtain:
- the root of 77 has an available complement position (0 ¢ T1)
- the first syntactic feature of the root of T} is =b, and
- the first syntactic feature of the root of 7% is b
In this case, cmerge is defined on the pair, and it maps to the expression ({T', S), u), where
T =T, U0T,
S =5, U08;
the label of the root of T" is gotten from the label of the root of T} by deleting the first syntactic feature
the label of the right child of T" is gotten from the label of the root of T, by deleting the first syntactic feature
otherwise, for z € T3, p(x) = p1(zx), and for x € Ty, u(0x) = pa(x)

3. @7 should be read as ‘one or zero tokens of &’.
4. Only partly, as there is no functional reason that sselection features cannot precede cselection features. Doing so makes
no difference (other than further complicating the description of a lexical label).

Kobele, Collier, Taylor and Stabler 69

move move is a function from expressions to expressions. move({{T1, S1), u1)) is defined whenever the follow-
ing conditions obtain:

- the root of T3 has an available specifier position

- the first syntactic feature of the root of 77 is +b, and

- there is exactly one node n € T} such that the first syntactic feature in n is - b, and, moreover, n. cannot be in
the same MW as the root of T}

If the above conditions obtain, then move({{T1, S1), 1)) is defined, and is equal to ({7, S),), which is the
result of moving the subtree rooted in the least node in the MW containing n, to the specifier position of the
root. Note that since n is not in the same MW as the root, we must have that n = 210? for some i € N. The
subtree we are to move is ((Tz, Sa), 1 1T2), where T» = {y|zly € T1},and Sz = {y|zly € S1}. Then

o T'=1T5U (T1 — Z’ng)

e S =15 U(S; —z1S,)

o the label of the root of T' is gotten from the label of the root of T by removing the first syntactic feature
the label of 10¢ € T is gotten from the label of n = 210 € T} by removing the first syntactic feature
otherwise, for z € 175, u(z) = p1(zz), and for z € T — (11%), p(z) = p1(2)

Given a MTG G = (X, Syn, Lex, {merge, move}), L(G) denotes the closure of Lex under the structure
building functions merge and move. An expression is complete just in case the only node that has syntactic
features is the root, and it has only a base feature. The string language of G at a category b € base (Ly(G)) is
the set of the yields of the complete expressions whose root’s unique syntactic feature is b. The mirror theoretic
languages (MTLSs) are the string languages of an MTG G at a category b, for some G € MTG and b € baseg.

1.3. Derivations

An expression e € L(G) might have been built up in several ways from the generating functions. A derivation
tree for an expression is a record of one possible sequence of steps taken to derive the expression in question from
lexical items. Givena MTG G, we denote by I'(G) the set of all derivation trees for each expression in the language
of G. eval : T(G) — L(G) is the map which takes each derivation of an expression to the expression it derives.
We define I'(G@) and eval : I'(G) — L(G) by mutual recursion:

1. foreach ¢ € Lexg, £ € T'(G), and eval(£) = ¢

2. for v,v" € T(G), if merge(eval(y),eval(y")) is defined, then v = (y,+') € T'(G) and eval(y") =
merge(eval (7), eval ("))

3. fory € T'(G), if move(eval(y)) is defined, then ' = (y) € I(G) and eval(y') = move(eval(y))
These structures are called derivation trees because it is simple to give them a (standard) tree-interpretation:
1. ¢ € Lexg denotes the tree with one node, labelled ¢, and no branches.

2. {v,7") € T(QG) denotes the tree with root labelled (-, v'), whose left child is the tree denoted by -, and whose
right child is the tree denoted by ~'

3. {v) € I'(G) denotes the tree with root labelled (), and whose only child is the tree denoted by ~

The sequence of lexical items used in a derivation +y is the yield of the tree denoted by +, and, as shown in
(Hale and Stabler, 2001), no two distinct derivations use the same sequence of lexical items.

2. Learning

Adapting a technique familiar from (Kanazawa, 1998) and others, we show that if the lexical ambiguity in
target grammars is restricted, this can provide a basis for generalization from a finite sample. We describe an
algorithm that identifies the class of languages generated by the rigid mirror theoretic grammars (rMTG) (grammars
in which every lexical item has a unique string component) in the limit from any text of "dependency structures.”

70 Proceedings of TAG+6

2.1. Dependancy Structures

Dependency structures show relations among the lexical items in a sentence. Information about these relations
is, at least in many cases, plausibly available to the language learner (surface order, morphological decomposition
and affixation (Baroni, 2000; Goldsmith, 2001) and selection relations (Siskind, 1996)). For example, imagine that
upon hearing “John loves Mary” the language learner is able to infer these relations (Here, ‘s’ is marked as a suffix
(by the dash preceding it), and the arcs indicate that the source selected the target at some point in the derivation):

RN

John love -s Mary

S

A dependency structure (henceforth: ‘d-structure”) is a tuple (V, E, S, u, <), where {V, E) is a directed multi-
graph (i.e. E CV x V isamulti-set), u : V. — ¥* is a labeling function from vertices to phonetic strings, S C V'
is a distinguished subset (of suffixes), and < is a total ordering on V' (the surface order). Intuitively, the vertices
correspond to the lexical items used in a derivation, and there is one edge between two vertices for every pair of
features, one from each of the two lexical items, such that the one checks the other in the course of the derivation.
Formally, a d-structure d is ‘for’ a derivation ~ just in case:®

1. for s = (s1,...,sn) the sequence of lexical items used in +, there is a sequence v = (v, ..., v,) Which
enumerates without repetition the elements of V', and for 1 < i < n, u(v;) is the string component of (the label
of the lexical expression) s;

2. there is a bijection from edges in E to non-leaf nodes in the derivation tree denoted by ~ (or equivalently, to
occurances of left brackets in .. .) such that if edge (v;,v;) is mapped to ', then 4’ checks a syntactic feature
in s; against a syntactic feature in s;

3. v; < vj iff the phonetic features from s; precede the phonetic features from s; at spellout

d(G) = {d|3y € T(G) d is for v} is the d-structure language of the MTG G.
Given a d-structure (V, E, S, u, <), we define the following notions which we will use in the description of
the learning algorithm:

e vEv' just in case there is an edge from v to v'. We write vET o' in case there is a finite sequence of vertices
V1,...,Upt1 SUCh that v; Ev;y1, v = vy, and v’ = v,

e <y isapartial ordering of E such thata <p a’ iffa = (v,v'), a’ = (v",v') and v" Etw

e v <! v (vimmediately precedes v') iff v < v’ and no vertex follows v and precedes v’

e anarc (v,v') is a cmerge arc iff vEv', v € S,and v’ < v

e anarc (v,v') is a move arc iff vEv', and 0" vET 0" &v" Ev'

e anarc (v,v') is a smerge arc iff vEv', and it is neither a cmerge arc nor a move arc

e avertex v is the surface specifier of a vertex v’ iff v’ Ev, =30 v" Etv'&v" Ev, and (v',v) is not a cmerge arc
e a vertex v has been shown weak iff there is a sequence a1, ...,a, of cmerge arcs such that a; = (v, 1),

a; = (t;—1,t;), and there is some v’ such that v < v and v’ is the surface specifier of ¢,,. Intuitively, v has been
shown weak just in case it is pronounced after some specifier it mediately dominates.

5. There could be more than one derivation a d-structure is “for” in any given MTG.

Kobele, Collier, Taylor and Stabler 71

2.2. Learning

We work within the learning paradigm established in (Gold, 1967). There, a learner is a function from finite
sequences of sentences to grammars for languages. When the learner is presented with a sequence of sentences,
she makes a guess as to the language that these sentences are from (in the form of a grammar). A learner converges
on an infinite sequence of sentences s just in case there is some finite ¢ such that for all j > i, ¢(s1,...,$;)
is (some variant of) the learner’s guess on the sequence of the first 4 sentences in s is the same as her guess
on the sequence of the first j sentences in s, namely, G. She identifies a language L (a set of sentences) in
the limit iff on every infinite sequence enumerating the sentences of L she converges to some grammar G for L
(possibly different grammars for different sequences). A learner ¢ identifies a class of languages £ in the limit iff ¢
identifies every L € £ inthe limit. The question we address here is whether the class of rigid d-structure languages
(d(rMTG) = {d(G)|G € rMTG}) is identifiable in the limit. Our result that this class is indeed indentifiable in
the limit relies on a result by Angluin (1980) which shows that a class of languages £ is identifiable in the limit iff
for every L € L there is a finite subset Dy, C L such that no other L’ € £ can both contain Dy, and be properly
contained by L. We describe the construction of such a set for each L € d(rMTGQ), and show that it has these
properties.

First we introduce some concepts that will help us in this section. A substitution is any total function 6 over
the set of base features that fixes the start category. A grammar G is an instance of a grammar G' (G' C G) iff
there is some substitution 8 such that for each lexical expression £ in G, the result of applying the substitution to
every feature in the label of £ (where 6 ‘commutes’ with the complex features (e.g. 8(+b) = +(6(b))) is some
lexical item 6(¢) in G'. G and G’ are alphabetic variants of one another (G O G") iff they are variants of each
other. A grammar G is reduced in the sense of (Kanazawa, 1998) iff there is no G’ such that d(G') = d(G) and
G' C G. One way to think of this is to read the C relation as ‘makes more category distinctions than’ (in the
sense of ‘=aa’ makes fewer category distinctions than *=ab’). Then a grammar is reduced iff you can’t make more
category distinctions and still derive the same language. For example, in a reduced grammar no element b € base
occurs as both a selector/base feature (=b, b=, b) and as a licensee/or feature (+b, - b). This is because movement
and selection features never select the same feature. Thus, one can ‘rename’ all occurances of the selection features
with distinct names without changing the expresivity of the grammar. In the remainder of this paper we will be
focussing on reduced rigid mirror theoretic grammars (rrMTGs). This change of perspective serves to simplify
discussion, and does not alter the class of languages to be learned.

The idea behind the construction of the sets Dy, is to constrain as much as possible the grammars capable of
generating supersets of Dy,. As MTGs differ only in their lexical inventories, we do this by putting information
about the lexicon of a grammar that generates L into Dy,. Given a dependency structure d of a derivation in
which lexical item £ occurs, we can reconstruct not only which types of features £ has (sselect, cselect, licensor,
...), but also the order in which they occur (so if the syntactic features of £ are b= c¢ - d - a, we can determine that
£ begins with a sselect feature of some sort, followed by some base feature, followed by two licensee features of
some kind). To be able to determine which features of the given type £ has, we need to also add information about
what other features each feature of £ can check/be checked by.

We associate with each rrMTG G a finite set D C d(G), such that

1. for each lexical item £ in G, D¢ contains a d-structure containing ¢, if one exists

2. for each weak lexical item £ in G, D¢ contains a d-structure which witnesses £’s weakness (a d-structure in
which £ is shown weak), if one exists

3. for each selector or licensor feature z(f) on every lexical item £ in G, for every feature f on each additional
lexical item ¢', D¢ contains a d-structure of a derivation in which the feature z(f) on £ checks f on #', if one
exists

Now we quickly outline a proof that the rigid MTGs are in fact learnable.

Lemmal LetG,G' € rrMTG suchthat Dg C d(G’) C d(G). Then the lexicons of G and G’ are identical up
to renaming of the syntactic features modulo the strength of their lexical items.

Proof Sketch: By the first clause in the definition of Dg, Lexg and Lexg have the same lexical items with
respect to the string component, and the sequence of syntactic types, as d(G') D D¢, and d(G) D d(G') D Dg:.
By the third clause in the definition of D, every feature of a lexical item has an example in D¢ of every feature it

72 Proceedings of TAG+6

can combine with in the course of a derivation. As Dg C d(G"), d(G") must at least give the same feature to those
elements which can combine with one another, and as d(G") C d(G), d(G') must not unify category features more
than d(G). As d(G) is reduced, it does not unify syntactic categories beyond what is recorded in D. O

Lemma?2 Given G,G' € rr MTG such that the lexicons of G and G’ differ only in the strength they assign to the
lexical item £, if £ is not shown to be weak, then d(G) = d(G").

Proof Sketch: By changing the strength of a node to strong, one ensures only that it is not pronounced after any
surface specifiers of nodes further down in its morphological word, in any derivation. But as £ is never shown to
be weak, there is no derivation v where the surface specifier of a node in £’s MW which ¢ properly dominates,
precedes £ at spellout. O

Theorem 1 Let G € TMTG. Forany G' € M TG, if Dg C d(G"), then d(G") is not a proper subset of d(G).

Proof Sketch: Let Dg C d(G"), and assume d(G") C d(G). We show d(G') = d(G). As Dg C d(G') C d(G),
the lexicons of G and G' are identical save possibly for the strength of their lexical items (Lemmal). Let£ € Lex
and £' € Lexg: be identical except perhaps for their strength. We show that neither £ nor £’ can be shown weak
independantly of the other, and thus the lexicons of G and G" agree on any lexical items that are shown weak. The
conclusion then follows from Lemma 2. If £ were shown weak in G, then some d-structure would be a witness to
itin Dg C d(G"), whereby ¢ would be shown weak as well in d(G"). If £' were shown weak in G, then, as by
hypothesis d(G") C d(G), £ would also be shown weak in G. |

Corollary 1 The class of rigid mirror theoretic languages is identifiable in the limit from texts of dependency
structures.

On a finite sequence ¢t = {ds, ..., d;) of d-structures, our algorithm first constructs a ‘general form’ grammar,
GF(t), assigning to each phonetic string in each dependency structure a unique syntactic category sequence. This
grammar is not normally rigid, and does not generalize (i.e. the language it guesses contains exactly the sentences
it has seen). We then unify lexical items in GF(t) to get a reduced rigid grammar, RG(t).

The idea behind the learning algorithm is that, given a d-structure d, we can almost exactly reconstruct the
derivation «y that d is of - we can not normally determine the strength of lexical items used in ~. Our learner, when
determining the strength of a lexical expression, assumes it to be strong unless there is evidence to the contrary.
During the unification process, if we have two lexical items which differ only in whether they are strong, we unify
them as though they were both weak (as all weak features are data-driven).

Input: a sequence of d-structures ¢ = {dy, . . ., d;) of some rigid MTG G

11. let T be the base feature of the root of each of dy, ..., d;

2. for each non-root node we construct the base + post-base feature sequences, with one feature per incoming
arc, as follows:

(a) with the head of the least incoming arc in we associate the feature f, where f is a new, unique base feature

(b) with the head of each subsequent incoming arc, in turn, we associate - f, where f is a new, unique base
feature

3. we then construct the pre-base sequence, associating with the tail of each outgoing arc one feature as follows:
(a) if the head of the arc is associated with a feature - f, we associate the feature +f with the tail
(b) if the head of the arc is associated with a feature f, then

o if the tail of the arc is a suffix, and if the head of the arc is ordered immediately before the tail by <, the
arc is a cmerge arc, and we associate the feature = f with its tail

o otherwise, the arc is an smerge arc, and associate the feature f= with its tail

2. Collect the lexical categories from dy, .. ., d;, making a lexical item weak if it has been shown so, and strong
otherwise to get an MTG GF(t)

3. Unify the categories assigned to each vocabulary element to get a reduced rigid MTG, RG(t), resolving
strength conflicts in favour of weak features

Kobele, Collier, Taylor and Stabler 73

References

Angluin, Dana. 1980. Inductive inference of formal languages from positive data. Information and Control, 45:117-135.

Baroni, Marco. 2000. Distributional Cues in Morpheme Discovery: A Computational Model and Empirical Evidence. UCLA,
dissertation.

Brody, Michael. 1997. Mirror Theory. ms. University College London.

Chomsky, Noam. 1995. The Minimalist Program. Cambridge, Massachusetts: MIT Press.

Gold, E. Mark. 1967. Language identification in the limit. Information and Control, 10:447-474.

Goldsmith, John. 2001. Unsupervised Learning of the Morphology of a Natural Language. Computational Linguistics,
27:153-198.

Hale, John and Edward P. Stabler. 2001. Notes on Unique Readability. ms. UCLA.

Joshi, Aravind K. 1987. An Introduction to Tree Adjoining Grammars. In A. Manaster-Ramer, editor, Mathematics of
Language. John Benjamins, Amsterdam.

Kanazawa, Makoto. 1998. Learnable Classes of Categorial Grammars. Stanford University.: CSLI Publications.

Kobele, Gregory M. forthcoming. Formalizing Mirror Theory. UCLA.

Michaelis, Jens. 2002. Notes on the complexity of complex heads in a minimalist grammar. In Proceedings of the Sixth
International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+6), Venezia.

Siskind, Jeffrey M. 1996. A Computational Study of Cross-Situational Techniques for Learning Word-to-Meaning Mappings.
Cognition, 61:39-91.

Stabler, Edward P. 1997. Derivational minimalism. In Christian Retoré, editor, Logical Aspects of Computational Linguistics.
Springer-Verlag (Lecture Notes in Computer Science 1328), NY, pages 68-95.

