TAG+6

Proceedings of the Sixth
International Workshop on
Tree Adjoining Grammars
and Related Frameworks

Universita di Venezia
20-23 May 2002

TAG+6 has been sponsored by:

. Dipartimento di Elettronica e Informatica
Universi@ di Padova

Dipartimento di Scienze del Linguaggio
Universi@a Ca’ Foscari, Venezia

Institute for Research in Cognitive Science

Institute for Scientific and Technological
Research

= — Hello Venezia

Preface

The papers collected in this volume were presented at the Sixth International Workshop on Tree Adjoining
Grammars and Related Frameworks (TAG+6), held at the University of Venice in May 2002. Previous TAG
workshops took place at Schlof3 Dagstuhl (1990), at the University of Pennsylvania (1992, 1998), and at the
University of Paris 7 (1994, 2000).

The Tree Adjoining Grammar (TAG) formalism has been studied for some time, both for its mathematical
properties and computational applications, as well as for its role in constructing grammatical theories and models
of language processing. Over the years, these lines of inquiry have fed off of one another: empirical consequences
have been derived from TAG's mathematical restrictiveness, and extensions to the TAG formalism have been
motivated by the exigencies of grammatical analysis. One of the main goals of TAG+6 was to bring together the
full range of researchers interested in the TAG formalism, continuing the productive interactions that have been
the hallmark of TAG research. The success of the meeting can be judged by the range of topics explored by the
papers collected here, including linguistic theory, mathematical properties of grammar formalisms, computational
and algorithmic studies of parsing and generation, psycholinguistic modeling, and applications to natural language
processing systems.

It has been observed for some time that a range of grammatical frameworks, for example minimalist syntax,
categorial grammar, dependency grammars, HPSG, and LFG, share with TAG a number of significant proper-
ties, including the lexicalization of syntactic structure, a conception of syntactic derivation rooted in generalized
transformations, a simple notion of locality for grammatical dependencies, and mildly context sensitive generative
capacity. A second main goal of TAG+6, and the reason for the ‘+' in the workshop’s name, was to better under-
stand the connections between TAG and other related grammatical frameworks. Such connections are explored
in a number of the papers in this volume. In addition to these contributed papers, interframework connections
were further elucidated during the workshop by three invited speakers each representing a different grammatical
framework: Joan Bresnan, Guglielmo Cinque, and JancHdiiajic’s contribution is preserved here in written
form.

This workshop would not have been possible without the hard work of the program committee and the orga-
nizing committee. Members of the program committee were Anne Ah&llilliam Badecker, Srinivas Bangalore,
Tilman Becker, Tonia Bleam, Mark Dras, Fernanda Ferreira, Claire Gardent, Anthony Kroch, Seth Kulick, David
Lebeaux, Larry Moss, Gertjan van Noord, Richard Oehrle, Martha Palmer, Owen Rambow, Norvin Richards,
James Rogers, Ed Stabler, Mark Steedman, Yuka Tateisi, Juan Uriagereka, K. Vijay-Shanker, and David Weir.
The organizing committee consisted of Rodolfo Delmonte and Giorgio Satta (co-chairs), Julia Akhramovitch,
Antonella Bristot, David Chiang, Aravind K. Joshi, Alberto Lavelli, Carlo Minnaja, Laura Paccagnella, Luisella
Romeo, Anoop Sarkar, and Trisha Yannuzzi. My gratitude to all for their excellent work. A special thanks to
Trisha for her gift of her vast experience and for her herculean efforts at a number of crucial points in the process.

Finally, | would like to thank the University of Padua, the University of Venice, the Institute for Research in
Cognitive Science at the University of Pennsylvania, and the Institute for Scientific and Technological Research
(ITC-IRST) for their financial support.

Robert Frank
Program Chair

Conference Program

Monday, May 20

4:00-4:15
4:15-4:45

4:45-5:30

5:30-6:00

Presentation of the Conference

Compositional Semantics for Relative Clauses in Lexicalized Tree Adjoining Grammars
Chung-Hye Han

Putting Some Weakly Context-Free Formalisms in Order
David Chiang

Supertagging for Combinatory Categorial Grammar
Stephen Clark

Tuesday, May 21

9:30-10:00

10:00-10:45

10:45-11:15

11:15-11:45
11:45-12:15

12:15-1:15

1:15-3:00
3:00-3:30

3:30-4:00

4:00-5:00

Learning languages from positive examples with dependencies
Jerdome Besombes and Jean-Yves Marion

Towards a Dynamic Version of TAG
Vincenzo Lombardo and Patrick Sturt

Resumptive Pronouns, Wh-island Violations, and Sentence Production
Cassandra Creswell

Coffee Break

Statistical Morphological Tagging and Parsing of Korean with an LTAG Grammar
Anoop Sarkar and Chung-Hye Han

Invited Lecture

Hard and Soft Constraints in Syntax:
An Approach to Person/Voice Interactions in Stochastic Optimality Theory
Joan Bresnan

Lunch

Notes on the Complexity of Complex Heads in a Minimalist Grammar
Jens Michaelis

Learning Mirror Theory
Gregory M. Kobele, Travis Collier, Charles Taylor and Edward Stabler

Poster Session

Defining a Lexicalized Context-Free Grammar for a Subdomain of Portuguese Language
Cinthyan Renata Sachs C. de Barbosa, Davidson Cur§,Masiro Volkmer de Castilho
and Celso de Renna Souza

Practical, Template-Based Natural Language Generation with TAG
Tilman Becker

Relative Clause Attachment and Anaphora: A Case for Short Binding
Rodolfo Delmonte

A Left Corner Parser for Tree Adjoining Grammars
Victor J. Diaz, Vicente Carrillo and Miguel A. Alonso

Context-Free Parsing of a Tree Adjoining Grammar Using Finite-State Machines
Alexis Nasr, Owen Rambow, John Chen and Srinivas Bangalore

How to Prevent Adjoining in TAGs and its Impact on the Average Case Complexity
Jens Woch

5:00-5:30 Quantification Over Possible Worlds in LTAG: Some Constraints
Maribel Romero

5:30-6:00 One More Perspective on Semantic Relations in TAG
James Rogers

6:00-6:30 Using an Enriched TAG Derivation Structure as Basis for Semantics
Laura Kallmeyer

8:00- Banquet afl Gatto Nerq Burano
Departure at 7:00 from Fondamente Nuove

Wednesday, May 23

9:30-10:00 A Proof System for Tree Adjoining Grammars
Adi Palm

10:00-10:30 Tree-Adjoining Grammars as Abstract Categorial Grammars
Philippe de Groote

10:30-11:00 Residuation, Structural Rules, and Context Freeness
Gerhard ager

11:00-12:00 Poster Session

A Note on the Complexity of Associative-Commutative Lambek Calculus
Christophe Costa Fléncio

Turning Elementary Trees into Feature Structures
Alexandra Kinyon

On the Affinity of TAG with Projective, Bilexical Dependency Grammar
Tom B.Y. Lai, Changning Huang and Robert W.P. Luk

The Theory of Control Applied to the Prague Dependency Treebank (PDT)
Jarmila Panevay, VeronikaRezrickova and Zdéka Uré&ova

Systematic Grammar Development in the XTAG Project
Carlos Prolo

A Formal Proof of Strong Equivalence for a Grammar Conversion from LTAG to HPSG-style
Naoki Yoshinaga, Yusuke Miyao and Jun’ichi Tsujii

12:00-12:30 Parsing MCS languages with Thread Automata
Eric Villemonte de la Clergerie

12:30-1:00 Evaluation of LTAG Parsing with Supertag Compaction
Olga Shaumyan, John Carroll and David Weir

1:00-3:00 Lunch

3:00-3:30 Korean-English MT and S-TAG
Mark Dras and Chung-Hye Han

3:30-4:30 Invited Lecture

Tectogrammatical Representation: Towards a Minimal Transfer in Machine Translation
Jan Hajt

4:30-5:00 Coffee Break

5:00-5:30 Clustering for Obtaining Syntactic Classes of Words from Automatically Extracted LTAG Grammars
Tadayoshi Hara, Yusike Miyao and Jun’ichi Tsujii

5:30-6:00 A New Metagrammar Compiler
B. Gaiffe, B. Craiblgé and A. Roussanaly

6:00-6:30 DTAG?
Kim Gerdes

Thursday, May 24

10:00-11:00 Invited Lecture

Complement and Adverbial PPs: Implications for Clause Structure
Guglielmo Cinque

11:00-11:30 Coffee Break

11:30-12:15 Cross-Serial Dependencies in Tagalog
Anna Maclachlan and Owen Rambow

12:15-12:45 Reranking an N-Gram Supertagger
John Chen, Srinivas Bangalore, Michael Collins and Owen Rambow

12:45-1:15 Hidden Markov Model-based Supertagging in a User-Initiative Dialogue System
Jens Bicker and Karin Harbusch

Vi

Table of Contents

Compositional Semantics for Relative Clauses in Lexicalized Tree Adjoining Grammars
ChUNG-HYE Han . . . e e 1

Putting Some Weakly Context-Free Formalisms in Order
DaVId ChiaNg . . . 11

Supertagging for Combinatory Categorial Grammar
Stephen Clark. ... o 19

Learning languages from positive examples with dependencies
Jerdme Besombes and Jean-YVves Marionot e 25

Towards a Dynamic Version of TAG
Vincenzo Lombardo and Patrick StUIo i e e e 30

Resumptive Pronouns, Wh-island Violations, and Sentence Production
Cassandra CresWell. 40

Statistical Morphological Tagging and Parsing of Korean with an LTAG Grammar
Anoop Sarkar and Chung-Hye Han. 48

Notes on the Complexity of Complex Heads in a Minimalist Grammar
JenS MICNAEIIS . . . oo 57

Learning Mirror Theory
Gregory M. Kobele, Travis Collier, Charles Taylor and Edward Stabler 66

Defining a Lexicalized Context-Free Grammar for a Subdomain of Portuguese Language
Cinthyan Renata Sachs C. de Barbosa, Davidson Cur§,Masro Volkmer de Castilho and
CelSO 0B RENMNA SOUZA . . . oottt et et e e e e e e e ettt e et e e 74

Practical, Template-Based Natural Language Generation with TAG
TIMaAN BECKET . . . e 80

Relative Clause Attachment and Anaphora: A Case for Short Binding
ROAOIfO DeIMON e . . . oot e e e e e 84

A Left Corner Parser for Tree Adjoining Grammars
Victor J. Diaz, Vicente Carrillo and Miguel A. AlONSOt e e 90

Context-Free Parsing of a Tree Adjoining Grammar Using Finite-State Machines
Alexis Nasr, Owen Rambow, John Chen and Srinivas Bangalore it 96

How to Prevent Adjoining in TAGs and its Impact on the Average Case Complexity
JENS WOCK . .. 102

Quantification Over Possible Worlds in LTAG: Some Constraints
MariDEl ROMEIO . . . e e 108

One More Perspective on Semantic Relations in TAG
JAMES ROGIS . . ittt e e 118

Using an Enriched TAG Derivation Structure as Basis for Semantics
Laura KallmeY er . ..o e 127

Vi

A Proof System for Tree Adjoining Grammars
A Pl . 137

Tree-Adjoining Grammars as Abstract Categorial Grammars
Philippe de GrOOteot e e e e e e e e e 145

Residuation, Structural Rules, and Context Freeness
(7= 4 =T o - To =T 151

A Note on the Complexity of Associative-Commutative Lambek Calculus
Christophe Costa FIBNCIOot e e e 159

Turning Elementary Trees into Feature Structures
AleXandra KiNYON e 163

On the Affinity of TAG with Projective, Bilexical Dependency Grammar
Tom B.Y. Lai, Changning Huang and Robert W.P. LUKt 169

The Theory of Control Applied to the Prague Dependency Treebank (PDT)
Jarmila Panevdy, VeronikaRezrickova and Zd@ka Ur€SOVA.cveeiiii i 175

Systematic Grammar Development in the XTAG Project
Carlos Prol0 . .. o 181

A Formal Proof of Strong Equivalence for a Grammar Conversion from LTAG to HPSG-style
Naoki Yoshinaga, Yusuke Miyao and Jun’ichi TSUjii i 187

Parsing MCS languages with Thread Automata
Eric Villemonte de la Clergerie e 193

Evaluation of LTAG Parsing with Supertag Compaction

Olga Shaumyan, John Carroll and David Weir. e 201
Korean-English MT and S-TAG

Mark Dras and Chung-Hye Han i e e 206
Tectogrammatical Representation: Towards a Minimal Transfer in Machine Translation

JaN Ha € . . .o 216
Clustering for Obtaining Syntactic Classes of Words from Automatically Extracted LTAG Grammars

Tadayoshi Hara, Yusike Miyao and Jun’ichi TSUjii.oou i 227
A New Metagrammar Compiler

B. Gaiffe, B. Craibl@ and A. ROUSSANAlYot e 234
DTAG?

T T =T o = 242

Cross-Serial Dependencies in Tagalog
Anna Maclachlan and OWen RambowW e 252

Reranking an N-Gram Supertagger
John Chen, Srinivas Bangalore, Michael Collins and Owen Rambow, 259

Hidden Markov Model-based Supertagging in a User-Initiative Dialogue System
Jens Bcker and Karin HarbuscCh. e 269

viii

Compositional Semantics for Relative Clauses in Lexicalized
Tree Adjoining Grammars

Chung-hye Han

Simon Fraser University

1. Introduction

This paper proposes a compositional semantics for relative clauses in Lexicalized Tree Adjoining Grammars
(LTAG). As explicated in (Joshi and Vijay-Shanker, 1999; Joshi and Kallmeyer, 2000), in the phrase-structure
based compositional semantics the meaning of a sentence is computed as a function of meaning of each node
in the tree. On the other hand, in LTAG based compositional semantics, the meaning of a sentence is computed
as a function of meaning of elementary trees put together to derive the sentence. This is because in LTAG, the
elementary objects are lexicalized trees that encapsulate all syntactic/semantic arguments of the associated lexical
item (i.e., the anchor). Each elementary tree is associated with a semantic representation, and given the history
of how the elementary trees are put together to form a sentence, its semantics can be computed by combining the
semantic representations of the elementary trees. In other words, semantics in LTAG can be defined to operate
on bigger objects than in a phrase-structure based approach, without violating the principle of compositionality.
One could naturally compose the full derived tree for the sentence at the end of the derivation process, and then
compute the semantics on each node in in the full derived tree. However, this has two major disadvantages:
first, there is no correspondence between semantic composition and the syntactic operations of substitution and
adjunction; and secondly, it is impossible to compute semantic interpretation incrementally and monotonically for
partial derivations. This suggests that compositional semantics in TAG should be done on the derivation tree, not
on the derived tree.

There are two ways of doing semantics on the derivation tree: (i) synchronous TAG as in (Abeillé, 1994), and
(ii) flat semantics as in (Joshi and Vijay-Shanker, 1999; Joshi and Kallmeyer, 2000). In this paper, | pursue the
flat semantics approach (also known as minimal recursion semantics), in which the main operation for semantic
composition is the conjunction of the semantic representations associated with each elementary tree along with
the unification of variables contributed by each semantic representation. Doing flat semantics on relative clauses
is particularly interesting because it involves defining an alternative semantic role for the relative pronoun to the
phrase-structure based approach, in which the relative pronoun has been argued to be an operator that turns the
relative clause into a function of a predicate type (Heim and Kratzer, 1998). In addition, it involves defining a
relationship between the head noun and the wh relative pronoun, which turns out to be non-trivial.

I will start the paper with an illustration of an LTAG-based compositional semantics for a simple sentence
with an attributive adjective in section 2. This will allow us to understand how semantic composition in general
and modification in particular work in LTAG semantics. In section 3, using a relative clause containing a genitive
relative pronoun (e.g., whose), a case of pied-piping, | will first present a couple of approaches that do not work.
This will allow us to clarify the necessary components for a proper analysis. | then propose my analysis of relative
clauses that accounts for these components. Section 4 discusses how the proposed analysis can be generalized to
relative clauses with a simple relative pronoun, adjunct relative clauses and relative clauses whose relative pronoun
is deeply embedded in a recursive genitive NP. The discussion on recursive genitive NPs will lead to a slight
modification of the proposed analysis. In general, | follow the English grammar developed in (The XTAG-Group,
2001) for the syntax of various constructions discussed in this paper (although in some cases, where convenient, |
differ from the XTAG analysis to produce the appropriate semantics).

2. LTAG-based Compositional Semanticsfor a Simple Sentence with an Attributive Adjective

The elementary trees to generate the derived and the derivation tree for sentence in (1), and their corresponding
semantic representations are given in Figure 1.

Q) John solved a difficult problem.

* | am indebted to Aravind Joshi for many discussions on this topic. | also wish to thank Tonia Bleam, Mark Dras, Maribel
Romero, Anoop Sarkar, Alexander Williams and the members of the XTAG group at the University of Pennsylvania. All errors
are mine.

© 2002 Chung-hye Han. Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and Related Frame-
works (TAG+6), pp. 1-10. Universita di Venezia.

2 Proceedings of TAG+6

NP /\
Ill I1: John(x) NP| P I2: solved(xy, X2)
arg: — mi arg: Xi, X2
JoLn

|
solved

NP N NP
« l3ra(xs) * 14: difficult(x4) T problem(y)
?/NP arg: Xs 'I/ w arg: Xq N arg: —
a difficult problem

Figure 1: Elementary Trees and Semantic Representations

The symbols I; label each semantic representation. The elementary tree anchoring solved contains two substitution
sites, each corresponding to subject and object argument. This is associated with a semantic representation with
the predicate solved and two argument variables. The Arg slot contains two variables x , and z., indicating that
they each must be unified with variables contributed by the subject and the object in the semantic composition.
The elementary trees anchoring a and difficult are adjunction trees. They are each associated with a semantic
representation with the predicate corresponding to the anchor and one argument variable. The Arg slot contains a
variable which must be unified with a variable that is contributed by the adjoining noun (or NP). The elementary
trees anchoring John and problem are associated with semantic representations that each contributes a variable.
The argument slot is empty, reflecting the fact that the elementary tree is an initial tree with no substitution sites.
The derivation tree and the semantic composition for (1) are given in Figure 2.

Assuming a bottom-up semantic composition, first the semantics for a and problem combine, unifying the
argument variable of a with the variable contributed by problem. Further, the semantics for difficult and problem
combine, unifying the argument variable of difficult with the variable contributed by problem. And then the seman-
tics for John and problem combine with the semantics for solved. This results in unifying the argument variables
of solved with the variables contributed by John and problem. The final semantics for (1) is a conjunction of each
labeled semantic representations in Figure 2.

asolved I5: a(y)
14: difficult(y)
alohin(l) aproblem(2.2) I5: problem(y)
I2: solved(x,y)
Ba(0) Adifficult(l) 11: John(x)

Figure 2: Derivation Tree and Semantic Composition

3. LTAG-based Compositional Semanticsfor Relative Clauses

The example in (2) will be used throughout this section to illustrate the analysis for an LTAG-based semantics
for relative clauses.

(2) A problem whose solution is difficult

It will be shown that the main source of the problem is that in a relative clause there’s actually two variables
that must be kept track of: a variable corresponding to the gap in the relative clause and the variable corresponding
to the wh relative pronoun. In order to get the correct predicate/argument relation and the semantics that a relative
clause is a modifier of a head noun, the variable for the relative pronoun (whose) must unify with the head noun
(problem), and the variable for the gap must come from the head of the pied-piped structure (solution). In the
simple case with no pied-piping, the two variables are the same. But as soon as the relative pronoun occurs in a
pied-piped structure, the two variables are not the same, and since the wh is embedded, its variable cannot directly
unify with the variable from the head noun, creating a locality problem. In this section, | will first present a couple
of approaches that do not work in subsections 3.1 and 3.2 to illustrate the issues just described and motivate the
analysis proposed in subsection 3.3.

Han 3

3.1 Trial 1

As afirst try, let’s consider the elementary trees and their corresponding semantic representations in Figure 3.
The relative clause tree has a substitution site designated as NP[WH]. | am using this notation for convenience
to represent the assumption that relative clause trees are encoded with a [WH] feature that requires a phrase
dominating a relative pronoun to be substituted into this position in the course of derivation.

NP

W

NH[V@\ NP VP
P

; Llr:g:di(flficult(e, X1) + !;r;]:pr_oblem(y) \(/VP* Lgr;]:ise(fl)
t|1 A|P problem is
A
diff!cult

NP
NP NP NP
5 Rpe 4 atxs) Nﬂ/ \P I5: se(Xa, Xs) lll ls: solution(z) |l| I7: who(x)
arg: arg: , arg: — arg. —
| G %s poss Npy 0 XaXs | L
| 0

solution wi
se

Figure 3: Elementary Trees and Semantic Representations

The semantics for a, problem, solution and who are straightforward. | have defined the semantics of the
auxiliary verb is to be a proposition composed of a predicate and an event argument. This event argument is needed
to unify with the event argument contributed by the adjoining verb (or adjective). Consequently, the semantics for
the relative clause tree anchoring difficult is defined to contribute an event variable. Further, the semantics for
the relative clause tree is defined to require an argument variable which must unify with the variable contributed
by the head noun (i.e., problem). Moreover, assuming that se in whose is equivalent to genitive ’s, se anchors an
elementary tree with two substitution sites for the possessor and the possessee. This corresponds to a semantic
representation with the predicate se and two argument variables that must unify with the variables contributed by
the substituting NPs. The derivation tree for (2) and the semantic composition under this approach are given in
Figure 4.1

aproblem
l>: problem(y)
la: a(y
8a(0) adifficult(0) I, difficult(e,y) *** wrong semantics
I3: is(e)
(AQ I5: se(x,z)
ase(2.1) Bis(2.2.2) lg: solution(z)

I7: who(x)
awho(1) asolution(2.2)

Figure 4: Derivation Tree and Semantic Composition

The problem with this approach is that it derives the incorrect meaning that it is the problem that is difficult,
not the solution. Another problem, which is related to the first problem, is that there is no way to define the
relationship between the relative pronoun and the head noun.

1. Notice that | am assuming multiple modification analysis given in (Schabes and Shieber, 1994).

4 Proceedings of TAG+6

3.2. Trial 2

This thus takes us to the second approach. In this approach, | define an operator called LINK that enforces the
unification of the variables contributed by the wh relative pronoun and the head noun.

The LINK operation does the similar job as predicate modification in phrase-structure based compositional
semantics, as defined in (3) (Heim and Kratzer, 1998). When applied to a relative clause and its head noun, which
are both predicate types, the predicate modification ensures that both of them are predicates over the same variable.
This in turn effectively derives the interpretation of the relative clause as a modifier of the head noun. The LINK
operation is intended to perform the same function.

(3) Predicate Modification

Ifahastheform o ,and[3]° and [y]® are both in D .. >, then [a]® = Az [8]° (x) A [7]*(2).
P

B v

The semantic representations under the second approach are given in Figure 5. The only difference between
the first and the second approaches is in the semantics for the relative clause elementary tree anchoring difficult.
Here, z, stands for the variable for the wh relative pronoun, and z ., stands for the variable for the head noun. We
can think of [WH] feature encoded in the relative clause tree to be responsible for contributing the variable for
the relative pronoun. This approach again derives wrong semantics for (2): the problem incorrectly ends up being
difficult, as shown in Figure 6.

I, . [difficult(e,x1) A LINK(X1,X2)] I: problem(y) I3:is(eq)

arg: Xi, Xa arg: — arg: e;

l4: a(xs) I5: se(X4,X5) lg: solution(z) I7: who(x)
arg: Xs arg: X4, Xs arg: — arg: —

Figure 5: Semantic Representations

aproblem

lo: problem(y)
- a(y)
Ba(0) adifficult(0) I3: is(e)

I5: se(x,z)
A ls: solution(z)
ase(2.1) Bis(2.2.2) I7: who(x)

I1: [difficult(e,x) A LINK(X,y)] *** wrong semantics
awho(1) asolution(2.2)

Figure 6: Derivation Tree and Semantic Composition
Changing the semantics for the relative clause as in Figure 7 will not help. Difficult is a predicate over the

variable for the head noun, and so it will again derive the incorrect interpretation that the problem, and not the
solution, is difficult.

I;: [difficult(e,x2) A LINK(X1,X2)]
arg: Xi, Xo

Figure 7: Semantic Representation for a Relative Clause Anchoring difficult

3.3. Trial 3: A proposal

In order to derive the correct semantics for (2), difficult must be a predicate over a variable associated with
solution. As a way of ensuring this, | define three argument variables for relative clauses: one for the wh relative
pronoun, another for the head noun, and another for the head of NP[WH]. The semantics under this approach is
given in Figure 8.

Han 5

I, . [difficult(e,Xo) A LINK(X1,X2)] I problem(y) I3:is(e1)

arg: Xo, X1, X2 arg: — arg: e;

l: a(xs) I5: se(X4,X5) lg: solution(z) I7: who(X)
arg: Xs arg: Xa, Xs arg: — arg: —

Figure 8: Semantic Representations

In the semantics for the relative clause anchoring difficult, three argument variables are defined: z , must unify
with the variable contributed by the head of NP[WH] (i.e., solution), = , must unify with the variable contributed
by the wh-word (i.e., who), and z , must unify with the variable contributed by the head noun (i.e., problem). The
semantic composition under this approach is given in Figure 9. This semantics correctly derives the meaning of the
relative clause in (2): the solution is difficult, and this solution is in a possession relation with problem, as forced
by the LINK operation unifying the variables for who and problem.

aproblem

l>: problem(y)
la: a(y)

Ba(0) adifficult(0) I3: is(e)
I5: se(x,2)
lg: solution(z)

ase(2.1) Bis(2.2.2) I7: who(x)
I1: [difficult(e,z) A LINK(X,Y)]
awho(l) asolution(2.2)

Figure 9: Derivation Tree and Semantic Composition

4. Generalizing

In this section, we will see how the proposed analysis can be generalized to relative clauses whose relative
pronoun is the head of NP[WH], adjunct relative clauses, and relative clauses containing a recursive genitive
NP[WH].

4.1. Relative clauses whoserelative pronoun isthe head of NP[WH)]

The proposed approach straightforwardly extends to the simple case where the relative clause contains a
relative pronoun which is the head of the NP[WH], as in (4).

(4) The solution which is difficult

The semantics for the elementary trees are given in Figure 10, and the derivation tree and the corresponding
semantic composition are given in Figure 11. In this case, since the head of NP[WH] is the relative pronoun itself,
x, for the relative pronoun and z, for the head of NP[WH] in the relative clause tree semantics both unify with
the variable z from the relative pronoun tree. By the LINK operation, z is unified with the variable from solution,
giving us the correct interpretation that it is the solution that is difficult.

I, [difficult(e,Xo) A LINK(X1,X2)] I>: solution(y)

arg: Xo, X1, X2 arg: —

I3: is(e1) l4: a(xs) I5: which(x)
arg: e; arg: X3 arg: —

Figure 10: Semantic Representations

4.2. Adjunct relative clauses

We now discuss how the proposed analysis can be extended to handle the semantics of adjunct relative clauses
as in (5). We will consider two possible approaches: (i) an approach based on the assumption that the adjunct

6 Proceedings of TAG+6

asolution I solution(y)
l4: afy)
Ba(0) adifficult(0) :35 \I:/ﬁai)ch(x)
5-
awhich(2.1) Bis(2.2.2) I1: [difficult(e,x) A LINK(X,y)]

Figure 11: Derivation Tree and Semantic Composition

phrase in which substitutes into the relative clause tree; and (ii) an approach based on the assumption that the
adjunct phrase adjoins onto the relative clause tree.

(5) The place in which John lives is expensive.

4.2.1. Substitution approach

Under the substitution approach, the elementary tree for the adjunct relative clause anchoring lives has two
substitution sites: one for the subject NP and the other for the PP that will contain the relative pronoun in the course
of the derivation. The corresponding semantic representation is given in the first box in Figure 12. Here, lives takes
an event argument variable (e) and a variable (x) for the subject. Further, the variable for the wh relative pronoun
() and the variable for the head noun (z) are forced to unify by the LINK operation as before. The derivation
requires a PP initial tree anchoring in. The semantics for this tree is given in I . in Figure 12: in is a predicate taking
an event variable, and another variable for the substituting NP. Substituting this PP into the relative clause tree will
allow the event variable from the PP tree to unify with the event variable from the relative clause tree. This will
have the interpretive effect that the PP is modifying the verb lives.

The derivation tree and the corresponding semantic composition for (5) are given in Figure 13. We correctly
end up with the interpretation that the place is expensive, and John lives in this place.

NP
N/ \S
pp[\/\/{\ I1: lives(e, Xo) A LINK(X1,X2)
arg: Xo, X1, X2
NE] VP

|

\Y%

N

lives

NP NP NP PP
lo: the(x4) | I3: place(y) |14 which(x) I5: in(e1,xs)

mp* arg: Xa N arg: — N arg: — ITANN arg: e, Xs
the place which in

S
NP NmP VP

| lg: John(z) | I7: expensive(Xe, €’) Ig: is(e2)
N arg: — AP arg: Xe m* arg: e,
JoLn ,L is
|
expensive

Figure 12: Elementary Trees and Semantic Representations

4.2.2. Adjunction approach

Under the assumption that adjunct phrase in which is adjoined to the relative clause tree, the elementary tree
and the corresponding semantic representation for the adjunct relative clause tree anchoring lives can be specified

Han 7

aexpensive
l4: which(x)
Is: John(z
Bis(2) aplace(1) |Z: place(()z)
I>: the(y)
Bthe(0) alives(0) I1: lives(e,z) A LINK(X,Y)
lg: in(e,x)'
ainm(z.z.l) I7: expensive(y.e’)
| Ig: is(e’)
awhich(2)

Figure 13: Derivation Tree and Semantic Composition

as in the first box in Figure 14. The semantics for the adjunct relative clause is as before: lives takes an event
argument variable (e) and a variable (z,) which will unify with the subject, and the variable for the head noun (z)
is forced to be unified with the variable for the wh relative pronoun (z ,). Although there is no syntactic position
designated for a relative pronoun in the relative clause tree, we can motivate a variable for it with the assumption
that the tree is encoded with a [WH] feature that requires a relative pronoun containing phrase to be adjoined onto
the S node. Further, the derivation under the adjunction approach requires an S-rooted auxiliary tree anchoring
in, which has an NP node that will be substituted with a wh relative pronoun. Its semantics is represented in 4 in
Figure 14: e, is an event argument variable that will unify with the event variable from the adjoining S, and z
will unify with the variable from the substituting NP. All other elementary trees and their semantics necessary for
the derivation are as same as in Figure 12.

The derivation tree and the corresponding semantic composition for (5) are given in Figure 15. This results in
the correct interpretation that the place is expensive and John lives in that place.

NP
S
leH] o P/\S
l1: lives(e, Xo) A LINK(X1,X2) * lg: in(es, Xs)
Nmr’ arg: Xo, X1, X2 PANPi arg: e, Xs
\Y} |
| n
lives
Figure 14: Elementary Trees and Semantic Representations
aexpensive
l4: which(x)
I5: Joh
8is2) aplace(l) |2: ir?(er,]g)
I3: place(y)
Bthe(0) alives(0) I>: the(y)
I1: lives(e,z) A LINK(X,y)
Bir(2) adohn(2.) I7: expensive(y,e’)
Ig: is(e’)

awhiclh(l.Z)

Figure 15: Derivation Tree and Semantic Composition

At the current stage of understanding, the adjunction approach seems to be preferable to the substitution ap-
proach. This is because under the substitution approach, adjunct PPs enter into the derivation through substitution.
However, in all other cases, while adjunct PPs are represented with auxiliary trees that enter into the derivation
through adjunction, argument PPs are represented with initial trees and enter into the derivation through substitu-
tion. The adjunction approach allows us to maintain this dichotomy between arguments and adjuncts.

4.3. Relative clauses containing a recur sive genitive NP[WH)]

In the derivation of relative clauses with a recursive genitive NP[WH)] as in (6), each genitive contributes an
elementary tree with two substitution sites. They are each associated with the semantic representation in which se

8 Proceedings of TAG+6

or ’s is a predicate requiring an argument variable for the possessor and an argument variable for the possessee.
These are represented as [, and I, in Figure 16.

Let’s see what happens if we use the semantics given in Figure 16 and the derivation tree given in (17) to do the
compositional semantics for (6). The semantics for the relative clause tree and other elementary trees are similar to
the the ones we used in section 3.3. But now we have a problem. Although the resulting interpretation gets the right
predicate/argument relation between difficult and proof, and the possession relation between solution and proof and
who and solution, the variable for who cannot be unified with x , in the relative clause semantics. This is because
who is deeply embedded and so its variable cannot pass all the way up to the relative clause semantics. Thus, there
is no way to enforce the unification between the variable from who and z ,, and the meaning that problem is the
possessor of solution is lost and the meaning that the relative clause is the modifier of the head noun cannot be
represented.

(6) A problem whose solution’s proof is difficult

I, [difficult(e,Xo) A LINK(X1,X2)] I problem(y) I3:1s(e1)

arg: Xo, X1, X2 arg: — arg: e,

l4: a(xs) I5: ’s(X4,X5) lg: solution(z)
arg: X3 arg: X4, Xs arg: —

I7: who(x) Ig: proof(v) lo: se(Xe,X7)
arg: — arg: — arg: Xe, Xz

Figure 16: Semantic Representations

aproblem

I2: problem(y)
la: a(y)
Ba(0) adifficult(0) I5: is(e)

lg: se(x,z)
A lg: solution(z)
a's(2.1) Bis(2.2.2) :8: proof(v)

5. 'S(Z,V)
I7: who(x)
ase(l) aproof(2.2) I1: [difficult(e,v) A LINK(X1,Y)]

awho(1) asolution(2.2)

Figure 17: Derivation Tree and Semantic Composition

Here, | will sketch two possible approaches to address this problem: one is to exploit feature unification
(Vijay-Shanker and Joshi, 1991), and the other is to use set-local multi-component TAG (MC-TAG) (Weir, 1988).

Under the feature unification approach, we need to make the assumption that a wh feature is encoded in relative
pronoun trees as well as in relative clause trees, and that these features are syntactically constrained to be the same.
This syntactic constraint is instantiated as the semantic constraint that the variable for the wh relative pronoun in
the semantics of the relative clause tree and the variable in the semantics of the relative pronoun tree be the same.

The semantics for the relative clause anchoring difficult now looks as in the first box in Figure 18. =, will
unify with the variable from proof, the head of NP[WH], and z , will unify with the variable from the head noun
problem. And z,, is the variable for the relative pronoun, which is motivated by the wh feature encoded in the
relative clause tree. This feature is syntactically constrained to be the same as the feature on the relative pronoun
tree. This means that semantically, the relative pronoun who contributes the same variable, x ..

[, [difficult(e,Xo) A LINK(Xy,X2)] I7: who(X.)
arg: Xo, X2 arg: —

Figure 18: Modified Semantics for Relative Clause and Relative Pronoun Trees

The semantic composition using these semantics will give us the correct interpretation, as shown in Figure 19:
problem is the possessor of solution, solution is the possessor of proof and proof is difficult.

Han 9

I>:problem(y)

l4:a(y)

I3:is(e)

lg:se(z,v)

ls:solution(z)

Ig:proof(v)

15:75(Xy,2)

l7:who(Xy,)

I, :difficult(e,v) A LINK(Y,Xw)

Figure 19: Semantic Composition

Under the set-local approach, we need to assume three sets of trees as shown in Figure 20. One set contains
an NP tree anchoring who and a degenerate auxiliary tree S*, another set contains a relative clause tree and an NP
tree anchoring ’s, and the other set contains NP trees anchoring se and problem respectively. The first set is for
the relative pronoun and can be naturally motivated: the NP tree anchoring who corresponds to the contribution of
who to the predicate/argument structure, and S* contributes to the scope of who. The other two sets, however, are
not a linguistically natural set, although it will be shown that postulation of these sets are necessary in resolving
our problem.

The syntactic derivation will proceed as follows: S* adjoinsto S; in the relative clause tree, and NP anchoring
who substitutes into the specifier of se tree. And solution tree substitutes into the complement of se tree, which
will substitute into the specifier of ’s tree. The complement of ’s tree is substituted with proof tree. And then ’s
tree substitutes into NP[WH] node of the relative clause tree. The derivation tree is given in Figure 21

NP

NP N/\

NP[V\H]/.L\

‘ A
b P

\
\
\ AP
o

—_—

difficult

\
NP NP

|
| \
\ \
\
|
9 /\
N N P
N I *
‘ solution Poss/\7 : probl

NP

/
NP

zZ-

em

proof

Figure 20: Derivation in Set-Local MC-TAG

The only new thing we need to do for semantics is to redefine the semantics for who, as in Figure 22, and the
rest will look exactly the same as in Figure 16. The semantics in [} is for the elementary tree anchoring who,
and the semantics in [, is for the degenerate S* tree. The variable from 7 .,(,; will unify with the variable for the

10 Proceedings of TAG+6

< af's], a[problem] >

< afse], Bldif ficult] >(1,0) < afproof],0 >(2.2,0)
|

< alwho], B >(1,2) < a[solutiorlL], 0>(2.2,0)

Figure 21: Derivation tree

[;[21: Who(x) I[217 X
arg: — arg: —

Figure 22: Modified Semantics for Relative Pronoun Trees

possessor in [, and the variable from 7., will unify with the variable for the wh relative pronoun in 7. This has
the desirable result that who is the possessor of solution and that the relative clause is the modifier of the head noun
proof.

While both feature unification and set-local approaches give us the correct semantics, there are problems with
both. In feature unification approach, the variable for who ends up being LINKed to the variable for problem, not
through a direct variable unification, but because the wh features encoded in the relative clause elementary tree
and in the relative pronoun tree are stipulated to translate to the same variable, x,,. In the set-local approach,
variable unification in semantics works without resorting to any stipulation, but the cost to syntax is too much.
From an implementational point of view, it seems that feature unification approach is preferable, given its relative
simplicity.

5. Conclusion

I have shown that an LTAG-based compositional semantics for relative clauses can be done by defining three
argument variables for the semantics of relative clause elementary trees: one for the wh relative pronoun, one for
the head of NP[WH] and the other for the head noun. | have introduced an operator, LINK, that forces variable
unification between the wh relative pronoun and the head noun. We have seen that the proposed analysis handles
relative clauses with a simple relative pronoun as well as those with a relative pronoun in pied-piping structure,
and adjunct relative clauses. | have also pointed out a potential problem in variable unification in relative clauses
with a deeply embedded relative pronoun, and suggested two possible ways of addressing this problem: exploiting
feature unification and using set-local MC-TAG. All this ensures the unification between the variables from the
head noun and the relative pronoun, no matter how deeply embedded the relative pronoun is, deriving the desirable
predicate/argument relations and the interpretation that the relative clause is a modifier of the head noun. It remains
to be seen how the proposed analysis can be extended to relative clauses with long distance relativization (e.g., the
solution which John said Mary thinks is difficult).

References

Abeillé, Ann. 1994. Syntax or semantics? Handling nonlocal dependencies with MCTAGs or synchronous TAGs. Computa-
tional Intelligence.

Heim, Irene and Angelika Kratzer. 1998. Semantics in Generative Grammar. Blackwell Publishers.

Joshi, Aravind K. and Laura Kallmeyer. 2000. Factoring predicate argument and scope semantics: underspecified semantics
with LTAG. Ms. Univeristy of Pennsylvania and UFRL, University Paris 7.

Joshi, Aravind K. and K. Vijay-Shanker. 1999. Compositional semantics with lexicalized tree-adjoining grammar (LTAG):
How much underspecification is necessary? In Proceedings of the 3rd International Workshop on Computational Seman-
tics, pages 131-145, The Netherlands.

Schabes, Yves and Stuart M. Shieber. 1994. An Alternative Conception of Tree-Adjoining Derivation. Computational Lin-
guistics, 20(1):91-124.

The XTAG-Group. 2001. A Lexicalized Tree Adjoining Grammar for English. Technical Report IRCS 01-03, University of
Pennsylvania.

Vijay-Shanker, K. and Aravind Joshi. 1991. Unification Based Tree Adjoining Grammars. In Unification-based Grammars.
MIT Press, Cambridge, Massacusetts.

Weir, D. 1988. Characterizing mildly context-sensitive grammar formalisms. Ph.D. thesis, University of Pennsylvania,
Philadelphia, PA, August.

Putting Some Weakly Context-Free Formalismsin Order

David Chiang
University of Pennsylvania

1. Introduction

A number of formalisms have been proposed in order to restrict tree adjoining grammar (TAG) to be weakly
equivalent to context free grammar (CFG): for example, tree substitution grammar (TSG), tree insertion grammar
(TIG), and regular-form TAG (RF-TAG); in the other direction, tree-local multicomponent TAG (TL-MCTAG) has
been proposed as an extension to TAG which is weakly equivalent to TAG. These formalisms have been put to use
in various applications. For example, Kroch and Joshi (1987) and others use TL-MCTAG for linguistic description;
Bod (1992) uses TSG, and Chiang (2000) uses TIG, for statistical parsing; Shieber (1994) proposes to use TSG
for generating synchronous TAG derivations for translation, and Dras (1999) uses RF-TAG for the same purpose.
Although it is understood that these formalisms are useful because they have greater strong generative capacity
(henceforth SGC) than their weakly-equivalent relatives, it is not always made clear what this actually means:
sometimes it is understood in terms of phrase structures, sometimes in terms of a broader notion of structural
descriptions (so Chomsky (1963)).

We take the latter view, and follow Miller (1999) in seeing phrase structures as just one of many possible
interpretations of structural descriptions (alongside, for example, dependency structures). For Miller, structural
descriptions themselves should never be compared (since they vary widely across formalisms), but only their
interpretations. Thus SGC in the phrase-structure sense is one of several ways of testing SGC in the broader sense.
However, not much effort has been made to demonstrate precisely how formalisms compare in these other ways.

In this paper we examine four formalisms—CFG, TIG, RF-TAG, and what we call component-local scattered
context grammar (CL-SCG)—under four different interpretations, and find that TIG, RF-TAG, and CL-SCG all
extend the expressivity of CFG in different ways (see Figure 1). These results show that it is possible to make
formally precise statements about notions of generative capacity other than weak generative capacity (henceforth
WGC), as a step towards articulating desiderata of formal grammars for various applications.

string sets CFG =TIG = RF-TAG = CL-SCG

TIG
tree sets
(modulo projection)
CFG = RF-TAG = CL-SCG

RF-TAG CL-SCG
indexed string sets

string relations
CFG =TIG

Figure 1: Summary of results. Edges denote strict inclusion (lower c higher); = denotes equality.

2. Definitions

We assume familiarity with CFGs and TAGs, and proceed to define two restrictions on TAGSs:

Definition 1. A left (or right) auxiliary tree is an auxiliary tree in which every frontier node to the right (resp.,
left) of the foot node is labeled with the empty string. A tree insertion grammar (Schabes and Waters, 1995) is a
TAG in which all auxiliary trees are either left or right auxiliary trees, and adjunction is constrained so that:

e no left (right) auxiliary tree can be adjoined on any node that is on the spine of a right (left) auxiliary tree, and

e no adjunction is permitted on a node that is to the right (left) of the spine of a left (right) auxiliary tree.

© 2002 David Chiang. Proceedings of the Sxth International Workshop on Tree Adjoining Grammar and Related Frameworks
(TAG+6), pp. 11-18. Universita di Venezia.

12 Proceedings of TAG+6

Definition 2. We say that a TAG is in regular form (Rogers, 1994) if there exists some partial ordering < over
nonterminal symbols such that if 8 is an auxiliary tree whose root and foot nodes are labeled X, and 7 is a node
labeled Y on B’s spine where adjunction is allowed, then X < Y, and X = Y only if 5 is a foot node. Thus
adjunction at the foot node is allowed freely, adjunction at the middle of a spine is allowed only to a bounded
depth, and adjunction at the root is not allowed at all.*

Next we define CL-SCG, first introducing the notion of an indexed string, which we will make use of in several
places in this paper.

Definition 3. An indexed string is a pair (w; l), where w is a string and I,y is an equivalence relation over string
positions of w. An indexed string n-tupleis an (n+ 1)-tuple (wy, ..., Wn; lw), where wy, . . ., Wy, are strings and 1y is
an equivalence relation over string positions of the w;. We notate these equivalence relations using boxed indices.

Definition 4. A local scattered context grammar? is a tuple G = (N, T, P, S), where
e Nand T are finite, disjoint sets of nonterminal symbols and terminal symbols, respectively,
e S e N is the start symbol, and

e Pis afinite set of productions of the form

(A]_,...,An) e (cxl,...,an; |Q)
wheren> 1, Ai e Nand (i, ..., an; l») is an indexed tuple of strings over (N U T)*.

We write (y; 1,) =¢ (8, 15), where (y; 1,) and (; 1) are indexed strings, if and only if there exists a production
(Ag,...,An) — (ag,...,an; 1) € Psuch that

Y = YoAry1- - Anyn

where Ay, ..., A, comprise an equivalence class of |, and

6 = Yoa1y1- " AnYyn,

where any nonterminal instances in the y; whose corresponding instances in y are equivalent under |, are also
equivalent under |, as are any nonterminal instances in the a; which are equivalent under I, and nothing else.
Let Is be the equivalence relation on string positions of S that relates S to itself. Then

L(G) = {w| (S;Is) = (W; l,) for some I}

We say that a local scattered context grammar is component-local if for each production (A4,...,Ay) —
(@1,an;l,) € P, anonterminal instance in «; and a nonterminal instance in «; are equivalent under I, only if
i=j.

We call this restriction “component-local” by analogy with tree-local MCTAG (Weir, 1988), because a pro-
duction simultaneously rewrites multiple nonterminals with multiple components, but all those nonterminals must
have come from the same component.

3. The formalisms considered as string-rewriting systems

Proposition 1. CFG, TIG, RF-TAG, and CL-SCG are weakly eguivalent.

Proof. The weak equivalence of TIG to CFG was shown by Schabes and Waters (1995). The basic idea is to flatten
each elementary tree into a CFG production, discarding every foot node, but adding a nonterminal to the left (right)
of every node at which left-adjunction (resp., right-adjunction) is possible.

1. Note that this definition is stricter than Rogers’ original definition, which allows “redundant” elementary trees. His parsing
algorithm does not produce all possible derivations under the original definition, but does under the stricter definition.

2. This definition is based on local unordered scattered context grammar (Rambow and Satta, 1999), but is simplified in two
ways: first, our scattered contexts are ordered rather than unordered; second, our productions explicitly specify which sets of
nonterminals may be rewritten. We do not believe either of these simplifications affects the results shown here.

Chiang 13

The weak equivalence of RF-TAG to CFG was shown by Rogers (1994). The basic idea is to break each
elementary tree into CFG productions, augmenting the nonterminal alphabet with a stack of bounded depth to
keep track of non-foot adjunctions.

For any CL-SCG, a weakly equivalent CFG can be obtained by a construction analogous to that for tree-
local multicomponent TAG (Weir, 1988). Given a CL-SCG G = (N, T, P, S), let f be the maximum number of
components of (the left- or right-hand side of) any production in P, and let N’ = (Uif:l N’ x {1,...f}). We want
to break each production of P into its component CFG productions, using this augmented nonterminal alphabet to
ensure that all the component productions are used together. To do this, construct P’ from P as follows:

e For every nonterminal occurrence A; on a left-hand side (Aq, ... Ay), replace A; with (Aq, ..., An, i).

e For every nonterminal occurrence A; on a right-hand side (a3, ..., an; o), if A is the ith member of an equiva-
lence class of 1, whose members are Ay, ..., Ay, in that order, replace A; with (Aq, ..., An,i).

Then construct P” from P’ as follows: if (A,...,A)) — (a3....,ay) € P, then Al — of € P” for all i between 1
and n. Then the CFG (N’, T, P”, (S, 1)) is weakly equivalent to G. O

4. The formalisms considered as tree-rewriting systems

CFG generates only local sets, whereas CL-SCG and RF-TAG generate some recognizable sets which are not
local. However, any recognizable set can be made from a local set by projection of labels (Thatcher, 1967). If we
factor out this distinction, then CL-SCG and RF-TAG are no more powerful than CFG:

Proposition 2. For any RF-TAG (or CL-SCG) G, thereisa CFG G’ and a projection of labels 7 such that T(G) =
{n(®) 1te T(G)}

Proof. The constructions used to prove the weak equivalence of these formalisms to CFG also preserve trees,
modulo projection of labels. O

Proposition 3. TIG can generate a tree set which is not recognizable.

Proof. As was observed by Schabes and Waters (1995), the following TIG generates a non-recognizable set:

S S

| |

X A
PN
S a
|
B
|
Sx

When the path set is intersected with {SA}*S{BS}*x, the result is {(SA)"S(BS)"x | n > 0}, a non-regular set. O
5. The formalisms considered as linking systems

We now define derivational generative capacity (henceforth DGC, introduced by Becker et al. (1992)), which
measures the generative capacity of what Miller (1999) calls “linking systems.”

Definition 5. We say that a grammar G index-generates an indexed string (a; - - - an; lw) (see Definition 3) if G
generates a; - - - &, such that & and a; are equivalent under |, if and only if & and a; are contributed by the same
derivation step. The derivational generative capacity of a grammar G is the set of all indexed string sets index-
generated by G.

In this section we notate indexed strings by drawing links (following Joshi (1985)) between all the positions
of each equivalence class. Thus the CFG X — aXb | e index-generates the familiar-looking indexed string set

14 Proceedings of TAG+6

We saw in the previous section that with respect to SGC (in the sense of phrase structures), TIG was more
powerful than CFG, whereas RF-TAG and CL-SCG were no more powerful than CFG. With respect to DGC, the
opposite obtains.

Proposition 4. CFG and TIG are derivationally equivalent.

Proof. The construction given by Schabes and Waters (1995) preserves derivations, and therefore preserves in-
dexed strings. m|

On the other hand, RF-TAG and CL-SCG both have greater DGC than CFG (and TIG). Moreover, they extend
CFG in different ways, because each is able to generate an indexed string set that the other is not.

Lemma 5 (indexed pumping lemma). Let L be an indexed string set generated by a CFG (or CL-SCG). Then
there is a constant n such that if (z 1,) isin L and |2 > n, then z may be rewritten as uvwxy, with |[vx| > 0 and
Ivwx| < n, such that for all i > 1, thereis an equivalence relation 1} such that (uv'wx'y; 11) isin L and |} does not
relate any positionsin w to any positionsin u or y.

Proof. The proof is analogous to that of the standard pumping lemma (Hopcroft and Ullman, 1979). However,
since the grammar cannot be put into Chomsky normal form, we let n = m¥ instead of 2%, where k is the size of the
nonterminal alphabet and mis the maximum number of symbols on any right-hand side. The key difference from
the standard proof is the observation that since, for each i, the derivation of uv'wx'y can be written as

S = uAy = WAXY = uwwx'y

for some nonterminal A, no position in w can be contributed by the same derivation step as any position in uor y.
The generalization to CL-SCG is straightforward, since a CL-SCG G can be converted into a CFG G’ which
generates the same trees. G’ will not generate the same indexed strings as G; nevertheless, the equivalence relations
index-generated by G can only relate terminal instances which are first cousins in the derived tree, so for i > 1, it
remains the case that no position in w is related to any position inu ory.]

Proposition 6. The following indexed string set isindex-generable by an RF-TAG but not by any CL-SCG:

Ly = caa~--a(|:b--~bbc

But suppose L1 is index-generated by some CFG or CL-SCG G. For any n given by the indexed pumping lemma,
let z = ca"ch"c satisfy the conditions of the pumping lemma. It must be the case that v and x contain only a’s and
b’s, respectively, or else uv'wx'y ¢ L;. But then u, w, and y would each have to contain one of the ¢’s, and since the
c’s are all related, this contradicts the pumping lemma. m]

Proposition 7. The following indexed string set (consisting of a single string) is generable by a CL-SCG but not
by any RF-TAG, nor indeed by any TAG:

l,=Jababab

Chiang 15

Proof. The following CL-SCG generates Lj:

(S) — (aBgaBgaBpy)
(B,B,B) — (b,b,b)

But L, cannot be generated by any TAG. In general, if a; - - -b- - - &, is index-generable by a TAG such that a; and
a, are related, then either the tree that contributes a; and a, (call it 8,) adjoins into the tree that contributes b (call
it By) such that its foot node dominates b, or else By, adjoins into B5. In the case of L, suppose that the a’s are
contributed by 85, and the b’s are contributed by By. If 35 adjoins into By, its foot node must dominate both of the
b’s, which is a contradiction; similarly if 8 adjoins into 8. m]

6. The formalisms considered as local synchronous systems

In a local synchronous system (Aho and Ullman, 1969; Shieber, 1994; Rambow and Satta, 1996), two gram-
mars are constrained to generate pairs of strings via isomorphic derivations (up to relabeling and reordering of
sisters). Although translation via a synchronous grammar is not really an “interpretation” in Miller’s sense, never-
theless, because a synchronous derivation in effect realizes a single derivation structure in two different ways, we
expect the set of string relations generated by a local synchronous system to reveal something about the relationship
between derivations and strings that weak generative capacity does not.

Definition 6. A synchronousCFG is atuple G = (N, T,P,S), where N, T, and S are as in ordinary CFG, and P is
a set of productions of the form
(A:A) > (a:d;ly)
where A,A” € N, o,/ € (NUT)* and I, is a bijection between nonterminal instances in & and nonterminal
instances in «’.
We write (y = ;1) =¢ (6 : 85 1s), where (y 1 y/;1,) and (6 : &’; |5) are indexed string pairs, if and only if
there exists a production (A : A’) — (a : @’;1,) € P such that

Y = Y0Ay1 Y = vAY,

where Aand A’ are related under |, and

6 = yoay1 & =ypa'y;
where any nonterminal instances in yo, y1, ¥g, Or ; whose corresponding instances in y are equivalent under 1, are
also equivalent under |, as are any nonterminal instances in a and o’ which are equivalent under |,, and nothing
else.
Let Is be the equivalence relation on string positions of (S : S) which relates both instances of S to each other.
Then the weak generative capacity of G is the string relation

L(G) = (W: W) | (S: S;ls) =6 (W: W Iy)).

The definition of synchronous TAG (Shieber, 1994) is analogous, but with bijections between adjunction
sites instead of bijections between nonterminal instances; synchronous TIG and synchronous RF-TAG are just
restrictions of synchronous TAG. The definition of synchronous CL-SCG is also analogous, but with bijections
between equivalence classes of nonterminal instances instead of bijections between nonterminal instances. These
four synchronous formalisms relate to each other in the same way as the linking systems of the previous section.

Proposition 8. Synchronous CFG and synchronous TIG are weakly equivalent.

Proof. The construction given by Schabes and Waters (1995) preserves derivations, and therefore preserves string
pairs. m]

Lemma 9 (synchronous pumping lemma). Let L be a string relation generated by a synchronous CFG (or
synchronous CL-SCG). Then there is a constant n such that if (z: Z) isinL and |2 > nand |Z| > n, then (z: Z)
may be written as (uwy : U'w'y’), and there exist strings v, x, V', X', such that [vxv'x’| > 0, [vwx| < n, Vw'X'| < n,
andfor all i > 0, (Wwx'y : UV'wx'y)isinL.

16 Proceedings of TAG+6

Proof. The proof is again analogous to that of the standard pumping lemma: let G = (N, T, P, S) be a synchronous
CFG generating L. We choose n as the proof of the standard lemma would if the nonterminal alphabet were N x N.
This guarantees the existence of a pair of corresponding paths in the derivation of (z : Z’) such that the same pair
of nonterminals (A : A’) occurs twice:

(S:9) SN (uAy : UAY) SN (urvAXyy UV A'XY)) = (upvwxyy @ upVWX'y;)
If we let u=u;vandy = xy;, and likewise u" = ujv' and y’ = X'y}, then (z: Z) = (uwy : U'w'y’), and for all i > O,
(w'wxy : uv'wx'y) e L.

The CL-SCG case is similar but quite messy. A CL-SCG derivation tree has the same height as its derived tree,
minus one. Therefore we can choose n such that any derivation of (z: ') where |7 > nand |Z| = n must have a pair
of corresponding paths such that the same set of nonterminals occurs twice (new material underlined for clarity):

(S:9) = (UpAgUy - - - AUy - - - AU - UpATUL - - - Al Ui - - A Upy)

*
= (uoﬂul e VkOAlel o AgVinU - - .&un : uaﬁui e V;(OA;LVI,(’l e AI,'l’VI,(’n’ u{(/ .. .ﬁua,)

*
= (uovlul .. 'VKOMVkl .. '%anuk < VpUp u(’)\/lua_ . 'V,k’O%VI,(’l .. '%\/I,(’n’u{(’ .. 'V;]’u;'n’)

If we let
U = UgVqU1 - - - VieqUk—1 VARV AVAT ARV SV
V = VikoVaVii - - * Vi 1Vick-1 V' = VioViVier " VieciVie -1
W = VoW1 Vi1 * * * WnVikn W = Vi oWy Vieq - - Wi Vi
X = Vicke1Vks1 * * - VinVkn X = Vi st Viesr Ve View
Y = UkVk+1Uk+1 * * - VnUn)/ = U|/(/V|,(/+1U|/(,+1 s V;], U;],
then (z: Z) = (uwy : Uwy’), and for all i > 0, (uW'wx'y : UV'wWx'y) € L. O

Proposition 10. Thestring relation
Lz = {(@™b"c"d™ : b"a™d™c")}

is generable by a synchronous RF-TAG but not by any synchronous CL-SCG.

Proof. The following synchronous RF-TAG generates L3:

AT B

| | A A B B
By : A I I I I
| | aAa a Aja bBb bBb

But suppose L3 can be generated by some CL-SCG G. For any n given by the pumping lemma, let (z : Z) =
(a"b"c"d" : b"a"c"d") satisfy the conditions of the pumping lemma. Then vxv’'x’ must contain only a’s and d’s, or
only b’s and c’s, otherwise (Uv'wx'y : w'v'w'x'y’) will not be in L. But in the former case, [vwx| > n, and in the
latter case, VW' X'| > n, which is a contradiction.3 o

Proposition 11. There is a string relation which is generable by a synchronous CL-SCG but not by any syn-
chronous RF-TAG, nor indeed by any synchronous TAG.

Proof. Define L4(K) to be
{(Wa -+ Won © Wok(qy -+ Wokon) | Wi € {or(i)}", n > 1},

o) = {a if i is odd,

where

b ifiiseven,

3. Ananalogous result for synchronous regular-form two-level TAG was shown by Chiang et al. (2000).

Chiang 17

3 5
g g

Figure 2: Example diagrams of 7X.

and
i+k ifiisoddandi+k < 2n,
mk@i)={i—k ifiisevenandi—-k>1,
i otherwise.

See Figure 2 for examples of 7X. The following synchronous CL-SCGs generate L4(3) and L4(5), respectively:

(§:8) = XaAzYm : XpAzYm)
(X, Y : X,Y) = (XgAzYa, Bg : XzBgYa, Ag)
| (e,Bg: € Bg)
(A:A)— (@Ag:ahAg) | (e:¢€)
(B:B) —» (bBgy:bBy) | (e:¢)

(S:9) - XgAzYeAul : XaArYzAsZw)
(X, Y,Z:X,Y,Z) - (XgAzYzAg<e Ba, By : XaBaYmBsZm, Az, Agz)
| (¢,Bg,Bg: €, Bg.Bg)
(A:A) > (aAg:afg) | (e:e)
(B:B) = (bBg:bBg) | (e:¢)

But suppose L4(3) is generated by a synchronous CFG G. Let r be the order of G, that is, the maximum number
of nonterminals in either half of the right-hand side of any production. By means of closure properties it can be
shown that there is a synchronous CFG G’ of order r which generates the language

{(Wr -+ Wan D Wosq) -+ Wozion) | Wi € {Ci}'),

where n = max{3, r%ﬁ} and 7¥ is as above. But this leads to a contradiction by means of the same argument used
by Aho and Ullman (1969) to show that the synchronous CFGs of order r + 1 properly include the synchronous
CFGs of order r. The basic idea is as follows: we say that a production covers ¢; if its right-hand side derives an
unbounded number of ¢;’s. Then it can be shown that any production which covers two of the c¢; must cover all of
them. So there would have to be a production covering all 2n of the c;, with 2n nonterminals on its right-hand side,
each of which gets rewritten with a production covering only one of the ¢;. But since 2n > r, this is a contradiction.

For the TAG case, suppose L4(5) is generated by a synchronous TAG G, and again let r be the order of G. By
means of closure properties it can be shown that there is a synchronous TAG G’ of order r which generates the
language

{(W1 -+~ Wan D Wesq) -+ Wos o) | Wi € {Ci}'),

where n = 4r + 1 and #K is as above. This case is more difficult because unlike a CFG nonterminal, a TAG auxiliary
tree has a hole in its span created by its foot node. But it can be shown that any elementary tree pair which covers
three of the c;, such that none of them are separated by a foot node in either the domain or the range, must cover
all the c; except perhaps one. Given our choice of n, this suffices to show that G’ cannot exist.

mi

18 Proceedings of TAG+6

7. Conclusion

Joshi (2000) poses the question, “How much strong generative power can be squeezed out of a formal sys-
tem without increasing its weak generative power?” The shifting relations between these four formalisms under
different interpretations (see Figure 1) show that there is more than one way to answer this question.

First, there is more than one way to measure strong generative power. That TIG generates more tree sets than
RF-TAG or CL-SCG but fewer indexed string sets demonstrates a point noted by Becker et al. (1992): that SGC
(in the sense of phrase structures) and DGC are orthogonal notions. This is because SGC (in the sense of phrase
structures) is based on the tree yield function, which can be chosen somewhat independently of the string yield
function. On the other hand, DGC and synchronous WGC, which are both based on the string yield function, order
our four formalisms in the same way.

Second, there is more than one way to squeeze a formal system. RF-TAG and CL-SCG are incommensurate
with respect to both DGC and synchronous WGC; that is, each is able to do something the other is not. Thus, even
under a particular interpretation of strong generative power, the question is not only, how much strong generative
power can be squeezed, but also, in what ways? Characterizing the different ways in which strong generative power
can be both measured and squeezed is a task for future research.

Acknowledgements

This research was supported in part by NSF grant SBR-89-20230. | would like to thank Anoop Sarkar, William
Schuler, Aravind Joshi, and the three anonymous reviewers for their valuable comments. S. D. G.

References

Aho, A. V. and J. D. Ullman. 1969. Syntax Directed Translations and the Pushdown Assembler. J. Comp. Sys. Sci., 3:37-56.

Becker, Tilman, Owen Rambow and Michael Niv. 1992. The derivational generative power of formal systems, or, Scrambling
is beyond LCFRS. Technical Report IRCS-92-38, Institute for Research in Cognitive Science, University of Pennsylvania.
Presented at MOL3.

Bod, Rens. 1992. Data-oriented parsing. In Proceedings of the Fourteenth International Conference on Computational
Linguistics (COLING-92), Nantes.

Chiang, David. 2000. Statistical parsing with an automatically-extracted tree adjoining grammar. In Proceedings of the 38th
Annual Meeting of the Assocation for Computational Linguistics, pages 456-463, Hong Kong.

Chiang, David, William Schuler and Mark Dras. 2000. Some remarks on an extension of synchronous TAG. In Proceedings
of the Fifth International Workshop on TAG and Related Formalisms (TAG+5), pages 61-66.

Chomsky, Noam. 1963. Formal properties of grammars. In R. Duncan Luce, Robert R. Bush and Eugene Galanter, editors,
Handbook of Mathematical Psychology. Wiley, New York, pages 323-418.

Dras, Mark. 1999. A meta-level grammar: redefining synchronous TAG for translation and paraphrase. In Proceedings of the
37th Annual Meeting of the Assocation for Computational Linguistics, pages 80-87, College Park, MD.

Hopcroft, John E. and Jeffrey D. Ullman. 1979. Introduction to automata theory, languages, and computation. Reading, MA:
Addison-Wesley.

Joshi, Aravind K. 1985. Tree adjoining grammars: How much context-sensitivity is necessary for assigning structural descrip-
tions? In David Dowty, Lauri Karttunen and Arnold Zwicky, editors, Natural Language Parsing. Cambridge University
Press, Cambridge, pages 206—250.

Joshi, Aravind K. 2000. Relationship between strong and weak generative power of formal systems. In Proceedings of the
Fifth International Workshop on TAG and Related Formalisms (TAG+5), pages 107-113.

Kroch, Anthony and Aravind K. Joshi. 1987. Analyzing extraposition in a tree adjoining grammar. In Geoffrey J. Huck and
Almerindo E. Ojeda, editors, Discontinuous Constituency. Academic Press, Orlando.

Miller, Philip H. 1999. Strong Generative Capacity: The Semantics of Linguistic Formalism. CSLI lecture notes, number 103.
Stanford: CSLI Publications.

Rambow, Owen and Giorgio Satta. 1996. Synchonous Models of Language. In Proceedings of the 34th Annual Meeting of the
Assocation for Computational Linguistics, pages 116-123, Santa Cruz, CA.

Rambow, Owen and Giorgio Satta. 1999. Independent parallelism in finite copying parallel rewriting systems. Theoretical
Computer Science, 223:887-120.

Rogers, James. 1994. Capturing CFLs with tree adjoining grammars. In Proceedings of the 32nd Annual Meeting of the
Assocation for Computational Linguistics, pages 155-162, Las Cruces, NM.

Schabes, Yves and Richard C. Waters. 1995. Tree insertion grammar: a cubic-time parsable formalism that lexicalizes context-
free grammar without changing the trees produced. Computational Linguistics, 21:479-513.

Shieber, Stuart M. 1994. Restricting the weak generative capacity of synchronous tree-adjoining grammars. Computational
Intelligence, 10(4):371-385, November. Special Issue on Tree Adjoining Grammars.

Thatcher, J. W. 1967. Characterizing Derivation Trees of Context-Free Grammars through a Generalization of Finite Automata
Theory. J. Comp. Sys. i, 1:317-322.

Weir, David J. 1988. Characterizing Mildly Context-Sensitive Grammar Formalisms. Ph.D. thesis, Univ. of Pennsylvania.

Supertagging for Combinatory Categorial Grammar
Stephen Clark

Division of Informatics, University of Edinburgh
2 Buccleuch Place, Edinburgh, EH8 9LW
Scotland, UK

St ephen. d ark@d. ac. uk

1. Introduction

Supertagging was introduced for Lexicalised Tree Adjoining Grammar (LTAG) to reduce the number of ele-
mentary trees assigned to a word, thereby increasing parsing efficiency (Bangalore and Joshi, 1994). Bangalore
and Joshi (1999) have shown that techniques used for POS-tagging can be applied successfully to the supertagging
problem.

Parsing efficiency is also an issue for Combinatory Categorial Grammar (CCG, Steedman (2000)) since many
words can have many possible CCG categories. We have developed a supertagger for CCG, similar to the POS-
tagger of Ratnaparkhi (1996). Maximum entropy models are used to estimate the probability that a word is assigned
a particular category, given the local context. These probabilities are then used to select a sub-set of the possible
categories for a word.

The next section gives a brief introduction to CCG, and Section 3 describes the category set used in the
experiments. Section 4 describes a “single-category” supertagger, and gives figures for its accuracy. Section 5
shows how the supertagger can be adapted to output more than one category per word, to produce a “multi-tagger”,
and we show the effect the multi-tagger has on the speed and coverage of a CCG parser.

2. Combinatory Categorial Grammar

A grammar in CCG consists of a lexicon, which pairs words with lexical categories, and a set of combinatory
rules, which specify how categories combine. Categories are either atomic or complex. Examples of atomic
categories include S (sentence), N (noun), NP (noun phrase) and PP (prepositional phrase). Features on the
S category can be used to indicate types of sentence (or clause); for example: S[dcl] (declarative), S[to] (to-
infinitival), S[b] (bare-infinitival), S[adj] (adjectival).

Complex categories are functors which specify the type and directionality of the arguments, and the type of
the result. For example, one of the categories for the verb likes specifies that one noun phrase (NP) is required to
the right of the verb, and one to the left, resulting in a sentence (as in John likes sweets):

likes := (S[dcl]\NP)/NP

Another category for likes specifies that a to-infinitival clause is required to the right of the verb (as in John likes
to eat sweets):

likes := (S[dcl]\NP)/(S[to]\NP)
Functor categories can also express modification, as in the following adverbial category for really:
really := (S\NP)/(S\NP)

The following derivation shows how categories combine. This derivation uses only two combinatory rules:
forward application (>) and backward application (<).

John really likes to eat sweets
NP (S\NP)/(S\NP) (S[dcl\NP)/(S[to]\NP) (S[to]\NP)/(S[b]\NP) (S[b]\NP)/NP NP
S[b]\NP
S[to]\NP ”
S[dcl]\NP g
S[dcl]\NP g
S[dcl]

Further combinatory rules are needed to deal with syntactic phenomena such as coordination and extraction.

(© 2002 Stephen Clark. Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and Related Frameworks
(TAG+6), pp. 19-24. Universita di Venezia.

20 Proceedings of TAG+6

frequency | # cat types # cat tokens in # sentences in 2-21 | #cattokensin | # sentences in 00
cut-off in cat-set | 2-21 notin cat-set | with missing cat | 00 not in cat-set | with missing cat
1 1,206 0 0 11 (0.02%) | 11 (0.6%)

5 512 | 1,157 (0.1%) | 1,032 (2.6%) | 49 (0.1%) | 44 (2.3%)

10 398 | 1,898 (0.2%) | 1,667 (4.3%) | 79 (0.2%) | 67 (3.5%)

20 304 | 3,190 (0.4%) | 2,756 (7.0%) | 123 (0.3%) | 104 (5.5%)

Table 1: Category coverage for seen data (sections 2-21) and unseen data (section 00) under various cut-offs

In the following object-extraction example, type-raising (>T) turns the atomic NP category for John into a functor
category looking for a verb-phrase to its right; forward composition (>B) then combines the type-raised category
with the category for likes:

the sweets that John likes
NP (NP\NP)/(S[dcl]/NP) NP (S[dcl]\NP)/NP
S/S\NP)
S[dcl]/NP
NP\NP g
NP

Note that, in this paper, we assume type-raising is dealt with by the parser rather than at the level of the lexicon.
Thus the supertagger does not deal with type-raised categories.

3. ThelLexical Category Set

The category set used here has been derived from a treebank of CCG (normal-form) derivations, in which each
word is tagged with a lexical category.l The treebank, which we call CCG-bank, has been created by Julia Hock-
enmaier (Hockenmaier and Steedman, 2002a), and derived semi-automatically from the Penn Treebank (Marcus,
Santorini agd Marcinkiewicz, 1993). Below is an example sentence from the CCG-bank, together with the lexical
categories.

Pierre N/N VinkenN ,, 61N/N yearsN old (S[adj]\NP)\NP ,, will (S[dcl]\NP)/(S[b]\NP)
join ((S[b]\NP)/PP)/NP the NP/N board N asPP/NP aNP/N nonexecutive N/N
director N Nov. ((S\NP)\(S\NP))/N 29N ..

The category set was obtained from sections 2-21 of the CCG-bank (corresponding to the Penn Treebank
sections), which contain 39,161 sentences, 903,661 category tokens, and 1,206 category types. Many of the
category types occur only a few times in the data, and some arise through noise in the Penn Treebank, or errors
introduced by the CCG extraction program. We therefore investigated using a subset of the 1,206 category types
by applying a frequency cut-off.

Table 1 shows how many category tokens in Sections 2-21 do not appear in the category set entailed by the
cut-off, and also shows the percentage of sentences that have at least one category token not in the set. The same
figures are given for Section 00, which has 1,900 sentences and 44,544 category tokens. The figures show that the
size of the category set can be reduced by as much as 3/4, without greatly increasing the percentage of missing
category tokens in the data (unseen and seen).

The LTAG supertag set used by Bangalore and Joshi (1999) contained 300 supertags (for their WSJ experi-
ments). To obtain a CCG category set as compact as that requires a cut-off as high as 20. However, Bangalore and
Joshi took their supertags from the manually created XTAG grammar, which presumably contains a much cleaner
set of supertags than an automatically extracted grammar.

A more useful comparison is with the work of Chen and Vijay-Shanker (2000), who extract an LTAG auto-
matically from the Penn Treebank. A number of strategies are used for extracting the supertags (referred to as tree

1. There is a distinction between lexical categories and categories created during a derivation. Since we are only interested
in lexical categories in this paper, we may sometimes use category to mean lexical category.

2. The category for join has a PP-complement, which is arguably incorrect. Since the distinction between complements and
adjuncts is not always reliably marked in the Penn Treebank, the procedure for identifying complements and adjuncts does lead
to some erroneous data in the CCG-bank.

Stephen Clark 21

Experiment 1 Experiment 2 Experiment 3 Experiment 4
Condition [Contextual predicates | | |
w; isnotrare | wi =X Yw | =X Yw | =X Yw, | ti=X
w; is rare Xis prefix of w;, |X| < 4 ti_i=X tiig=X ti_1=X
Xis suffix of w;, |X| < 4 tio=X tio=X ti_o=X
w; contains a number tirr =X tir1 =X tir1 =X
w; contains uppercase character tiya=X tiyo =X tir2 =X
w; contains a hyphen Wi_z3=X Ci_2Ci_1 = XY
Yw; Ci_1=X Wiz =X Wi_oWi_1 = XY
C2=X ti_3=X Wip1Wip2 = XY
wi—1 =X tipz=X ti—oti_g = XY
Wi_p =X tipatiyo = XY
Wipp =X
Wit = X

Table 2: Contextual predicates used in the experiments. The predicates shown for experiments 2, 3 and 4 are in
addition to those used in 1; the rare word predicates are only used in experiment 1.

frames by Chen and Vijay-Shanker), but the size of the resulting sets range between 2,366 and 8,996 supertags.
Chen and Vijay-Shanker also experimented with a cut-off, with a value of 3 reducing the size of the supertag sets
by at least 1/2, and a cut-off of 9 producing sets ranging between around 800 and 1,800 supertags. These numbers
suggest that the CCG category sets extracted from CCG-bank are more compact than Chen and Vijay-Shanker’s
LTAG supertag sets (for equivalent cut-off values), although we should point out that CCG-bank has received a
significant amount of manual clean-up.

4. The supertagger

The supertagger uses conditional maximum entropy models to estimate the probability of words being as-
signed particular categories. We chose to implement a maximum entropy supertagger, rather than the HMM su-
pertagger used by Bangalore and Joshi (1999), because of the ease with which additional features can be integrated
into the model. The use of conditional models, rather than the generative model of the HMM, also makes it easy
to define a “multi-tagger”, as we show in Section 5.

The probability of a category, ¢, given a context, h, is defined as follows:

_ 1 iAifi(ch)
The functions fi(c,h) define “features” of the category and context, and Z(h) is a normalisation constant. An
example feature is as follows:

1 if curr word.i s_t he(h)=true & c=NP/N
0 otherwise

fi(c,h) = {)
The feature function takes the value 1 if the current word (i.e. word to be tagged) is the and the category is NP/N.
The weight (Aj) corresponding to the feature contributes to the probability p(c|h) when h contains theas the current
word and c = NP /N. Generalised Iterative Scaling is used to estimate the values of the weights.

The predicate cur r .wor d_i s_t he is an example of what Ratnaparkhi (1998) calls a contextual predicate.
Contextual predicates identify elements of the context that might be useful in predicting the lexical category.
Possible contextual predicates for the supertagger include the current word, certain properties of the current word
(such as suffix and prefix information), the POS-tag of the current word, words either side of the current word, and
the POS-tags of those words.

We experimented with a number of contextual predicates, and different window sizes for the context. Table 2
gives “templates” for the contextual predicates used in a series of experiments. The first set used in experiment 1
is based on that used by Ratnaparkhi (1998). (The notation in the table is also borrowed from Ratnaparkhi (1998).)
The current word, w;, is rare if it appears less than a certain number of times in the training data. A cut-off value

22 Proceedings of TAG+6

expt.l | expt.2 | expt.3 | expt.d
CCG supertagger 88.1 90.4 90.5 90.5
Baseline 71.2
CCG (Nielsen) 87.7
CCG (TnT) 87.8
LTAG (Srinivas) 92.2
LTAG (Chen) 78.9

Table 3: Results for the single supertagger

of 5 was used here. If w; is not rare, the word itself forms a contextual predicate, otherwise contextual predicates
based on the suffixes and prefixes (up to 4 characters) are used, plus some others listed in the table. In addition,
the two categories before w; (ci—1,Ci—2) form contextual predicates, along with the two words before and after w;.
Thus in experiment 1 a 5-word window is providing the context.

Experiment 2 introduces the POS-tags (t;) of the words in the 5-word window, but does not use the rare word
features, since we found that ignoring the rare word features once the POS-tags had been introduced did not affect
the results. The POS-tagger of Ratnaparkhi (1998) was used to provide the POS-tags. Experiment 3 extends the
context to a 7-word window. Experiment 4 retains the 5-word window, but forms complex features by considering
pairs of categories, words, and POS-tags.

Following Ratnaparkhi (1998), a simple feature selection technique was used for all the experiments: only
those features that appear at least 10 times in the training data are considered (except the current word features
which only have to appear 5 times).

Initially we developed a supertagger that chooses the most probable sequence of categories, given the sentence.
The probability of a category sequence, C, given a sentence S, is defined as follows:

P(C[S) =[] plcilhi) 3)

where ¢; is the ith category in the sequence and h; is the context for the ith word. A beam search is used, so that
only the top N sequences are retained at each point in the tagging process. A value of N = 10 was used here.

The supertagger consults a “tag-dictionary”, which contains, for each word, the set of categories the word was
seen with in the data. If a word appears at least K times, the supertagger only considers the categories in the word’s
category set. If a word appears less than K times, all categories are considered.

Table 3 gives the results on Section 23 of the CCG-bank (ignoring punctuation) using the category set with
398 types, and a value of K = 20 for the tag dictionary.3 Sections 2-21 were used for training. The baseline result
is obtained by choosing the category the current word appears with most frequently in the data, and assigning
category N to unseen words.

Results are also given for two HMM supertaggers: Brants’ TnT tagger (Brants, 2000), and a supertagger
developed by Nielsen (2001).4 The Nielsen figure was obtained using a slightly older version of the CCG-bank,
and does include punctuation. The Brants’ figure was obtained by training the publically available version of TnT
on the latest version of the CCG-bank, and does not include punctuation.® The HMM results are similar to those
for the maximum entropy experiment 1, which uses a similar set of features. The improvement in experiment 2
over the HMM supertaggers is because the HMM supertaggers did not use POS-tag information.

Results are also given for LTAG supertagging (Bangalore and Joshi, 1999; Chen and Vijay-Shanker, 2000) on
the Penn Treebank. The Srinivas supertagger uses a manually created set of elementary trees, whereas the Chen
supertagger uses an automatically extracted tag set, which explains the difference in the LTAG results.

We have integrated the supertagger with a CCG parser (Hockenmaier and Steedman, 2002b), and attempted to
parse the sentences from the Penn Treebank. If the supertagger assigns a single category to each word, the parser
is able to provide an analysis for around 91% of the sentences in Section 23. To try and increase the coverage we
investigated assigning more than one category to each word.

3. Very similar results were obtained for values of K between 5 and 100 using Section 00 as a development set.

4. The TnT tagger was designed for POS-tagging, but it can be easily adapted to the supertagging problem by simply training
it on supertagged data.

5. Including punctuation increases the figure by around 1%, because the categories for punctuation marks such as comma
and period are simply the punctuation marks themselves.

Stephen Clark 23

CCG multi-tagger ~ # cats/word | LTAG multi-tagger # cats/word
p=0.1 96.2 1.6 94.6 1.9
B=0.05 97.2 2.0 95.8 2.2
B=0.01 98.4 3.8 97.0 3.4

Table 4: Results for the multi-tagger

5. Using the supertagger as a multi-tagger

A feature of the conditional model in equation 1 is that it is very easy to define a multi-tagger: simply assign all
categories to a word whose probabilities (given by equation 1) are within some factor, 3, of the highest probability
category. Note that equation 3 is no longer used, since we are no longer estimating the probability of a sequence of
categories. The feature set used in experiment 4 for the single tagger was used (but without the previous category
features), with the category set of 398 category types, and K = 20. The results on Section 23 are given in Table 4,
for various values of 3, together with the average number of categories per word.

The LTAG results of Chen, Bangalore and Vijay-Shanker (1999), using a supertag set derived from the XTAG
grammar, are given for comparison. Table 3 showed the single tagger results to be better for LTAG, at least for
this supertag set (Chen et al. report a similar result), but the multi-tagger results are better for CCG, using a much
simpler approach. Chen, Bangalore and Vijay-Shanker (1999) used a clustering technique to assign more than one
category to each word.

Using a multi-tagger rather than a single-tagger in conjunction with the Hockenmaier and Steedman (2002a)
parser greatly increases the coverage. For a 3 value of 0.01, over 99% of Section 23 could be parsed. To give
some indication of how changes in B affect the speed of the parser, we took the first 500 sentences from Section 23
and recorded the parse times for various values of 3. The times depend on various parameter settings used by the
parser, such as beam width, but the figures reported here are intended only to give a rough indication of how the
supertagger can speed up the parser. A (3 value of 0.0001 (which gives an average of 28 categories per word) was
used to provide a baseline figure. Changing 3 to 0.01 (3.8 categories per word) increased the speed of the parser
by a factor of 2.7 over the baseline figure. Changing 3 to 0.1 (1.6 categories per word) increased the speed of the
parser by a factor of 4.7 over the baseline figure (but with a slight loss in coverage).

6. Conclusion

The supertagger described here can be used to significantly speed up a CCG parser. However, assigning a
single category to each word in a sentence allows the parser of Hockenmaier and Steedman (2002a) to provide an
analysis for only 91% of the sentences from Section 23 of the Penn Treebank. A simple multi-tagging approach
can greatly increase the coverage, while keeping the average number of categories to a manageable number. The
accuracy of the supertagger compares favourably with existing LTAG supertaggers, particularly those which use
an automatically extracted LTAG.

One question which has not been discussed in this paper is whether supertagging is easier for LTAG or CCG.
The comparison with the work of Chen and Vijay-Shanker (2000) suggests that it may be easier to do supertagging
with an automatically extracted CCG than with an automatically extracted LTAG, although of course this depends
crucially on the extracted grammars in each case.

There is also the question of how much work remains to be done by the parser after supertagging has taken
place. Bangalore (2000) argues that, for LTAG, simple heuristics can be used to satisfy the dependency require-
ments encoded in the supertags. Whether such an approach would work for CCG remains an open question.

7. Acknowledgements

This research was funded by EPSRC grant GR/M96889/01. | would like to thank Julia Hockenmaier for
providing the CCG-bank and for getting the results for her parser, and Mark Steedman for his guidance and help
with this work.

24 Proceedings of TAG+6

References
Bangalore, Srinivas. 2000. A Lightweight Dependency Analyser for Partial Parsing. Natural Language Engineering, 6(2):113—
138.

Bangalore, Srinivas and Aravind Joshi. 1994. Disambiguation of Super Parts of Speech (or Supertags): Almost Parsing. In
Proceedings of the 15th COLING Conference, pages 154-160, Kyoto, Japan.

Bangalore, Srinivas and Aravind Joshi. 1999. Supertagging: An Approach to Almost Parsing. Computational Linguistics,
25(2):237-265.

Brants, Thorsten. 2000. TnT - a statistical part-of-speech tagger. In Proceedings of the 6th Conference on Applied Natural
Language Processing.

Chen, John, Srinivas Bangalore and K. Vijay-Shanker. 1999. New Models for Improving Supertag Disambiguation. In
Proceedings of the 9th Meeting of EACL, Bergen, Norway.

Chen, John and K. Vijay-Shanker. 2000. Automated Extraction of TAGS from the Penn Treebank. In Proceedings of IWPT
2000, Trento, Italy.

Hockenmaier, Julia and Mark Steedman. 2002a. Acquiring Compact Lexicalized Grammars from a Cleaner Treebank. In
Proceedings of the Third International Conference on Language Resources and Evaluation (to appear), Las Palmas,
Spain.

Hockenmaier, Julia and Mark Steedman. 2002b. Generative Models for Statistical Parsing with Combinatory Categorial
Grammar. In Proceedings of the 40th Meeting of the ACL (to appear), Philadelphia, PA.

Marcus, Mitchell, Beatrice Santorini and Mary Marcinkiewicz. 1993. Building a Large Annotated Corpus of English: The
Penn Treebank. Computational Linguistics, 19(2):313-330.

Nielsen, Lief. 2001. Supertagging with Categorial Grammar. Master’s thesis, University of Cambridge.

Ratnaparkhi, Adwait. 1996. A Maximum Entropy Part-Of-Speech Tagger. In Proceedings of the EMNLP Conference, pages
133-142, Philadelphia, PA.

Ratnaparkhi, Adwait. 1998. Maximum Entropy Models for Natural Language Ambiguity Resolution. Ph.D. thesis, University
of Pennsylvania.

Steedman, Mark. 2000. The Syntactic Process. Cambridge, MA: The MIT Press.

L ear ning languages from positive exampleswith dependencies

Jérome Besombes, Jean-Yves Marion
Loria, INRIA Lorraine

Abstract
We investigate learning dependency grammar from positive data, in Gold’s identification in the limit model. Examples

are dependency trees. For this, we introduce reversible lexical dependency grammars which generate a significant class

of languages. We have demonstrated that reversible dependency languages are learnable. We provide a O(n?)-time, in
the example size, algorithm. Our objective is to contribute to design and the understanding of formal process of language
acquisition. For this, dependency trees play an important role because they naturally appear in every tree phrase structure.

1. An identification paradigm

From Tesniére (Tesniére, 1959) seminal study, and from ideas of Mel’€uk (Mel’Cuk, 1988), we propose a two
tier communication process between two speakers, see Figure 1. Jean transmits a sentence to Marie. At the first
stage, Jean generates a structural sentence, like the following dependency tree

the rabbit runs fast

L]

Then, Jean transforms it into a linear phrase, the rabbit runsfast, and send it to Marie. Now, Marie has to inverse
the two tier process of Jean. For this, she has (i) to recover the structural sentence from the linear sentence (p~1),
(ii) to build/update/improve her grammar in order to understand the message, and to generate other messages
(671). In the setting of natural language learning, parsers perform the first task of Marie. Roughly speaking,
parsing corresponds to inverse 7, that is to compute 1.

We are investigating identification, that is exact learning, of dependency tree languages. The leading idea is
that data used to learn are dependency trees. Dependencies are semantic annotation by additional informations
which facilitates the learning process. Such data are widely available and come from a lot of computational
linguistic formal grammars such as LFG, TAG, categorial grammar and interaction grammar. The relations between
those formalism are explained in the special issue of TAL (Kahane, 2000) on dependency grammars.

The data available are positive examples of a language, that is a sequence of dependency trees. Our hypothesis
is that the computation of 8 is reversible, that is the inputs can always be deduced from the outputs. So, identifi-
cation corresponds to inverse 6. For this, we give a sufficient condition of reversibility on the grammars (Go). We
show that the class of reversible dependency tree languages is efficiently identifiable in Gold’s model (Gold, 1967).
That is, given a finite sequence of examples of a reversible language, we determine a reversible grammar that gen-
erates it. We refer to (Jain et al., 1999) for further explanations. Our study leans on the work of Angluin (Angluin,
1982) on learning languages produced by deterministic and reversibles finite automaton. It is also closely related
to Sakakibara (Sakakibara, 1992) work on reversible context free grammars and to Kanazawa (Kanazawa, 1998)
work on rigid categorial grammars.

Gy
PSfrag replacements

0—1

Strugtural
sentence

Figure 1: A two tier communication process

© 2000 . Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and Related Frameworks (TAG+6),
pp. 25-29. Universita di Venezia.

26 Proceedings of TAG+6

2. Lexical dependency grammar

Following Dikovsky and Modina (Dikovsky and Modina, 2000), we present a class of projective dependency
grammars which was introduced by Hays (Hays, 1961) and Gaifman (Gaifman, 1965).

A lexical dependency grammar (LDG) T is a quadruplet (X, N, P, S), where X is the set of terminal symbols,
N is the set of non-terminal symbols, S € NN is the start symbol, and P is the set of productions. Each production

is of the form X = U, ...Upa V1 ...V, where X € N, each U; and Vj; are in ¥ U N. The terminal symbol a
is called the head of the production. In other words, the head is the root of the flat tree formed by the production
right handside. Actually, if we forget dependencies, we just deal with context free grammars.

Example 1. The grammar I'y = {({a, b}, {S}, P, S) where P consists

S—=aSb|ab
Partial dependency trees are recursively defined as follows.

1. S'is a partial dependency tree generated by I

2. If ... X ...b... isapartial dependency tree generated by T", and if

X—=U,...UpaVy ...V, isaproduction of ', then

FTT71
...Ul...Upc‘zvl...V},...b...
|

is a partial dependency tree generated by T".

A dependency tree generated by a LDG T is a partial dependency tree of I" in which all nodes are terminal
symbols. The language D(T) is the set of all dependency trees generated by T'.

Example 2. The language generated by I'y of Example 1 is

1T AT

Do) ={abaabbaaabbbd,...}
L L
Without dependencies, we recognize the context free language {a"b" /n > 0}.
3. Reversible LDG

A LDG grammar I is reversible if the conditions R1, R2 and R3 of Figure 2 are satisfied. The class of
reversible dependency tree languagesis the class of languages generated by reversible LDG.

4. The learning algorithm

The learning algorithm works as follows. The input is a finite set H of positive examples which are de-
pendency trees. Define TG(H) as the grammar constructed from all productions outputed by TG(w, S), for each
w € H. The function TGis described in Figure 3.

Stage 0 Gy = TG H).

Stage n+1 The grammar GG,,11 is defined by applying one of the rule of Figure 2.

Besombes and Marion 27

T

Rl1IfX—>UaVadifY-UaV,thenX =Y.

CURT

R2 If XsaYBavyandif X 5a Z

]
T

R3 IfX—>aa,BY*yand if X—»aa

ﬁ

B

a~vy,thenY = Z, whereY,Z € N.

ﬁ

Z ~,thenY = Z,whereY, Z € N.

B

We writtx a Bforay ...apapi...[0,.

Figure 2: Reversibility conditions and reduction rules.

Function TQw, X)
Inputs : w is a dependency tree,
X is a non-terminal symbol.
ifweX
then Output X — w

ifw=us...upavi...v
then Take new Uy, ..., Upand V4,...,V,

Output X - Uy ...UpaVi ...V,
for i = 1to p do TGQ(u;, U;)
for i = 1to g do TQ(w;, V;)

Figure 3: TGQ(w, X)) recognizes exactly w, i.e. D(TGQw, X)) = {w}

The process terminates at some stage m because the number of grammar productions decreases at each stage.
So, put ¢(H) = Gy

Theorem 3. ¢ learnsthe class of reversible dependency tree languages.

The learning algorithm is incremental and runs in quadratic time in the size of the examples. Our algorithm is
implemented as a Java prototype which is accessible fromht t p: / / www. | ori a. fr/ ~ besonbes.

Example 4. H = { therabbit is very fast, the rabbit isfast, the rabbit is very very fast},
(A [L
The productions of Go = TG(H) are

28 Proceedings of TAG+6

TG(therabbit isvery fast, §) = { X1 — X3 rabbit,
— o

.X2 — X4 fast,

X3 — the,

X4 — very

/ . l
T S — X5is Xg,
TG(therabbit isfast, S) = < I
(. X5 — X7 rabbit,
X — faﬂ,
\ X7 — the.

L1

S — Xsg iSXg,

Xs = X1o rabbit,

TG(the rabbit isvery very fast}, S) = < [
T_‘ Xg - X11 fast,
X190 — the,

X11 — very Xio,
| X12 — very

Second, we apply R1 to identify X, = X12, X3 = X7 = Xy0.

S = XisXs X3 —the X5 — X3 rabbit Xg — X3 rabbit
X1 — Xzrabbit X4 — very X¢ — fast Xy = X1 fast
b 11 [T

X5 — X, fast S - X5isXg S — XgisXg Xi3 —very Xy

We apply R1 to identify X; = Xg and X5 = X;.

S — X1isX» X4 — very S — X1is Xy
X1 — X3 rabbit S — X; iSXG Xo > X11 fast
o

Xo = Xy fast Xg > fast X1 — very X4
X3 — the

Besombes and Marion 29

Now, we merge X, = Xg = Xg by applying R3 on S rules.

S = X1isXy Xy = Xy fast Xy — very
X1 — X3rabbit X, — fast Xq1 — very Xy
[

Xo — X, fast X5 — the

Lastly, we apply R2 on X> rules by merging X, = X1;. We obtain the final grammar:

T

S — X1is Xy X, —»fast Xy — very

X; — Xzrabbit X3 —the X4 — veryXy

[

Xo = Xy fast

5. Related works

e Sakakibara (Sakakibara, 1992) gives a learning algorithm to infer reversible context free languages from skeleton
parse trees. The definition of reversible grammar is very similar to ours. However, we distinguish between both

productions X — Y ab Zand X — Y a b Z, unlike (Sakakibara, 1992) in which they are considered identical.

e Kanazawa (Kanazawa, 1998) studies inference of several classes of categorial grammars from functor structures,
based on counting the number of categories associated to a terminal symbol. It is not difficult to faithfully
translate rigid grammar in reversible dependency grammars.

The defect of learning from structures is that examples usually depend on the implicit grammar that we have
to guess. It appears that it is not the case in our approach because we deal with tree languages, and so is seemingly
more natural.

References

Angluin, Dana. 1982. Inference of reversible languages. Journal of the ACM, 29:741-765.

Dikovsky, A. and L. Modina. 2000. Dependencies on the other side of the curtain. Traitement automatique des langues,
41(1):67-96.

Gaifman, H. 1965. Dependency systems and phrase structure systems. Information and Control, 8(3):304-337.

Gold, M.E. 1967. Language identification in the limit. Information and Control, 10:447-474.

Hays, D.G. 1961. Grouping and dependency theories. In National symp. on machine translation.

Jain, J., D. Osherson, J. Royer and A. Sharma. 1999. Systems that learn. MIT press.

Kahane, S. 2000. Les grammaires de dépendance, volume 41. Hermes.

Kanazawa, M. 1998. Learnable classes of Categorial Grammars. CSLI.

Mel’€uk, I. 1988. Dependency Syntax: Theory and Practice. The SUNY Press.

Sakakibara, Y. 1992. Efficient learning of context free grammars from positive structural examples. Information and Compu-
tation, 97:23-60.

Tesniére, L. 1959. Eléments de syntaxe structurale. Klincksieck.

Towardsa Dynamic Version of TAG

Vincenzo Lombardo and Patrick Sturt
Universita di Torino and University of Glasgow

1. Introduction

This paper proposes a syntactic framework that is appropriate for modeling human language processing. The
work moves from the largely held assumption that human language processing is incremental, and aims at exploring
the consequences of incrementality when the processing strategy is encoded in the operations of a formal system.
This makes a syntactic framework consistent with the Transparency Hypothesis (Berwick and Weinberg, 1984), in
that a syntactic theory must reflect the behaviour of the human syntactic processor in its formal operations.

Incrementality is a strategy that constrains the processor to analyse the input words from left to right, and
to carry out a semantic interpretation of the partial structures (Marslen-Wilson, 1973). A parsimonious version
of incrementality is what we call strong incrementality, which restricts incrementality to the case in which the
parser maintains a fully connected tree at each state (cf. (Stabler, 1994)). There have been some proposals in the
literature that claim that structure building occurs incrementally both in derivation and in parsing. Many aspects of
the CCG formalism are grounded on incrementality (Steedman, 2000), and Phillips has provided a large amount
of evidence that incrementality in the derivation process solves many problems in the definition of constituency
(Phillips, 1998). The incremental nature of the formalism is a major issue in Milward’s proposal of a dynamic
dependency grammar (Milward, 1994). In this case, the syntactic formalism is expressed in the terms of a dynamic
system, that is a system evolving in time through a number of steps. A dynamic grammar views the syntactic
process as a sequence of transitions between adjacent states S;_; and .S; while moving from left to right in the
input string 1. Thus, it naturally implements a strongly incremental strategy. The state S; is a partial tree that spans
the input string from the beginning to the i-th word, and at each step the parser tries to attach the word w; into the
current partial tree S; 1, also called the left context. So, the definition of a formal dynamic grammar involves the
definition of the shape of the partial trees and the formal operations that extend these partial trees.

Tree Adjoining Grammar (Joshi, Levy and Takahashi, 1975) is a well studied framework, that can realize a
range of syntactic theories, provided a few constraints on trees and formal operations are satisfied. The goal of
this paper is to devise a dynamic version of TAG, that retains the formal characteristics of the framework in terms
of basic machinery, while constraining derivation and parsing to be strongly incremental. Of great interest for
implementing incrementality are the wide domain of locality introduced by TAG rules, the adjunction operation,
and the linguistic motivation for TAG elementary trees. Some of these considerations are shared by (Frank and
Badecker, 2001), as points of strength for TAG in language production. Let us consider them in turn.

1) Wide domain of locality
In an empirical study on the Penn Treebank, aimed to discover the amount of non-lexical information which is
necessary to implement a fully connected incremental processing strategy, we simulated the sequence of processing
steps of an incremental parser on the treebank (Lombardo and Sturt, 2002). Given full connectedness, each new
word must be attached to the preceding left context via some syntactic structure, called “connection path”. In the
simulation, connection paths often needed to be multiply levelled trees. See, e.g., the structure that connects the
word “the” to the left context in:

[s [np John] [ve [v thinks] [s [xe [the]]]]]

However, the form of these connection paths is quite predictable from linguistic observations. The use of multiply
levelled elementary trees in TAG is an immediate encoding of this requirement. We also found that the introduc-
tion and co-indexation of traces needed to be carefully designed for the incremental setting. In TAG, given the
wide domain of locality, filler and trace are both present in the same elementary tree, and then they may be sep-
arated through a number of adjunctions. This solution is particularly interesting for incrementality, provided that
adjunctions are constrained to occur through the insertion of lexical material only to the right of the word whose
elementary tree introduced the filler-trace pair.

1. Here we have used the generic term “syntactic process” to indicate both derivation and parsing. In fact, in a dynamic
grammar both processes share the same mechanisms, and we will use the two terms interchangeably.

© 2002 Vincenzo Lombardo and Patrick Sturt. Proceedings of the Sixth International Workshop on Tree Adjoining Grammar
and Related Frameworks (TAG+6), pp. 30-39. Universita di Venezia.

Lombardo and Sturt 31

2) Adjunction
The adjunction operation provided by the TAG formalism is vital for the incremental processing of modifiers. In
fact, in many cases the correct attachment of a word to the current partial tree requires the guess of an unknown
number of left recursive structures. The adjunction operation permits the progressive extension of recursive struc-
tures, as they are required to process the input string. A typical use of left recursive structures in English is in
possessive constructions. In a sentence like “Mary hated the salesman’s assistant’s hairstyle”, during incremental
processing it is impossible to guess in advance the depth of the NP immediately dominating “the salesman”. One
solution is to attach this NP immediately as the object of “hated”, and then to embed this NP via adjunction when
the possessive is processed. This operation can be repeated an arbitrary number of times to produce an arbitrarily
embedded structure (cf. (Thompson, Dixon and Lamping, 1991)).

3) Linguistically motivated elementary trees
TAG, and in particular Lexicalized TAG (Schabes, Abeillé and Joshi, 1988), constrain the form of the elementary
trees to be linguistically motivated according to the number and the type of arguments required by some lexical
anchor. This is a desirable property also for incremental processing, since in head-initial languages, items that are
to occur on the right are often predicted from anchors on the left. Here we are not referring to any processing
model, but to a basic requirement for a syntactic formalism that supports incrementality. We must also notice that
linguistic constraints are not always enough to guarantee the full connectedness of the partial tree. It can be that
the argument structures of two adjacent lexical anchors cannot be directly combined, and so we need some extra
structure to guarantee full connectedness. Take again the previous example “John thinks the ...”: the lexical entry
for “thinks” is an initial tree that predicts an S node on its right, marked for substitution; the lexical entry for “the”
is an auxiliary tree rooted in NP; the extra structure provides the edge between S and NP, and must be included
in one of the two elementary trees, even though this edge is not directly licensed by any of the lexical anchors in
the partial tree. As a consequence, an elementary tree of a dynamic TAG may be larger than the argument domain
of that elementary tree’s anchor. This is because extra structure is needed to guarantee connectivity (in the next
section we will see a few examples of this case).

This paper describes the major issues of a dynamic version of TAG (called DV-TAG), which is suitable for
incremental processing. We first describe the consequences that incrementality bears upon the shape of elementary
trees and on the form of the attachment operations, together with some definitions. Then we describe the derivation
process that produces the so-called derived tree. Finally, in order to illustrate the functioning of the formalism, we
provide a few meaningful linguistic examples.

2. Dynamic Version of TAG (DV-TAG)

In this section we describe the basic machinery of DV-TAG. We start with elementary trees, and then we move
to the attachment operations, Substitution and Adjunction.

2.1. Elementary trees

A DV-TAG grammar consists of elementary trees, divided into initial trees and auxiliary trees. Most of the
definitions provided by TAG are also applicable to elementary trees in DV-TAG. The structure of elementary trees
in DV-TAG is constrained by a number of syntactic modules (X-bar theory, case theory, thematic relations theory,
some empty category principle(s), see (Kroch and Joshi, 1985)). In particular, we assume that each node has a
distinguished head daughter, that each elementary tree is associated with a lexical anchor, and that the elementary
tree includes the argument structure of the anchor. Long-distance dependencies have to be stated locally, in a single
elementary tree. Auxiliary trees are minimal recursive structures with root and foot nodes identically labelled.

The major difference in comparison with TAG is that the shapes of the elementary trees must be constrained
in order to permit the left-to-right derivation (and parsing) of all and only the legal structures. The linguistic
motivations mentioned above may not be enough to constrain the elementary trees in a way that guarantees the
construction of a fully connected structure 2. This motivates the addition of extra information to elementary trees.
Here we are not claiming that additional information is in some form, and is added on-the-fly while processing,
but that elementary trees in DV-TAG are larger than the corresponding elementary trees in TAG.

Even if we ground this requirement on the empirical observations addressed in the Penn Treebank (Lombardo
and Sturt, 2002), we can think of some principled way to constrain the extension of elementary trees beyond the
modules above. A similar solution, devised again in the context of incremental processing, is the type raising

2. Remember that a fully connected structure is required by incremental processing.

NP(John) S(thinks)

\ N

NNP(John) NP(~‘10hn) W)
S(thinks) NNP(John) V(thinks) S$(...)
NP$(...) \;(thT) NP(Peter)
V(thinks) S$(...) NNP(Peter)
(a) (b)

Figure 1: Initial trees and derivation for “John thinks Peter ...”. Node labels include the head word. The symbol
“$” indicates “marked for Substitution”. (a) The initial trees for “John” and “thinks”. (b) The derived tree for
“John thinks Peter”.

operation provided in the CCG theory (Steedman, 2000). We have not yet addressed such a problem at this stage
of development. What may happen is that some portions of this extra information can overlap with the arguments
of some lexical anchor which is yet to come (on the right of the current word). So, a DV-TAG grammar can
include some redundant information, since the same portions of structure can belong to several elementary trees
for different reasons.

In order to illustrate the case for redundant information, consider the sentence “John thinks Peter laughs”. In
Figure 1a there are the initial trees for “John” and “thinks”, respectively. “Thinks” subcategorizes for a subject NP
and a sentential clause S. The initial tree for “Peter” should be the same as the one for “John”. However, given
the substitution indicated by the dotted arrow, we have that the NP “Peter” has to be incorporated into the subject
position of the complement clause licensed by “thinks” (Figure 1b). This means that the connection between S and
NP must be realized by the elementary tree for “Peter”. Certainly, the edge between S and NP is not projected by
the lexical anchor “Peter”, but is part of the initial tree for “Peter”. It is linguistically licensed by “laughs”, and so
it must be part of the initial tree for “laughs” as well. As we see below, the attachment operations need to be more
sophisticated in DV-TAG, because they also include some checking of structures previously built for connectivity
reasons. We call this process redundancy checking. The edge existing between the complement S and the subject
NP (“Peter”) is redundancy checked when the initial tree for “laughs” is Substituted.

The structure in Figure 2 is more complex. It is an initial tree for a NP that is fronted as a consequence of an
object extraction (in the example, the word “beans” in “Beans; John likes e;™). This structure is common to all
cases where the filler precedes the trace. It provides both the filler and the trace positions in the same elementary
tree, and the two positions are co-indexed (index i). The assumption underlying this structure is that the fronting
phenomenon must predict the embedded verb that licenses the fronted NP as an object. There are two nodes (S
and NP) marked for Substitution: this means that, in order to have an object extraction we need an actual transitive
verbal subcategorization frame and an actual subject. The S node shares the lexical head with the VP and the V
nodes (see the index j).

Another underlying assumption that is not obvious in standard TAG is that maximal projections that are marked
for substitution can also be internal nodes, and not leaves. This is the case for the internal S node in Figure 2. The
nodes marked for substitutions are required to be roots of initial trees. The substitution that will take place here is
the initial tree of a transitive verb, e.g. “like”, whose initial tree [S [NP VP [V NP]]] is already part of the structure

Lombardo and Sturt 33

S(...J)
NP(i)(Beans) S$(...J)
/ N\
NN(Beans) NP$(...) VP(...J)
/ N\
V(...J) NP(e)

e(i)()

daVinci V2.1

Figure 2: An elementary tree for an extracted object. Notice that it includes the constraints on the structure of the
verbal subcategorization frame. Filler and trace nodes are co-indexed with i. The nodes including the j-index in
parentheses are constrained to bear the same head daughter.

and will be rooted in “S$(...j)”. This substitution will be a redundancy checking only, since the whole substructure
is already in the left context.

Finally, notice that adjunctions to the internal S node permit the insertion of other clauses, that take the filler
and the trace further apart (“Beans; | know John likes e;”). Notice that in this case, the elementary tree whose
head is “likes” will be discontinuous in the derivation tree; clearly, the actual implementation of the redundancy
checking mechanism would require some care to deal with such cases.

It can also be the case that some elementary tree introduces some other lexical element beyond the lexical
head, as may occur, for example, when a verb selects the lexical form of the head of an argument PP (e.g., “go
t0”). In derivation and parsing, we assume that the pointer on the input string goes to the leftmost lexical head of
the elementary tree, and it is possible to adjoin words in between (“go slowly to”). We stipulate that only one of
the lexical elements is the lexical anchor of the elementary tree. Redundancy checking must also take into account
lexical items.

2.2. Attachment operations

The attachment operations in DV-TAG are substitution and adjunction, with a number of differences on their
applicability and functioning in comparison with standard TAG. In particular, their functioning has to implement
some form of redundancy checking as mentioned above®. Their applicability depends on the legal attachment sites,
with respect to left-to-right processing.

Since we proceed incrementally, every time we apply an operation there will be a left context, given by the
tree spanning all the words from the beginning of the sentence to the word w;_1, and a current elementary tree for
the word w;.

3. Inactual implementations redundancy checking should be accompanied with feature upgrading.

34 Proceedings of TAG+6

X X
al
—
o B s
o o
o
(@)
Y X X
B Y* Y
v »
(04
p
Y

Figure 3: Substitution (a) and Adjunction (b).

e Substitution (see Figure 3(a)):
In the Substitution operation, either the root node of the current initial tree is merged into the leftmost non-
terminal node marked for substitution in the left context, or the root node of the left context is merged into the
leftmost non-terminal node marked for substitution in the current initial tree, producing a new tree.

The root node and the substitution node must have the same name. Nodes marked for Substitution are indicated
with a $ in the elementary trees. The leftmost relation on nodes marked for Substitution is calculated on the lowest
nodes of their respective head projections®.

e Adjunction (see Figure 3(b)):
In the Adjunction operation, either the left context, which has the form of an auxiliary tree, is grafted into a
non-terminal node marked for adjunction in the current elementary tree, or the current elementary tree, which is
an auxiliary tree, is grafted into a non-terminal node marked for adjunction in the left context.

The root and foot nodes of the auxiliary tree, whether it is the left context or the current elementary tree, must
match the node at which the auxiliary tree adjoins. It is important to notice that in DV-TAG both the left context
and the current elementary tree can act as the auxiliary tree in adjunction. This is to say that either the left context
is split because of the adjoining of some auxiliary tree, or some elementary tree is split because of the adjoining of
the left context at some node. In the left context, nodes are marked for adjunction according to the definition of the
accessible fringe (see below for the definition); in the elementary trees, nodes are overtly marked for adjunction.

The foot node of the auxiliary tree is matched with the node which is the site of adjunction. If this node
has daughters marked for substitution, then it is necessary to move these daughters to the root node, leaving the
co-indexed traces at the foot node. Traces allow us to keep the locality of the subcategorization constraints, while
moved elements account for the structural constraints. An example of when this is necessary is in the processing
of expressions where a modifier intervenes between a head and its argument, as in “George worried severely about
the storm.® The Figure 4 depicts this case.

4. The precedence relation is trivially defined when the substitution nodes are not in a dominance relation (remember that
we assume a full connectedness of the left context); in case one substitution node dominates another, the leftmost substitution
node is defined in relation to nodes on the respective head projections of all the substitution nodes, which by definition must be
different.

5. Note that adverbs very frequently intervene between a verb and its object in Romance languages like Italian.

Lombardo and Sturt 35

VP(...i) yrfie\d)
VP(...i)) ADV(severely) NP(George) VP(worried)
S(worried) /' ||]|:> VP*(worried) PP$(1)(...)

VP(worried
NP(George) VP*(worried) () ADV(severely)

/\ V(worried) Pj(e)

V(worried) PP$(...) B
e

Figure 4: The modifier “severely” occurs between the head “worried” and its argument PP “about the storm”.

The attachment operations involve the redundancy checking procedure. Redundancy checking involves those
substructures that are already part of the left context. Starting from the root node that matched, the redundancy
checking procedure overlaps the nodes of the elementary tree onto the left context, and verifies that nodes that
match are consistent. Nodes that are the results of adjoining operations are neglected during this process. Our
solution is to maintain a data structure for each word inserted through an initial tree, that keeps track of the
correspondences between the nodes of the original structure, and the actual instantiations of nodes in the current
left context.

3. Derivation in DV-TAG

The derivation, as well as the parsing, of syntactic structures, proceeds from left to right, by combining the
elementary trees anchored to the words in the string, using the operations of Substitution and Adjoining.

The left-to-right constraint implies that the derivation process proceeds through intermediate states S;, that
exactly advance on the words of the terminal string. At the processing step i, we have a current word w; and
a current state S;_1, the left context. The derivation process combines an elementary tree for w; with S;_; to
produce S;, which becomes the current state at the next step.

Each elementary tree typically introduces a few nodes headed by the lexical anchor, and a few nodes that are
marked for substitution, and that need to be actually substituted. In derivation, these nodes are called predicted
nodes. Predicted nodes are introduced both for connectivity requirements and for linguistic motivations. They are
typically unheaded; in fact, usually, during the course of a derivation, they are pending non terminals that expect
to be substituted by some initial tree, possibly after a number of adjoinings. It can also be the case that a predicted
node is headed: such a situation occurs when the node marked for substitution already has a lexical anchor (that
is, the word is part of the prediction, like in the case of subcategorized prepositions, see above). This can cause
a situation where the derivation of some word at position i occurs before the derivation of some word at position
j (<i), which seems in contrast with the incremental assumption. For example, when a verb subcategorizes for a
preposition, the elementary tree for the verb can include the preposition too. Verb and preposition can possibly be
pushed apart by the adjunction of some adverbial to the VP node. This adjunction occurs in the linear order between
the verb and the preposition. Thus, the derivation of the preposition precedes the derivation of the adverbial; the
reverse of the linear string order. In case the predicted nodes are headed, the terminal symbol (i.e. the lexical
anchor) is checked for redundancy, when it is the current word. A node such that there are no predicted nodes in
its subtree is said to be complete. In the final tree all nodes must be complete.

The left-to-right order constraint, combined with the standard conditions on trees implies that only a part of
the left context is accessible for continuation; that is, not all the nodes can be sites of substitutions or adjunctions.
Specifically, elementary trees can be attached only in the strict sequence given by the terminal string of the lexical
anchors. The accessible nodes form the so-called fringe. In context-free incremental processing, such as left-to-
right top-down parsing, the fringe corresponds to the right frontier. However, because of the presence of predicted
nodes and the possibility of the adjoining operation, the fringe needs to be a bit more articulated, with nodes that
can be the site of adjunction and nodes that can be site of substitution.

36 Proceedings of TAG+6

NP(minds)

NP(minds) PP(of) >

|DT(the) | |NNS(minds) | |IN(of) | (NPEB(...L

Figure 5: A fringe exemplifying the second item in the definition.

Here is the definition of the fringe in the left context S; 1:
e at the beginning, the derivation process postulates a left context given by the start symbol;

e at the step i, we take the path leading from the preterminal node for the word w; 1 to the root:

— if there are no nodes marked for substitution, all the nodes on this path are marked for adjunction;

— if there are nodes marked for substitution, take the lowest common ancestor of w;_; and the leftmost node
marked for substitution; all the nodes on the two paths to the common ancestor are marked for adjunction.

These constraints on the fringe preserve the linear order of tree nodes with respect to word order. In the
figures 5 and 6 there are two examples of fringes. Figure 5 shows the fringe at a point where a node is marked for
substitution. Figure 6 shows the fringe after the substitution node has been filled. It can be seen that the number of
nodes available for adjunction increases dramatically after the substitution operation.

4. Derivation of cross-serial dependencies

In the following paragraphs we will give a sketch of how the formalism can be used for creating an incremental
derivation of a Dutch verb-raising sentence, which is an example of a cross-serial dependency construction. This
construction is well-known as a test-bed for TAG-based systems, because it requires greater than context-free
expressive power.

The example sentence is below:

Q) Jan Piet Marie zag helpen zwemmen.
Jan Piet Marie saw help swim.
(i.e. Jan saw Piet help Marie to swim.)

Assume that the elementary tree for a noun phrase can also include elements of the sentential structure in
which the noun phrase appears (this could be seen as an analogue of type raising in Combinatorial Categorial
Grammar (Steedman, 2000)) so that the elementary tree for “Jan” will be as in Figure 7.

The tree includes information that the noun phrase appears as the subject of a sentence whose verb subcat-
egorizes for a clause, and the verb is extraposed (Kroch and Santorini, 1991).6 The next word, “Piet” has an
elementary tree with an identical format to that of “Jan”. The left context (that is the elementary tree of “Jan”) is
adjoined into that of “Piet””, creating a new partial derived tree, which is in turn adjoined to the elementary tree
for Marie, yielding the new partial derived tree shown in Figure 8.

6. Whether so much predicted information would be included in a psychologically plausible elementary tree is debatable.
For the purposes of parsing, some forms of underspecification could be used, in which case the relation between parsing and
grammatical derivations would be weakened.

7. This is non standard in TAG, the left context behaves like an auxiliary tree, and adjoins into the elementary tree of “Piet”.

Lombardo and Sturt 37

NP(minds)

|DT(the) | | NNS(minds) | |IN(of) | P(investors) _D

NNP(Treasury)

= ~
(_NP(investors)

NNS(investors)

Figure 6: A fringe exemplifying the first item in the definition.

Notice that at this point, the lowest substitution node is close to the root of the tree, so, according to the
definition of the fringe, adjunctions could occur anywhere in the dotted line shown on the figure.
The final three verbs of the sentence are in the respective extraposed head positions at the end of the sentence.

5. Conclusions and future extensions

In this paper, we have illustrated informally an approach that makes TAG a dynamic grammar, that is a
formalism suitable for the incremental processing of natural language. The dynamic version of the TAG (DV-
TAG) involves elementary trees and attachment operations that obey the left-to-right full-connectedness constraint
due to incrementality.

The linguistic examples we have shown reveal the major issues of the approach. Beyond the formalization
of the approach, two extensions are planned in the near future. On the theoretical side, we are going to model
the incremental attachment of extraposed modifiers (such as the phrase “with blond hair” in “A man came in with
blond hair”). This type of phenomenon is challenging, since it requires adjunction in two places in the left context
simultaneously; one adjunction will represent the surface position of the extraposed element, and the other will
represent its trace. If the trace and the extraposed element must be in the same elementary tree, then it may be
necessary to add a regular expression to the elementary tree, which can match an arbitrary number of intervening
nodes between the surface attachment point and the trace. An alternative solution could be the use of Synchronous
TAGs. On the practical side, we aim to extract a (large scale) grammar from a treebank. The extractor will be based
on the algorithms presented in (Xia, Palmer and Joshi, 2000), especially in the initial stage, where treebank trees
are transformed into derived trees. The resulting grammar can then be used to build models of human language
processing on a realistically large scale.

References

Berwick, R. and A. Weinberg. 1984. The grammatical basis of linguistic performance: language use and acquisition. MIT
Press.

Frank, R. and W. Badecker. 2001. Modeling syntactic encoding with Tree Adjoining Grammar. In Talk presentd at the CUNY
conference on sentence processing.

Joshi, A, L. Levy and M. Takahashi. 1975. Tree adjunct grammars. Journal of the Computer and System Sciences, 10(1):136—
163.

38 Proceedings of TAG+6

/\

S*(...i V(1)(...0)
/ \
NP(Jan) VP(...i
/\
NNP(Jan) S$(...) V(2)(...0)
e(1)(...)

daVinci V2.1

Figure 7: Elementary tree for Jan. Notice that the internal S node is marked for Adjunction. In the derivation of
the example sentence, it is this node to be adjoined in “Piet” elementary tree.

Kroch, A. and A. Joshi. 1985. The linguistic relevance of Tree Adjoining Grammar. CIS Technical Report MS-CIS-85-16,
University of Pennsylvania.
Kroch, A. and B. Santorini. 1991. The derived constituent structure of the West Germanic verb-raising construction. In
R. Freidin, editor, Principles and Parameters in comparative grammar. MIT Press, Cambridge: MA, pages 269-338.
Lombardo, V. and P. Sturt. 2002. Incrementality and lexicalism: A treebank study. In S. Stevenson and P. Merlo, editors,
Lexical Representationsin Sentence Processing. John Benjamins.

Marslen-Wilson, W. 1973. Linguistic structure and speech shadowing at very short latencies. Nature, 244:522-533.

Milward, D. 1994. Dynamic Dependency Grammar. Linguistics and Philosophy, 17(6).

Phillips, C. 1998. Linear Order and Constituency. Linguistic Inquiry, in press.

Schabes, Y., A. Abeillé and A. K. Joshi. 1988. Parsing strategies with “lexicalized” grammars: Applications to tree adjoining
grammars. In 12th International Conference in Computational Linguistics, pages 578-583, Budapest, August.

Stabler, E. P. 1994. The finite connectivity of linguistic structure. In C. Clifton, L. Frazier and K. Reyner, editors, Perspectives
on Sentence Processing. Lawrence Erlbaum Associates, pages 303-336.

Steedman, M. J. 2000. The syntactic process. A Bradford Book, The MIT Press.

Thompson, H. S., M. Dixon and J. Lamping. 1991. Compose-reduce parsing. In Proc. of 29th ACL, pages 87-97.

Xia, F., M. Palmer and A. Joshi. 2000. A Uniform Method of Grammar Extraction and Its Applications. In Proc. of the
EMNLP 2000.

daVinci V2.1

Lombardo and Sturt

Figure 8: Derived tree for the sequence 2~ Pi~ Marie

B | vErh |
IS$() | Ve |
/ ,/
/
i /
! /

/ /
.\| S(.) | " v |

< \
N N
N AN
\\ N .
\ N
[vP@an | A N
/ / 7
7/ I
Vs e
/ Ve
/
[NNP(an) | I’|S(...i) | J V()(..)
\ \\
AN N N
N \
\ N
\ \\
[veeien | o Leend) e]
/
, 1
/ /
// /
/
NNP(Piet) | 7 [S(.K) | y
/
/ //
/ /
/ /
/ /7
/
/[NP(Marie) |, vee | le@)(.) |
\ L7
S <L
NNP(Marie) | va.k |

e(3)(...k)

Resumptive Pronouns, Wh-island Violations, and Sentence
Production

Cassandre Creswell
University of Pennsylvania

1. Introduction

In spontaneous speech, English speakers produce relative clauses whose structures violate wh-island con-
straints but where resumptive pronouns appear in place of the gap/trace normally found in a relative clause. It is
difficult to explain these island-violation remedying resumptive pronouns in a model of sentence production where
only grammatically-licensed trees are available to the speaker’s production system. This paper argues that the only
explanation for these island-violating relative clauses in such a model of sentence production is that they are fully
grammatical constructions, whose marginal status reflects non-syntactic factors.

The paper is structured as follows. The next section outlines the problem that resumptives in island contexts
present for a model of sentence production using TAG. Section 3 argues that the problem can be resolved given the
existence of resumptive pronouns in English in non-island contexts. Section 4 discusses two potential diffiulties
for the analysis. Section 5 outlines some possible implications of the analysis for the typology of relative clauses
in general. Finally, Section 6 concludes with suggestions for further investigation.

2. The problem of “remedying” island violations

2.1. Accounting for island violations in TAG

Frank (2002) presents a conception of grammar applying the machinery of tree adjoining grammar within an
independent theory of well-formedness of grammatical structures. The domains over which any structural depen-
dencies are expressed are the elementary trees in the system. The TAG operations of substitution and adjunction
can then apply to any of the set of well-formed trees. No movement transformations outside the domain of the
elementary tree are possible in this system.

In order to account for the well-known phenomena of island violations, rather than stating principles constrain-
ing wh-movement (or the location of traces of this movement), Frank’s theory instead rules out the elementary and
auxiliary trees needed to derive structures with island-violations primarily based on two independent principles: 1)
the Theta Criterion: only nodes that are selected for can appear in an elementary tree; and 2) in order to obey the
requirement that derivation trees should be context-free, a well-formed derived auxiliary tree rooted in X cannot
be derived via substitution of a tree with an X foot node into a tree with an X root node.

For example, extraction from an NP complement, as in (1), is ruled out because in addition to the legitimate
elementary tree rooted in wrote in (2), it would require the impossible auxiliary tree in (3).

(1) *What book; did you hear [the claim that Sofia wrote t;]?

(2) CP
NP; C’
—_—
what book

that Sofia wrote ¢;

* This paper has benefited from the useful comments of Tonia Bleam, David Chiang, Na-Rae Han, Elsi Kaiser, Kieran
Snyder, and two anonymous reviewers, among others.

© 2002 Cassandre Creswell. Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and Related
Frameworks (TAG+6), pp. 40-47. Universita di Venezia.

Creswell 41

&) c’
i NP VP
yc|>u v NP

hear the claimC’

The latter is ill-formed because neither of the trees that make it up—an elementary tree rooted in C’ and anchored
by hear and an elementary DP tree anchored by claim taking a C’ complement—are themselves a C* auxiliary
tree. Extraction from wh-islands, relative clauses, adverbial adjuncts, and sentential or DP subjects are ruled out
in similar ways.

2.2. Remedying island violations with resumptive pronouns

In unplanned speech speakers of English sometimes produce utterances with a resumptive pronoun in place of
the gap or trace which would be an island-violation if a wh-word had been extracted from that position, as shown
in the naturally-occuring examples of extraction from a wh-island, (4a), a relative clause, (4b), an adverbial clause,
(4c), and a subject in (4d).

(4) a. There are always guests who | am curious about what they are going to say. (Prince (1990)’s 3a)

b. That asshole X, who I loathe and despise the ground he walks on, pointed out that...(Prince (1990)’s
5a)

c. Apparently, there are such things as bees in the area which if you’re stung by them, you die. (Prince
(1990)’s 5b)

d. You have the top 20% that are just doing incredible service, and then you have the
group in the middle that a high percentage of those are giving you a good day’s work...
(http:/lwww.ssa.gov/history/WEIKEL.html)

Kroch (1981) argues that such resumptive pronouns are the result of a processing effect. Although a depen-
dency between a wh-word and a gap in these positions is ungrammatical, as an artifact of how sentence production
proceeds, forms like those above are uttered. Kroch explicitly rejects any possibility of a formal solution within the
grammar to account for these forms. He uses an incremental model of sentence production in which a wh-element
is produced in a fronted position before the entire sentence has been planned out, allowing the utterance of fluent
speech. Rather than having to wait to create the entire sentence in which the distance between the wh-element
and its gap is potentially unbounded, the speaker can begin speaking while the remainder of the structure is being
constructed. This wh-element is adjoined to a full clause where it appears again in its base-generated position.
When the repeat occurrence is reached in the course of production, it is not pronounced. If the sentence produced
has an island-violation, then a pronoun or NP is inserted in the base-generated position. In this model, resumptive
pronouns are expressly inserted as a “last resort” to avoid violating the ECP by leaving an ungoverned trace. The
resumptive pronoun remedies the violation because an empty category will no longer be present.

2.3. Sentence production using TAG

In a TAG-based model of incremental sentence production (Ferreira, 2000; Frank and Badecker, 2001), el-
ementary trees are the basic “building blocks” of generation. Selecting a lexical item corresponds to selecting
an elementary tree. The grammatical properties of that tree’s structure are a natural domain for explaining the
planning commitments a speaker makes while producing a sentence. The grammar provides a set of trees to work
with, and as sentence planning proceeds, the speaker attempts to select the correct trees to encode the meaning she
wishes to express and to put them together in a particular configuration. The only source of production errors is
incorrectly combining trees; ill-formed elementary (and auxiliary) trees never arise. To produce a structure with a
wh-dependency, the speaker selects the elementary tree headed by the main verb with the appropriate wh-element

42 Proceedings of TAG+6

fronted. In a structure with a long-distance dependency, additional material can be adjoined in between the wh-
element and the remainder of the clause it originated in, but the commitment to the main clause structure has
already been made.!

In this model of production where we assume that a speaker only has grammatical resources with which
to work, we can not use Kroch (1981)’s explanation of the appearance of resumptive pronouns in island-violation
contexts. The resources needed to produce island-violating structures are not available in the grammar that licenses
the set of tree building blocks. On the face of it then, it seems that the existence of resumptive pronouns in island
violating contexts would prove devastating for this model of sentence production. Based on the assumptions that
1) the processing system has only grammatically-licensed trees with which to create larger structures and 2) the
structures needed to extract from island-violation contexts are not grammatically-licensed, speakers could not be
remedying violations that should not even be created given their underlying grammars. As we will argue in the
following section, however, the underlying grammar of English speakers independently requires the resources
needed to produce these forms. Hence, we can preserve both the assumptions above and still have a grammar that
characterizes all the structures that English speakers use.

3. Resumptive pronouns as grammatical resource
3.1. Resumptives in non-island contexts

Resumptive pronouns appear in relative clauses in English in non-island violation contexts, as in (5), from
Prince (1990).
(5) a. My son, God bless him, he married this girl which | like her. (Prince’s 28a)
b. If there’s any message that she can forward it to us, then...(Prince’s 15b)
c. You get a rack that the bike will sit on it. (Prince’s 15c)
d. I have a friend who she does all the platters. (Prince’s 4c)
Prince presents an analysis of the function of this type of resumptive pronoun, claiming that they serve as normal
discourse pronouns rather than as a type of bound pronoun or trace. These pronouns appear in contexts where
the relative clause is being used simply to predicate additional information about a discourse entity evoked by the
head noun, not to assist the hearer’s identification of the referent evoked by the head noun. For example, they are
far more common with non-restrictive relatives and relatives modifying indefinite NPs. Additional evidence she
presents for the “discourse pronoun” analysis are cases where a co-referential demonstrative or full NP or even a
non-coreferential (but related) NP appears instead of a resumptive pronoun, as in (6) (Prince’s 34(a-d)).
(6) a. Ihadahandoutand notes from her talk that that was lost too.
b. He’s got this lifelong friend who he takes money from the parish to give to this lifelong friend.
c. | have a manager, Joe Scandolo, who we’ve been together over twenty years.
d. You assigned me to a paper which | don’t know anything about the subject.

In order to produce relative clauses like these, speakers must be using structures like those in (7).
(7 a NP
NP* Ccp

NP1 C’
C/\IP
| /\

null NP, | VP

N
VO NP5l

1. This does not rule out the possibility that the production process could be in some sense non-deterministic. That is,
when there is more than one grammatical way to encode the meaning to be expressed, the speaker may be able to retain and
manipulate more than one possible main clause tree during production. The possibility of a non-deterministic production model
is relevant to the discussion in Section 5 below.

Creswell 43

b NP
NP* CP
NP, c’
| /\
€ C IP
| /\
that NP, VP
/\
VO NPsl

Here NP; would have features requiring the substituting NP to be a wh-word. But NP, and NP3 could have any
NP substituted within them, including a pronoun coreferential with the NP to which this tree adjoins.

3.2. Generating resumptives in island contexts

Because the production system necessarily allows relative clause auxiliary trees like those in (7), we can now
explain where speakers find the grammatical resources to produce relative clauses with island-violating resumptive
pronouns. The trees in (7) are projections of a head verb. As such any finite verb can project this (or a related)
structure. Any legitimate auxiliary tree can be adjoined into it. There is no syntactic dependency between the
relative pronoun and any of the lower NPs. Therefore, there needs to be no tree at any point in the derivation that
reflects such a local dependency. For example, in order to derive (8a), we now only need a relative clause auxiliary
tree with die as its head, into which we substitute which and you, as in (9b).

(8) a. bees which if you’re stung by them, you die
b. * bees which; if you’re stung by t;, you die

© a c’
e

/\

C C’

||f IL

b NP
NP* CP
which cC’
/\
C IP
| N
null NP VP
| |
you die

An initial tree headed by stung can then be substituted into a tree headed by if; the resulting tree, (9a), can be
adjoined into the die tree, (9b). Neither of the suspect trees which would be required in some derivation of the
unacceptable NP (8b), e.g. those in (10), are needed to generate the resumptive pronoun version in (8a).

44 Proceedings of TAG+6

(10) a. c’
cC IP

PN —_
C C youdie

if
b c’
/\
C IP
TN
NP VP
| |
you die

As a result, the impossibility of generating island-violations without resumptive pronouns is preserved in this
analysis.

4. Potential problems

In the previous sections we saw that given the elementary trees needed to generate resumptive pronouns in
relative clauses without island-violations, the constraints preventing the generation of island violations need not
be altered in order to correctly allow a TAG of English that generates resumptive pronouns in otherwise-island-
violating contexts.

This section will discuss two potential difficulties for the syntactic analysis of resumptives in island contexts
given above. The first is to explain the apparent overgeneration of such an analysis. The second is to explain why
resumptives in island and non-island contexts in English are often characterized as marginally acceptable if in fact
the grammar generates them.

4.1. Overgeneration

The relative clause trees given in (7) would overgenerate by allowing non-gap-containing relative clauses, like
(11-12):

(11) the police officer who John prefers spinach

(12) the smell that my mom is baking bread

Relatives like (11) could be ruled out with the pragmatic requirement that relative clauses must make a statement
about their head NP (Kuno, 1976), in that there is no easily apparent relation between the head and the relative
clause. The oddness in English of example (12) is more difficult to explain.

These forms are far more common in topic-oriented languages like Korean and Japanese, as illustrated by the
perfectly acceptable relative clause in (13).

(13) emeni-ka ppang-ul kwup-nun naymsay
mom-Nom bread-Acc bake-Rel smell

‘smell that my mom is baking bread” (Na-Rae Han, p.c.)

The pattern here could be explained by a cross-linguistic difference in the pragmatics of structures where a NP is
adjoined to a clause, main or relative, without a gap. In English, these structures are possible, as shown in (6d)
above, but the relation between the NP and clause is subject to strict pragmatic restrictions. In a language like
Korean, however, the discourse conditions such constructions are subject to are less restrictive.?

2. This difference in the pragmatic factors conditioning identical or similar syntactic forms is not unknown in the literature.
See (Prince, 1999) for a discussion of the different restrictions on the conditions allowing the formally identical constructions
of Focus Movement in Standard English and Yiddish-Movement in Yiddish English.

Creswell 45

4.2. Marginal acceptability

One issue that remains to be explained in this analysis is the following: if these sentences are created using
legitimate parts of the grammar, why then are they regarded as being only marginally acceptable? I will suggest
three reasons here; two of which apply to both island- and non-island resumptive pronoun uses.

First, resumptive pronouns in both island and non-island contexts are primarily confined to informal, spoken
registers in English. In addition, for reasons to be discussed below, they are infrequent forms. Both of these factors
are reasons linguists might be inclined to classify them as only “marginally acceptable.” 3

Secondly, relative clauses are supposed to make a statement “about” their head noun (Kuno, 1976). This
functional requirement might make processing island-violating relative clauses difficult for hearers because the
resumptive NP appears in a position unlikely to be the theme of the clause; that is, in general, sentences are
unlikely to be “about” an NP embedded in an adjunct clause, a relative clause, or other island context.

One final possible reason for the marginal acceptability of resumptives in relative clauses applies to both
island- and non-island violating contexts. Given the predominance of gap-containing relative clauses in English,
hearers expect to find a gap in a relative clause. This gap allows the semantic relation between the extracted NP
and the relative clause to be computed directly from the syntax. When a resumptive pronoun (or other NP) appears
in such a slot instead, additional non-syntactic processing is required to compute this relation. This explains
why native speakers often judge resumptive pronouns in non-island violating contexts as unacceptable as those in
island-violating contexts (although they produceboth.)

Given the statistical preference in English for gap-containing relatives, for English speakers constructions
with resumptive pronouns in both island and non-island contexts could be explained as a result of poor planning
commitments during the production process. Under this line of explanation, we would hypothesize that at the
point at which they begin selecting trees to encode meaning, speakers have already committed to combining more
information into a single utterance than they, under ideal circumstances, would wish to express in just a main
clause and a relative clause. Rather than using two separate main clauses to make two separate predications, they
are “stuck” with using one main clause and a relative clause tree that is essentially a main clause adjoined in as a
modifier of an NP.

5. Implications for the typology of relative clauses

As discussed extensively in the literature, the syntactic strategies for relativizing within a given language are
closely tied to the Accessibility Hierarchy (AH). In general, the lower on the AH an NP’s syntactic role is, the
less likely a language is to use a gap rather than a resumptive when relativizing that NP (Kuno, 1976; Keenan
and Comrie, 1977; Prince, 1990). In addition, for any position on the AH, if it can be relativized using a gap, all
positions higher than it can too.

Three questions that this analysis might be expected to shed light on with respect to the strategies for rela-
tivization will be examined:

e Why are NPs low on the Accessibility Hierarchy harder to relativize with gaps?
e Are gaps always easier to process than resumptives?
e Are resumptives always interpreted as discourse pronouns (and gaps as bound)?

5.1. Relativization strategy and the Accessibility Hierarchy

The syntactic analysis given here predicts only that in non-island contexts either gaps or resumptives should
be possible, and in island contexts only the latter are possible. However, in English, relativization of NPs lower on
the AH may be more likely to appear as either gaps or resumptives in relatives, as in the datives in (14) [=Prince
(1990)’s (7)a-c)].

(14) a. ...the man who this made him feel sad...
b. Some of the same judges who we told them that if you mess with John Africa...

c. He looks like one of those guys you got to be careful throwing them fastballs

3. Although itis an important question, whether such a classification is meaningful will not be further discussed here. Instead,
we will simply take this sub-acceptability as a given and explore further reasons for it.

46 Proceedings of TAG+6

Besides the thematic claim of Kuno (1976) mentioned above, we do not know why the AH is related to
relativization. We can only speculate why producing a relative clause where the relativized NP is “unthematic” and
gapped is difficult. With respect to production models based in TAG, taking the AH into account in relativization
would possibly require the activation of multiple trees in cases where either resumptives or gaps are possible.* The
lower the NP role is on the AH, the more equally the trees might be weighted probabilistically allowing either to
be produced with equal likelihood.

5.2. Relative processing difficulty of gaps and resumptives

English is unusual in its ability to relativize from even rather deeply embedded positions (Keenan, 1985). As
discussed above in Section 4.2 the comprehension system of English is likely affected by the relative frequency
of gaps vs. resumptive pronouns. Because gap-containing forms are the more frequent, and hence less “marked”,
form, they should be easier to comprehend. In addition, they should be the preferred form to produce. In other
languages where the break between gaps and resumptives falls at a different position on the Accessibility Hierarchy,
and so the frequency of resumptive forms is much greater, the relative ease of processing resumptive relative clauses
in both production and comprehension may very well differ from that in English.

5.3. Interpretations of gaps and resumptives

In English, resumptive pronouns in non-island contexts have a specific discourse function, in that they serve
as discourse pronouns. This appears to correspond to the syntactic analysis given here, because in resumptive
relative clauses, any NPs within the relative clause are unbound by the relative pronoun, while in the case of a
gap/trace, there is syntactic binding. However, zero pronouns can function as discourse pronouns in numerous
languages, and phonologically explicit pronouns can function as bound pronouns in many languages, including
English. Therefore, the syntactic analysis here does not necessarily have implications for the semantic/pragmatic
interpretation of the two strategies of relativization examined here. Any typological claims would need to be based
on corpora of naturally-occurring examples, in order to take into account the properties of their contexts.

6. Conclusion and areas for further investigation

This paper has presented evidence to resolve the paradox that resumptive pronouns in island-violating contexts
would otherwise present for TAG-based model of sentence production. | have argued that given the grammatical
resources of English, specifically resumptive pronouns in non-island violating relative clauses, resumptive pro-
nouns in island-violating contexts are part of the grammatical competence of speakers of English. Their marginal
acceptability is most likely due to frequency factors affecting their processing.

In order to confirm whether these forms are actually the result of “poor planning,” psycholinguistic experi-
mentation is needed. A focus in such experimentation on how and why speakers decide to split up information
they encode into units (a main clause with attached subordinate vs. two main clauses) would be particularly useful.

An additional linguistic area of exploration would be whether the syntactic analysis here of resumptives in
island vs. non-island relatives could be extended to their role in other related structures, like wh-questions and
topicalization. Preliminary evidence seems to support an affirmative answer for topicalization structures, as shown
by the distribution in (15-18).

(15) [Most of those people]; | never met §;. (SSA)°

(16) And [those that hadn’t];, | assumed they; were interested in basketball or football, so it was not difficult to
figure out a way to get to see them. (SSA)

(17) But [the field office claims of the Claims Manual];, you tended to learn pretty much all that was in it; as a
Claims Rep...(SSA)

(18) (Being Unix, it comes with Gnu Emacs out of the box,)
Latex there are also a few options. (Email: T.M.)

Here, we have a coreferential gap in (15), a coreferential pronoun in (16), a coreferential pronoun in an NP-
complement island in (17), and finally one with neither a coreferential NP nor a gap in (18). On first glance then, it

4. See Ferreira (2000) for a discussion of the simultaneous activation of multiple trees in sentence production.
5. The SSA marked examples are from transcribed oral histories at http://www.ssa.gov/history/orallist.html.

Creswell 47

appears that speakers do have the option of both of the following trees for extraction from full clauses on analogy
with the options they have for relatives clauses:

(19) CP
NPJ C’
C IP
| N
null NP} VP
N
V NP}
(20) CP
NP;| C’
C IP
|
null NP{, VP
P
V
References

Ferreira, Fernanda. 2000. Syntax in Language Production: An Approach Using Tree-adjoining Grammars. In L. Wheeldon,
editor, Aspects of Language Production. MIT Press, Cambridge, MA.

Frank, Robert. 2002. Phrase structure composition and syntactic dependencies Cambridge, MA: MIT Press.

Frank, Robert and William Badecker. 2001. Modeling syntactic encoding with incremental tree-adjoining grammar. In
Proceedings of the 14th Annual CUNY Conference on Human Sentence Processing, University of Pennsylvania.

Keenan, Edward. 1985. Relative Clauses. In Timothy Shopen, editor, Language Typology and Syntactic Description, Vol. 11.
Cambridge University Press.

Keenan, Edward and Bernard Comrie. 1977. Noun Phrase Accessibility and Universal Grammar. Linguistic Inquiry, 8(1):63—
99.

Kroch, Anthony. 1981. On the role of resumptive pronouns in amnestying island constraint violations. In Papers fromthe 17th
regional meeting of the Chicago Linguistic Society, pages 125-35, Chicago. Chicago Linguistic Society.

Kuno, Susumo. 1976. Subject, theme and speaker’s empathy: A reexamination of relativization phenomena. In Charles Li,
editor, Subject and topic. Academic Press, New York, pages 417-44.

Prince, E. F. 1999. How not to mark topics: ‘Topicalization’ in English and Yiddish. University of Pennsylvania.

Prince, Ellen. 1990. Syntax and discourse: a look at resumptive pronouns. In Kira Hall, Jean-Pierre Koenig, Michael
Meacham, Sondra Reinman and Laurel Sutton, editors, Proceedings of the Sixteenth Annual Meeting of the Berkeley
Linguistics Society. Berkeley Linguistics Society, Berkeley, CA, pages 482-97.

Statistical M or phological Tagging and Parsing of Korean with
an LTAG Grammar

Anoop Sarkar and Chung-hye Han

University of Pennsylvania Simon Fraser University

1. Introduction

This paper describes a lexicalized tree adjoining grammar (LTAG) based parsing system for Korean which
combines corpus-based morphological analysis and tagging with a statistical parser. Part of the challenge of
statistical parsing for Korean comes from the fact that Korean has free word order and a complex morphological
system. The parser uses an LTAG grammar which is automatically extracted using LexTract (Xia et al., 2000) from
the Penn Korean TreeBank (Han et al., 2002). The morphological tagger/analyzer is also trained on the TreeBank.
The tagger/analyzer obtained the correctly disambiguated morphological analysis of words with 95.78/95.39%
precision/recall when tested on a test set of 3,717 previously unseen words. The parser obtained an accuracy of
75.7% when tested on the same test set (of 425 sentences). These performance results are better than an existing
off-the-shelf Korean morphological analyzer and parser run on the same data.

In section 2, we introduce the Korean TreeBank and we discuss how an LTAG grammar for Korean was
extracted from this TreeBank. Also, we discuss how the derivation trees extracted from the TreeBank are used in
the training of the statistical parser. Section 3 presents the overall approach of the morphological tagger/analyzer
that we use in the parser. A detailed discussion about the parser is presented in section 4. This section also presents
the method we used to combine the morphological information into the statistical LTAG parser. We also provide
the experimental evaluation of the statistical parser on unseen test data in section 4.

2. Automatically Extracted LTAG Grammar for Korean

In this section we describe the Penn Korean TreeBank and the nature of the extracted LTAG grammar from
this TreeBank.

2.1. Korean TreeBank

The LTAG grammar we use in the parser is extracted using LexTract (Xia et al., 2000) from the Penn Korean
TreeBank. The derivation trees obtained by using LexTract on the Treebank are used to train the statistical parser.
The TreeBank has 54,366 words and 5,078 sentences. The annotation consists of a phrase structure analysis for
each sentence, with head/phrase level tags as well as function tags (e.g., -SBJ, -OBJ) and empty category tags for
traces (*T*) and dropped arguments (*pro*). Each word is morphologically analyzed, where the lemma and the
inflections are identified. The lemma is tagged with a part-of-speech (POS) tag (e.g., NNC: noun, NPN: pronoun,
VV: verb, VX: auxiliary verb), and the inflections are tagged with inflectional tags (e.g., PCA: case, EAU: inflection
on verbs followed by an auxiliary verb, EPF: tense, EFN: sentence type). Example TreeBank trees are given in
Figure 1. The figure on the left is an example of a bracketed structure for a simple declarative with canonical
subject-object-verb order. The figure on the right is an example with a displaced constituent. In this example, the
object NP ‘3-8’ appears before the subject, while its canonical position is after the subject. The sentences used
to illustrate bracketing structures in Figure 1 are romanized, glossed and translated in the following examples:

(1) a Cey-ka kwanchuk sahang-ul pokoha-yess-supnita.
I-Nom observation item-Acc report-Past-Decl

‘I reported the overvation items.’

b. Kwenhan-ul nwukwu-ka kaci-ko iss-ci?
authority-Acc who-Nom have-AuxConnective be-Int
‘Who has the authority?’

We would like to thank Fei Xia for the use her LexTract package without which we could not have started this research.
We are also indebted to Martha Palmer, Aravind Joshi and David Chiang for their helpful suggestions.

*

© 2002 Anoop Sarkar and Chung-hye Han. Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and
Related Frameworks (TAG+6), pp. 48-56. Universita di Venezia.

Sarkar and Han 49

(S (NP-SBJ #|/NPN+7}/PCA) (S (NP-OBJ-1 A @/NNC+2/PCA)
(VP (NP-OBJ %=/NNC (S (NP-SBJ */NPN+7}/PCA)
AFaHNNC+S/PCA) (VP (VP (NP-OBJ *T*-1)
1B 7 3HVV+Q1/[EPF+4 1] tHEFN) 7} 2] IVV+31/EAU)
JISEN) 91/ X+2] [EFN))
2/SFN)

Figure 1: Example TreeBank Trees

2.2. LTAG formalism

LTAGs are based on the Tree Adjoining Grammar formalism developed by Joshi and his colleagues (Joshi,
Levy and Takahashi, 1975; Joshi and Schabes, 1997). The primitive elements of an LTAG are elementary trees
which are of two types: initial trees (« trees) and auxiliary trees (3 trees). Initial trees are minimal linguistic struc-
tures that contain no recursion. They include trees containing the phrasal structures of simple sentences, NPs and
so forth. Auxiliary trees represent recursive structures, which are adjuncts to basic structures, such as adverbials,
adjectivals and so forth. Auxiliary trees have unique leaf node, called the foot node (x), which has the same syn-
tactic category as the root node. Each elementary tree is associated with a lexical item (anchor) and encapsulates
all arguments of the anchor, possessing an extended domain of locality. Elementary trees are combined by two
operations: substitution and adjunction. In the substitution operation, a node marked for substitution (}) in an
elementary tree is replaced by another elementary tree whose root category is the same as the substitution-marked
node. In an adjunction operation, an auxiliary tree is inserted into an initial tree. The root and the foot nodes of the
auxiliary tree must match the node label at which the auxiliary tree adjoins. The combination of elementary trees
produces two structures: derived and derivation trees. Derived trees correspond to phrase structure representation
and derivation trees are a record of the history of the combination process.

2.3. Extracted LTAG grammar

We use LexTract (Xia et al., 2000) to convert the phrase structure trees of the Korean TreeBank into LTAG
derivation trees. Each node in these derivation trees is an elementary tree extracted from the Korean TreeBank by
LexTract. The elementary trees of the LTAG Korean grammar are exactly the set of elementary trees used in the
derivation trees obtained using LexTract. For example, the elementary trees extracted from the TreeBank bracketed
structures in Figure 1 are given in Figure 2. The entire extracted grammar contains 632 elementary tree template
types and 13,941 lexicalized elementary tree types (Xia et al., 2001).

As mentioned earlier, in addition to the elementary trees, LexTract produces derived and derivation trees
for each TreeBank tree. For instance, for the second TreeBank tree in Figure 1, & °F and & 3 trees are each
substituted into 7 =] tree, and I tree is adjoined onto the VP node of 7 =| tree. This produces the derived and
derivation trees in Figure 3.

3. TreeBank-trained Morphological Tagger/Analyzer

Korean is an agglutinative language with a very productive inflectional system. This means that for any NLP
application on Korean to be successful, some amount of morphological analysis is necessary. Without it, the
development of a statistical based parser would not be feasible due to the sparse data problem bound to exist in the
training data.

To avoid this problem in our parsing system, we use a morphological tagger/analyzer. This tagger/analyzer
also performs statistical disambiguation and it was trained on 91% of the Korean TreeBank. The tagger/analyzer
takes raw text as intput and returns a lemmatized disambiguated output in which for each word, the lemma is
labeled with a POs tag and the inflections are labeled with inflectional tags. This system is based on a simple sta-
tistical model combined with a corpus-driven rule-based approach, comprising a trigram-based tagging component
and a morphological rule application component.

50 Proceedings of TAG+6

NP NP NP S
| /\ . |
NPN NNC NP NNC NP, VP
| |_ | /\
A 5 A+ NP, WV
|
A
NP NP VP S
| | S
NPN NNC VP* VX NP 5
| | |
T Ae 2 N
/\
NP Vv
|
“T* 7}7)

Figure 2: Some examples of Extracted Elementary Trees

a7}A

NP/\S /’\
A1) 7721 BUR2
N,|\IC NP/\VP (6] aT

Ak
NPN VP VX
| P |
FF NPV Q)
| |
T 7}x
(b) Derivation tree

(a) Derived tree
Figure 3: Extracted Derived and Derivation Trees

Sarkar and Han 51

The tagger/analyzer follows several sequential steps to label the raw text with Pos and inflectional tags. After
tokenization (mostly applied to punctuations), all morphological contractions in the input string are uncontracted
(STRING CONVERSION). The known words are then tagged with tag sequences of the form Pos + inflectional-
tag (e.g., NNC+PCA, VV+EPF+EFN) extracted from the TreeBank, and unknown words are tagged with NNC
(common noun) tag, NNC being the most frequent tag for unknown words (MORPH TAGGING). Tags for unknown
words are then updated using inflectional templates extracted from the TreeBank (UPDATE TAGGING). And then
using the inflection dictionary and stem dictionary extracted from the TreeBank, the lemma and the inflections
are identified, splitting the inflected form of the word into its constituent stem and affixes (LEMMA/INFLECTION
IDENTIFICATION), creating the final output. This process is summarized in Figure 4. The proposed approach to
morphological analysis is different from other approaches in that the tagging phase precedes the morphological
analysis phase. This allows morphological analysis to be done deterministically through using the information
obtained from tagging. An example input to the tagger/analyzer and the final output are shown in Figure 5.

INPUT

[Tokenization]

[String Conversion]

[Morph Tagging]

[Update Morph Tagging]

Lemma/lnflection
Identification

OUTPUT

Figure 4: Overview of the Tagger/Analyzer

| nput :
::-“ ﬁ]— 2 é A]— ot

[o

vlo
H
ks
24
(14}
L
n
il

Cut put :
=/ NPN+ 7F/ PCA 2 Z/NNC g/ NNC+g/PCA & 2%/ W+/ EPF+4 -1 =F ./ SFN

Figure 5: Input and output from the morphological tagging phase

The performance of the morphological analyzer/tagger has been evaluated on the 9% of the Treebank. The test
set consists of 3,717 word tokens and 425 sentences. Both precision and recall were computed by comparing the
morpheme/tag pairs in the test file and the gold file. The precision corresponds to the percentage of morpheme/tag
pairs in the gold file that match the morpheme/tag pairs in the test file. And the recall corresponds to the percentage
of morpheme/tag pairs in the test file that match the morpheme/tag pairs in the gold file. This approach yielded a
precision/recall score of 95.79/95.39%.

An off-the-shelf morphological analyzer/tagger (Yoon et al., 1999) was tested on the same test set. This system
is reported to have obtained 94.7% tagging accuracy on a test set drawn from the same corpus as it was trained on.
For the sake of fair comparison, the output of the off-the-shelf tagger was converted to look as close as possible

52 Proceedings of TAG+6

| | precision/recall (%) |

Treebank trained | 95.78/95.39
Off-the-Shelf 29.42/31.25

Table 1: Evaluation of the Morphological Analyzer/Tagger

to the Treebank trained analyzer/tagger output, including the tagset. However, not all tokenization mismatches in
the off-the-shelf system could be resolved. The results (in Table 1) show, not surprisingly, that better performance
on test data from a particular domain is obtained by training on annotated data from the same domain. Even so,
the results from another system on the same data provide at least a baseline performance to compare against our
results.

4. Statistical LTAG Parser

The use of lexical information plays a prominent role in statistical parsing models for English. In this section,
we discuss how to extend a statistical parser that relies on bigrams of lexical dependencies to a morphologically
complex language like Korean. While these types of parsers have to deal with sparse data problems, this problem
is exacerbated in the case of Korean due to the fact that several base-forms of words can appear with a wide array
of morphological affixes. This problem is addressed by incorporating the morphological tagger/analyzer described
above, which significantly improves performance.

Apart from the use of a specialized morphological tagger/analyzer for Korean, our methods are language
independent and have been tested in previous work on the WSJ Penn English TreeBank (Marcus, Santorini and
Marcinkiewicz, 1993). As described in above, we use Lextract to convert the TreeBank (the same method is used
for both the English and the Korean TreeBanks) into a parser derivation tree for each sentence. The statistical
parsing model is then trained using these derivation trees.

4.1. Probability Models

The statistical parser uses three probabilistic models: one model for picking a tree as the start of a derivation;
and two models for the probability of one tree substituting or adjoining into another tree. Each of these models
can be trained directly using maximum likelihood estimation from the Lextract output. The probabilistic models
of substitution and adjunction provide a natural domain to describe the dependencies between pairs of words in a
sentence.

(Resnik, 1992) provided some early motivation for a stochastic version of Tree Adjoining Grammars and
gave a formal definition of stochastic TAG. Simultaneously, (Schabes, 1992) also provided an identical stochastic
version of TAG and also extended the Inside-Outside algorithm for CFGs (Lari and Young, 1990) to stochastic
TAGs. (Schabes, 1992) also performed experiments to show that a stochastic TAG can be learnt from the ATIS
Ccorpus.

A stochastic LTAG derivation proceeds as follows (Schabes, 1992; Resnik, 1992). An initial tree is selected
with probability P; and subsequent substitutions are performed with probability P, and adjunctions are performed
with probability P,.

For each 7 that can be valid start of a derivation:

Y Pi(r) =1

Each subsequent substitution or adjunction occurs independently. For possible substitutions defined by the
grammar:

Y Pirm—a)=1

where, « is substituting into node 7 in tree 7. For possible adjunctions in the grammar there is an additional factor
which is required for the probability to be well-formed:

Sarkar and Han 53

Py(r,n = NA) + > Pa(r,n = f) =1
5

where, 3 is adjoining into node 7 in tree 7, and P, (7,7 — NA) is the probability that there is no adjunction (NA)
atnode 7 in 7.

Each LTAG derivation D is built starting from some initial tree «.. Let us consider the probability of a deriva-
tion D which was constructed using p substitutions and ¢ adjunctions and r internal nodes which had no adjunction.
If we assume that each elementary tree is lexicalized (anchored) by exactly one word, then the length of the sen-
tence n = p+ ¢ + 1. In fact, in the experiments we report on in this paper, each elementary tree has exactly one
lexical item as an anchor.

PT‘(D,SZU)()...’UJ”): (2)
-Pi(aawi) X HPS(Tanaw — Tlawl) X
P

I Pa(rmw = ' 0') x

q

HPa(T,’I],U} — NA)

This derivation D can be drawn graphically as a tree where each node in this derivation tree is an elementary
tree in the original LTAG (this is the standard notion of a TAG derivation tree).

P; and P; can be written as the following lexicalized conditional probabilities which can be estimated from
the training data.

P(r) = P(a,w|TOP)
Py(1,n — a) Py(a,w' | 7,m,w)
Pa(TﬂI—W) Pa(ﬂ,w'|7',n,w)

Events for each of these probability models can be directly read from the LexTract output. Using maximum
likelihood estimation we convert these events into the above parameter values in our statistical parser.

For further details about decomposing these probabilities further to generalize over particular lexical items
and to make parsing and decoding easier see (Chiang, 2000). (Chiang, 2000) also has details about the standard
use of prior probabilities in statistical parsing for pruning which we use in our implementation.

The probability of a sentence S computed using this model is the sum of all the possible derivations of the
sentence.

P(S)=Y_Pr(D,S)
D

A generative model can be defined instead of a conditional probability to obtain the best derivation Dgesrt
given a sentence S. The value for (3) is computed using the Equation 2.

arg max
Dgest = D Pr('D | S)
arg max pr(p, 3)
D Pr(S)
arg max
= D Pi(D,S) ®)

The particular definition of a stochastic TAG is by no means the only way of defining a probabilistic grammar
formalism with TAG. There have been some variants from the standard model that have been published since the
original stochastic TAG papers.

54 Proceedings of TAG+6

For example, the restriction of one adjunction per node could be dropped and a new variant of standard
TAG can be defined which permits arbitrary number of modifications per node. This variant was first introduced
by (Schabes and Shieber, 1992; Schabes and Shieber, 1994). Tree Insertion Grammar (Schabes and Waters, 1995)
is a variant of TAG where the adjoining operation is restricted in a certain way and this restricted operation is
named insertion. TIGs are weakly equivalent to CFGs but they can produce structural descriptions that are not
obtainable by any CFG.

A stochastic version of insertion (Schabes and Waters, 1996) was defined in the context of Tree Insertion
Grammar (TIG). In this model, multiple trees can be adjoined to the left and to the right of each node with the
following probabilities:

Pu(m,n = NA) + > Pa(r,n—7) =1

7!

P.o(1,m = NA,) + ZPTG(T,T] —-7)=1
o

In our parser, we allow multiple adjunctions at a node and also we exploit TIG style probabilities P;, and
P,,. This was done so that the output easily convertible to the earlier dependency style parser that was used in the
project (with which we compare performance in our evaluation).

There are many other probability measures that can be used with TAG and its variants. One can easily go
beyond the bi-lexical probabilities that have been the main focus in this chapter to probabilities that invoke greater
amounts of structural or lexical context. (Carroll and Weir, 1997), for example, gives some additional probability
models one might consider useful when using TAGs.

An example output from the statistical parser is shown in Figure 6. In the parser (and in the Lextract output),
each elementary tree is anchored by exactly one lexical item. The gloss and translation for the example in Figure
6 is given in the following example:

) Motun hochwul tayho-nun mayil 24 si-ey pakkwui-key
every call sign everyday 24 hour-at switch-AuxConnect
toy-ciyo.
be-Decl

‘Every call sign is switched at midnight everyday.’

Index Word POS tag Elem Anchor Node Subst/Adjoin
(morph) Tree Label Address into (Index)

0 zE DAN BNP*=1 anchor root 2

1 & NNC BNP*=1 anchor root 2

2 s+= NNC+PAU aNP=0 anchor 0 6

3 w ADV BVP*=25 anchor 1 6

4 24 NNU BNP*=1 anchor 0 5

5 Al+o]| NNX+PAD pVP*=17 anchor 1 6

6 vl#+4] VV+ECS aS-NPs=23 anchor - TOP

7 F+x 8 VX+EFN BVP*=13 anchor 1 6

8 . SFN - - - -

Figure 6: Example derivation of a sentence reported by the statistical parser

4.2. Incorporating the Morphological I nformation into the Par ser

In this section we describe how the morphological tagger (described earlier) is incorporated into the smoothing
of the probability models that are used in the statistical parser.

The smoothing using the morphological tagger is handled as follows. The statistical parser has various proba-
bility models associated with it. One of the most crucial models is the one that decides on parser actions by using
statistics collected on pairs of words. For example, P, is the probability of combination of two trees anchored by

Sarkar and Han 55

On training data | On test data
Current Work 97.58 75.7
(YYoon, Kim and Song, 1997) | - 52.29/51.95 P/R

Table 2: Parser evaluation results

words w and w’ via adjunction of those trees. Here w and w' are the inflected forms of the word, while p and p' are
selected elements of the disambiguated morphological analysis of the inflected forms taken from the output of the
morphological tagger described above. Based on the part of speech, we might want to select different components
of the morphological analysis. For example, for nouns we might want to pick the final element which usually
corresponds to the case marking, while for verbs we might want to pick the stem which is the first element of the
analysis. We have the flexibility in the parser to choose which element should be picked. The best results were
obtained when we chose the stem. That is, for the results reported here we always pick the first element of the
morphological analysis for each inflected form.

Pr(t',p',w' | n,t,w,p)

We decompose this conditional probability into the following components:

Pr(t',p,w' | n,t,w,p) =
Pr(t' | n,t,w,p) x
Pr(p' | t',n,t,w,p) x
Pr(w' | p',t',n,t,w,p)
For each of the equations above, we use a backoff model which is used to handle sparse data problems. We

compute a backoff model as follows. Let e; stand for the original lexicalized model and e be the backoff level
which only uses the output of the morphological tagger described above:

Prel = PT(t’ | n:t;wap)
Praz PT‘(t’ | W:tap)

The backoff model is computed as follows:
A(€) X Pre, + (1 — Ac)) x Pre,

where \(c) = (CJf—D). ¢ = count(r) is the total count for each conditional probability model P, where P(l | r).
D is the diversity of Pr.,. diversity is defined as the number of distinct counts for Pr.,. Note that this backoff
model is implemented for each lexicalized model used in the statistical parser.

4.3. Experimental Results

In order to evaluate the statistical parser (combined with the tagger as described above), our parser was trained
on the derivations and corresponding LTAG grammar extracted from 91% of the TreeBank (4653 sentences). The
parser was then tested on 9% of the TreeBank which was reserved as unseen data (425 sentences). Note that the
parser did not have access to any grammar information from LexTract or lexicon information which was taken
from the unseen data.

For comparison, another parser (Yoon, Kim and Song, 1997) was tested on the same test set. For the sake of
fair comparison, the output of this parser was converted to look as close as possible to our output. Even so, the
number of node labels did not match, due to the difference in tokenization schemes for certain lexical elements
such as copulas and auxiliary verbs. We thus report precision/recall in the comparison. We report word-to-word
dependency accuracy compared with the gold standard for our parser. The evaluation results are summarized in
Table 2. Not surprisingly, the results show that better performance on test data from a particular domain is obtained
by training on annotated data from the same domain. The results from another parser on the same data provide a
baseline performance to compare against our results. Also, the performance achieved on our test set is competetive
with the state-of-the-art English statistical parsers when trained on similar amounts of data.

56 Proceedings of TAG+6

5. Conclusion

Our work is significant in that it is the first LTAG-based parsing system for Korean. We have shown that
LTAG-based statistical parsing is feasible for a language with free word order and complex morphology. Our
system has been successfully incorporated into a Korean/English machine translation system as source language
analysis component (Han et al., 2000; Palmer et al., 2002). The LTAG parser produces a single-best analysis
of the input Korean sentence. We showed that the tagger/analyzer described in this paper obtained the correctly
disambiguated morphological analysis of words with 95.78/95.39% precision/recall when tested on a test set of
3,717 previously unseen words. The statistical parser described in this paper obtained an accuracy of 75.7% when
tested on the same test set (of 425 sentences). These performance results are better than an existing off-the-shelf
Korean morphological analyzer and parser run on the same data.

References

Carroll, J. and D. Weir. 1997. Encoding Frequency Information in Lexicalized Grammars. In Proc. 5th Int’l Workshop on
Parsing Technologies IWPT-97, Cambridge, Mass.

Chiang, David. 2000. Statistical Parsing with an Automatically-Extracted Tree Adjoining Grammar. In Proc. of ACL-2000.

Han, Chung-hye, Na-Rae Han, Eon-Suk Ko, Heejong Yi and Martha Palmer. 2002. Penn Korean Treebank: Development
and Evaluation. In Proceedings of the 16th Pacific Asian Conference on Language and Computation. Korean Society for
Language and Information.

Han, Chung-hye, Benoit Lavoie, Martha Palmer, Owen Rambow, Richard Kittredge, Tanya Korelsky, Nari Kim and Myunghee
Kim. 2000. Handling Structural Divergences and Recovering Dropped Arguments in a Korean/English Machine Transla-
tion System. In John S. White, editor, Envisioning Machine Translation in the Information Future. Springer-Verlag, pages
40-53.

Joshi, Aravind and Yves Schabes. 1997. Tree Adjoining Grammars. In A. Salomma and G. Rosenberg, editors, Handbook of
Formal Languages and Automata. Springer-Verlag, Heidelberg.

Joshi, Aravind K., L. Levy and M. Takahashi. 1975. Tree Adjunct Grammars. Journal of Computer and System Sciences.

Lari, K. and S. J. Young. 1990. The estimation of stochastic context-free grammars using the Inside-Outside algorithm.
Computer Speech and Language, 4:35-56.

Marcus, Mitch, Beatrice Santorini and M. Marcinkiewicz. 1993. Building a large annotated corpus of English. Computational
Linguistics, 19(2):313-330.

Palmer, Martha, Chung-hye Han, Anoop Sarkar and Ann Bies. 2002. Integrating Korean analysis components in a modular
Korean/English machine translation system. Ms. University of Pennsylvania and Simon Fraser University.

Resnik, P. 1992. Probabilistic Tree-Adjoining Grammars as a framework for statistical natural language processing. In Proc.
of COLING 92, pages 418-424, Nantes, France.

Schabes, Y. 1992. Stochastic Lexicalized Tree-Adjoining Grammars. In Proc. of COLING ’92, pages 426-432, Nantes,
France.

Schabes, Y. and S. Shieber. 1992. An Alternative Conception of Tree-Adjoining Derivation. In Proceedings of the 20"
Meeting of the Association for Computational Linguistics.

Schabes, Y. and R. Waters. 1996. Stochastic Lexcalized Tree-Insertion Grammar. In H. Bunt and M. Tomita, editors, Recent
Advances in Parsing Technology. Kluwer, pages 281-294.

Schabes, Yves and Stuart Shieber. 1994. An Alternative Conception of Tree-Adjoining Derivation. Computational Linguistics,
20(1):91-124.

Schabes, Yves and Richard Waters. 1995. Tree Insertion Grammar: A Cubic-Time, Parsable Formalism that Lexicalizes
Context-Free Grammar without Changing the Trees Produced. Computational Linguistics, 21(4):479-513.

Xia, Fei, Chung-hye Han, Martha Palmer and Aravind Joshi. 2001. Comparing Lexicalized Treebank Grammars Extracted
from Chinese, Korean, and English Corpora. In Proceedings of the Seventeenth International Joint Conference on Artifi-
cial Intelligence.

Xia, Fei, Martha Palmer, and Aravind Joshi. 2000. A Uniform Method of Grammar Extraction and Its Applications. In
Proceedings of the EMNLP 2000.

Yoon, J., S. Kim and M. Song. 1997. New Parsing Method using a Global Association Table. In Proceedings of IWPT-97.

Yoon, Juntae, C. Lee, S. Kim and M. Song. 1999. Morphological Analyzer of Yonsei Univ., Morany: Morphological Analysis
based on Large Lexical Database Extracted from Corpus. In Proceedings of Korean Language Information Processing.
Written in Korean.

Notes on the Complexity of Complex Heads
in a Minimalist Grammar

Jens Michaelis

Universitat Potsdam

Abstract

The type of a minimalist grammar (MG) introduced in Stabler (1997) provides a simple algebraic formalization of the
perspectives as they arise from Chomsky (1995b) within the linguistic framework of transformational grammar. As known
(cf. Michaelis 2001a; 2001b; Harkema, 2001), this MG-type defines the same class of derivable string languages as, e.g.,
linear context—free (string) rewriting systems (LCFRSs) (Vijay—Shanker, Weir and Joshi, 1987; Weir, 1988). In this paper
we show that, in terms of weak equivalence, the subclass of MGs which allow (overt) head movement but no phrasal
movement in the sense of Stabler (1997), constitutes a proper subclass of linear indexed grammars (LIGs). and thus tree
adjoining grammars (TAGs). We also examine the “inner hierarchic complexity” of this embedding in some more detail
by looking at the subclasses canonically resulting from a differentiation between left adjunction of the moved head to the
attracting one, and right adjunction of this kind. Furthermore, we show that adding the possibility of phrasal movement
by allowing just one “indistinguishable” licensee to trigger such movement has no effect on the weak generative capacity
of the corresponding MG—-subclasses. On the other hand however, MGs which do not employ head movement but whose
licensee set consists of at most two elements, are shown to derive, a.0., languages not derivable by any LIG. In this sense
our results contribute to sheding some light on the complexity as it arises from the interplay of two different structural
transformation types whose common existence is often argued to be linguistically motivated.

1. Introduction

The type of a minimalist grammar (MG) introduced in Stabler (1997) provides a simple algebraic formaliza-
tion of the perspectives as they arise from Chomsky (1995b) within the linguistic framework of a principles and
parameter—approach to transformational grammar. As known (cf. Michaelis 2001a; 2001b; Harkema, 2001), this
MG-type constitutes a mildly context—sensitive formalism in the sense that it defines the same class of derivable
string languages as linear context—free (string) rewriting systems (LCFRSs) (Vijay—Shanker, Weir and Joshi, 1987;
Weir, 1988). In particular, the MG—definition permits a type of (overt) head movement which rather directly re-
flects the derivation mode of (successive) head(-to—head) adjunction—which, in the minimalist approach, takes
place due to the necessity of feature checking—(successively) creating more complex heads (cf. Figure 1). Nev-

ZP ZP ZP
z’ z z’
Z P Z YP Z YP
A A A
/Y\ Z /\ Z /Y\ Z /Y\
Y’ Y’ Y’
YN YN AN
ty XP ty XP ty XP
X’ X’ X’
tx WP tx WP tx WP
...successive left ... successive right ... (mixed) successive
head adjunction head adjunction head adjunction

Figure 1: Complex head “Z” 2 resulting from ...

ertheless, there is a further notable property of MGs which—in connection with Michaelis (2001a)—follows from
Harkema (2001) as well as Michaelis (2001b): each MG can be transformed into a weakly equivalent MG that

* This work has been funded by DFG-grant STA 519/1-1.

1. Hence, MGs as defined in Stabler (1997) join to a series of weakly equivalent formalism classes among which, beside
LCFRSs, there is, e.g., the class of set-local multicomponent tree adjoining grammars (MCTAGS) (cf. Weir, 1988). For a list of
some further of such classes of generating devices, beside MCTAGS, see e.g. Rambow and Satta (1999).

2. Interms of an X-Bar representation.

© 2002 Jens Michaelis. Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and Related Frameworks
(TAG+6), pp. 57-65. Universita di Venezia.

58 Proceedings of TAG+6

neither employs head movement nor covert (phrasal) movement as allowed by the general MG-definition.® In fact
it is this MG—subtype which, e.g., is covered in terms of the succinct MG-reformulation in Stabler and Keenan
(2000) (reducing MGs to their “bare essentials”), and which the MG-recognizer in Harkema (2000) (working in
polynomial time depending on the length of the input string) is defined for. Moreover, the “MG-internal” equiv-
alence result can be seen as providing some technical support to more recent linguistic work which, in particular,
tries to completely dispense with any type of movement different from overt phrasal movement (e.g. Koopman and
Szabolcsi, 2000; Mahajan, 2000).
Many linguists working within the transformational tradition, however, believe
ZP[(] head movement to be indispensable for an adequate explanation of natural language
/\ syntax.* How the kind of head movement originally allowed in an MG can be
[¢] (re)integrated into the succinct MG—definition is shown in Stabler (2001). As in-
/\~ dicated in there, the recognition complexity w.r.t. such an MG and an input string
X Z[f(] increases—adapting the methods of Harkema (2000)—at most as much as in the
/\ case when adding two new distinct licensees, i.e. two new distinct features poten-
Y ZIffC] tially triggering phrasal movement, to the grammar.
Concentrating on questions concerning the increase of generative complexity,
we show in this paper that, in terms of derivable string languages, the subclass of
Y[££¢] MGs aIIowing head movement but no phrasal movement in the_se_nse of Stabler
/\ (1997), constitutes a proper subclass of LIGs, and thus TAGs. This is done by em-
te XP[f¢] bedding MGs weakly equivalently into extended left LIGs (ELLIGS) in the sense of
Michaelis and Wartena (1999).5 Examining the “inner hierarchic complexity” of this
X'[£¢] embedding in some more detail, it can be shown that MGs which allow only left head
adjunction define the same class of derivable languages as RLIGs,® and thus context
tx WP[(] free grammars (CFGs) (cf. Michaelis and Wartena, 1999). MGs which allow only
right head adjunction derive more languages then CFGs, and MGs allowing right
Figure 2: Complex head as well as left head adjunction seem to provide a further proper extension. Further-
“Z” resulting from succes- more, adding the possibility of phrasal movement by allowing the MG’s licensee set
sive left head adjunctionas to consist of at most one feature” has no effect on the weak generative capacity of the
representable in an RLIG. considered MG—subclasses. On the other hand, it can be shown that MGs which do
not employ head movement but whose licensee set consists of at most two elements,
derive, a.0., languages not derivable by any LIG.8
The presented results are of interest in at least two respects: first, they contribute in a more general sense to
one of the central issues mathematical approaches to linguistics are concerned with, namely, how much strong
generative capacity can be squeezed out of a formalism without increasing the weak generative power.® Second,
since the presented results provide a first narrow step towards an answer to the question of how the specific types of
head movement and phrasal movement as defined in MGs are related to each other in terms of generative capacity,
they may not only be a promising starting point, when seeking for a lower upper bound on the parsing complexity
of MGs, but also shed some light on the structural complexity as it arises from the interplay of two different
structural transformation types whose common existence is often argued to be linguistically motivated.
For illustrative purposes we demonstrate how MGs allowing head movement but no phrasal movement can be
weakly equivalently embedded into a subclass of TAGs, instead of LIGs, which in its turn is weakly equivalent

3. The only movement possibly used is overt phrasal movement.

4. Even current accounts which argue in favour of overt vs. covert movement do not completely exclude overt head movement
(e.g. Kayne 1998; 1999).

5. In Michaelis and Wartena (1999), ELLIGs were defined as the formal counterpart of extended right LIGs (ERLIGSs). An
ELLIG (respectively, ERLIG) is an LIG, G, such that for each nonterminating production r, the distinguished symbol on
the righthand side (rhs) is the leftmost (respectively, rightmost) nonterminal, i.e., r is of the form A[¢...] — wB[p...]a
(respectively, r = A[¢...] = aB[n...]w), where w is a string of terminals. Thus, applying such an r to a corresponding
object A[(6], the stack associated with the nonterminal A is passed on to the leftmost (respectively, rightmost) nonterminal
child replacing ¢, the upper part of the stack, by . If, in addition, for each such nonterminating rule =, no terminal symbol
appears to the left (respectively, right) of the distinguished nonterminal symbol of the rhs, i.e., if w is always the empty string,
then G is simply referred to as an LLIG (respectively, RLIG).

6. A corresponding weakly equivalent RLIG can be defined such that it represents complex heads, created by successive head
adjunction, as indicated in Figure 2.

7. Thus, at most one “indistinguishable” type of phrasal movement is available.

8. Aschematic overview is given in Figure 3.

9. Seee.g. Joshi (2000) and references therein for a more recent discussion.

Michaelis 59

2_MLHM:none
{atbPaz by ey di e dy |m,n > 0}
Seki et al., 1991 i FLIL = TAL
{afagbyeybrchdy |m,n >0} Ly
Wartena, 1999 : J?(ELLIL
Ul
O_MI_HM:arbit-adj — 1-mLHM:arbit-adj
{a"b"d™ |n > 0} “ 9]
[conjecture] & oL HMeright-ad _ 4 vy HM:right-adj
Cornell, 1996; Stabler, 1997 {ww | w € {a,b}*'}:ut

o-mLHM:left-adj _ 4 4y HM:left-adj

I
o-mHM:none _ 4 s HM:none

Il
CFL = RLIL

Figure 3: Schematic overview of our results. 1011

to ELLIGs (Section 3). Largely skipping formal details afterwards, we subsequently emphasize the crucial points
concerning the hierarchy of the corresponding MG—subclasses resulting from the different types of head movement
as available in the MG—formalism (Section 3.1-3.4). Then, we turn to simple phrasal movement as allowed by the
MG-definition (Section 4) and, finally, present an example of an MG which does not employ any head movement,
but phrasal movement “slightly beyond” the simple type, thereby deriving a language not derivable by any LIG
(Section 5). But first, since the reader might be less familiar with MGs, we briefly introduce them in their aspects
relevant here.

2. Minimalist Grammars

An MG is a formal device which specifies a countable set of expressions (over S U P U 7),*? i.e., a countable
set of finite, binary (ordered) trees each equipped with a leaf—labeling function assigning a string from S*P*Z* to
each leaf, and with an additional binary relation, the asymmetric relation of (immediate) projection, defined on the
set of pairs of siblings (cf. Figure 4).

A maximal projection within such an expression 7 is a subtree of 7 which is either identical to 7, or its root
is projected over by its root’s sibling. The specifiers, the complement and the head of (a maximal projection in) 7
are determined in the canonical way by means of the projection relation (cf. Figure 5). 7 is complete if its head—
label is in {c }P*Z*, and each other leaf—label in P*Z*. The phonetic yield of 7 is the string which results from
concatenating the leaf-labels in “left—to—right—manner” ignoring all instances of non—phonetic features.

The base of an MG, G, is formed by a lexicon (a finite set of simple expressions, i.e. single node trees in
the above sense, also called heads) and two structure building functions: merge (combining two trees) and move

10. Here, forn > 0 and z € {none, left-adj, right-adj, arbit-adj}, n-ML™* denotes the class of all languages derivable
bydany IB/IS whose licensee set consists of at most n elements, and which permits only head(-to-head) adjunction of the type
indicated by z.

11. Note that Wartena (1999) actually provides a formal proof of the fact that the language %a?b?c{‘ag’”bg"cgnd? |m,n > OI},
although derivable by some LIG, is not derivable by any ERLIG. For reasons of symmetry however, it becomes immediately
clear from the corresponding proof details that the language {aTa5'b5'c5* b7 ctdt | m,n > 0}, although derivable by some
LIG, is not derivable by any ELLIG.

12. &, P and Z are assumed to be pairwise disjoint sets, namely, a set of syntactic, phonetic and interpretable features,
respectively. S is partitioned into basic categories, selectors, licensees, and licensors. There is at least the basic category c.
13. Here, “<” (respectively, “>") as “label” of a non—leaf node means “my left (respectively, right) child projects over my right
(respectively, left) child.”

60 Proceedings of TAG+6

>
/\
P

<
go Qs f,i/\>
/\
b1 <
PN
hpB2 B3

Figure 4: A typical (minimalist) expression.!3

>
specifier A >

specifier >
specifier

head
complement

Figure 5: The typical (minimalist) expression structure.

(transforming a single tree). Both functions build structure by canceling two particular matching instances of
syntactic features within the leaf-labels of the trees to which they are applied. The closure of the lexicon under
these two functions is the set of trees specified by G. The (string) language derivable by G is a particular subset
of P*, namely, the set of the phonetic yields of the complete expressions within this closure.

The function merge is applicable to (v, ¢), a pair of expressions, if ¢’s head—label starts with an instance
of some basic category x, and v»’s head-label with an instance of ~x, the corresponding weak selector of x.
Depending on whether v is simple or not, ¢ is selected as the complement or the highest specifier, respectively.
Within the resulting tree, merge(v, ¢), the corresponding instances of ~x and x are cancelled (cf. Figure 6). In

. . < >
’U./\ ¢ W ol ¢/ ¢I g Z ’U’

XKy by XATpLgp ATy by ATgLy KEToly

if v is simple if v is complex

Figure 6: merge(v, ¢) — weak selection.

case v is a head, its label may likewise start with an instance of a corresponding strong selector of x, =X or X7,
both additionally triggering (overt) head movement, i.e., merge(v, ¢) is defined as before, but in addition 74, the
string of phonetic head—features of the selected ¢, is incorporated into the label of the selecting head v, either
immediately to the right (triggered by =X) or immediately to the left (triggered by X7) of ,,, the string of phonetic
features within v’s (unique) label (cf. Figure 7).14:15

The function move is applicable to an expression v, if there is exactly one maximal projection ¢ in v whose
head—label starts with in instance of some licensee - x such that ©’s head—label starts with an instance of a cor-

14. In the minimalist approach suggested in Chomsky (1995b) the merge—operator applies freely, and head movement is a
separate step following a corresponding application of this operator. As noted by Chomsky (19953, p. 327), in a strong sense
this can be seen as a violation of the “extension condition” on structure building functions. Stabler (1998, p. 78, fn. 5) argues that
that the implementation of head movement within MGs not only avoids such a violation, but “it [also] explains the coincidence
of the selection and head movement configurations.” Note also that the implementation of head movement is in accordance
with the head movement constraint, demanding that a moving head can never pass over the closest c-commanding head. To put
it differently, whenever we are concerned with a case of successive head movement, i.e. recursive adjunction of a (complex)
head to a higher head, it obeys strict cyclicity. The way in which MGs reflect the “usual” linguistic notion of head adjunction
arising from head movement is made explicit in Stabler (1998).

Michaelis 61

. . < <
v. ¢ ¢I
/\L¢

¢I
SKTyly XA T oty Alg
if s =X~ if s = ~X
Figure 7: merge(v, ¢) — strong selection.

responding strong licensor +X or weak licensor +x triggering overt or covert phrasal movement, respectively.1®
If v’s head—label starts with a strong licensor then, within the resulting tree move(v), ¢ is moved into the new
created, highest specifier position, while the triggering instances of +X and - x are cancelled, and the “original”
position of ¢’s root becomes a single node labeled with the empty string (cf. Figure 8). If v’s head—label starts with

v A

AN

+XK

Figure 8: move(v) — overt phrasal movement.

a weak licensor then, within the resulting tree move(v), the triggering instance of +x is cancelled, while a copy of
¢ in which the triggering instance of - x as well as all instances of phonetic features are cancelled, is moved into
the new created, highest specifier position, and while another copy of ¢ in which all instances of non—phonetic
features are cancelled is “left behind.”*

3. MG-Head Movement in Terms of TAGs

Let G be an MG which allows head movement but no phrasal movement.*® A nonterminal in our weakly
equivalent TAG, G', is either the start symbol, S, or a pair (y, t) with y being a basic category from G, and with
t € {weak,st rong}, where weak and st r ong are two new, distinct symbols.

S NA

(c, weak) OA

€

Figure 9: The unique initial tree of G'.

There is a single initial tree (cf. Figure 9), and for each lexical MG—item «, there are two elementary auxiliary
trees depending on the form of the (unique) label of a:: we generally distinguish the cases y ¢ (cf. Figure 10) and
§7X1 .-+~ XpYyme, s being any selector, x4, ..., X, weak selectors for an n > 0, y a basic category, = € P*,
and . € Z*. The latter case divides into three subcases depending on whether s is of the form =x, X=, or =X (cf.
Figure 11-13). Hence, G’ only uses auxiliary elementary trees which may be called extended right auxiliary, i.e.,
auxiliary trees in which the foot node is the leftmost nonterminal node on the frontier, and all interior nodes left of
the spine are marked for null adjunction.19:20

16. The uniqueness of ¢ provides us with a strict version of the shortest move constraint (SMC).

17. For more details on the definition of merge and move see Stabler (1997). Particular examples of MGs are given below in
Section 3-5.

18. Thatis, G does not employ the function move to derive any expression from some instances of the lexical items. Therefore,
we may assume that no (label of any) lexical item contains an instance of some licensee or licensor feature.

19. This TAG-subtype may also be seen as a straightforward extension of a particular subtype of a tree insertion grammar
(Schabes and Waters, 1995).

20. With the intend of simplifying our presentation, G’ also fits in with the “classical” TAG-definition allowing selective
adjunction, but not substitution (see e.g. Vijay—Shanker and Weir, 1994).

62 Proceedings of TAG+6

(y, weak) NA {y, strong) NA

(y,weak)*NA = 7 (y,strong)” NA

Figure 10: Elementary auxiliary trees of G’ resulting from the lexical MG—item y ..

(y, weak) NA {y, strong) NA
(X, weak) OA (X, weak) OA
(x1,weak) OA 7 7 (X1, weak) OA
(Xn, W(iaak) OA (Xn, W(Eeak) OA
{y, We|ak)* NA (y, strong)* NA
Figure 11: Elementary auxiliary trees of G’ resulting from the lexical MG—item ~x™x; - - - “X,y .
(y, weak) NA {y, strong) NA
(y, weak)" NA (X, strong) OA (X, strong) OA
(x1,weak) OA m 7 (X1, weak) OA
(Xn, wéak) OA (Xn,, wéak) OA
l (y, strong)* NA
Figure 12: Elementary auxiliary trees of G’ resulting from the lexical MG—item X~ ~X - - - X, y7e.
(y, weak) NA {y, strong) NA

{y, weadl (X, strong) OA 7 (X, strong) OA

(X1, weak) OA € (X1, weak) OA
(Xn, wéak) OA (Xn, wéak) OA
€ {y, strong)* NA

Figure 13: Elementary auxiliary trees of G’ resulting from the lexical MG—item X7y - - - “X, Y.

G' simulates the MG—derivation of an expression 7~ whose head—label starts with a basic category y by “revers-
ing the top—down order,” i.e., the complement becomes the highest constituent, and the specifiers are successively
attached top—down in the sense indicated in Figure 14. Such a derivation, indeed, is simulated by G’ exactly
twice in the two outline ways. Vice versa, each TAG—derivable auxiliary tree 7' which does not permit (further)
adjunction to any of his nodes, corresponds to an MG-derivable expression 7 whose head—label starts with a basic
category y, in exactly one of the two outlined ways. Thus—ignoring the label of 7"’s foot node—T7"’s yield either
equals 7’s phonetic yield, or this is true up to the fact that the substring of 7’s phonetic yield contributed by 7’s
head, yield (head.), is “shifted” to the front within 7"s yield. If the latter, it is just yield, (head,) which con-
stitutes 7"’s yield left of its spine, and in MG—terms, T is connected with the expectation that the represented 7 is
inevitable selected strongly in a further derivation step (expressed by the second component of the label of 7’°s root
node, and thus foot node). Otherwise, T"’s yield left of its spine is empty, and the represented 7 is connected with
the demand of being selected weakly in a further derivation step (again coded by means of the second component
of the label of T"’s root/foot node).

Michaelis 63

{y, weak) NA {y, strong) NA

(y, weak)* NA

complement
head head

specifier

complement

specifier

specifier specifier

Aspeciﬁer /Aspecifier

{y, strong)* NA

Figure 14: The MG-expression structure simulated by G'.

3.1. Null Head Adjunction

As an immediate consequence of our construction we observe that in case G does not use any strong selectors
(i.e., no head movement takes place deriving an expression belonging to the closure of the lexicon of G), only
(strictly) right auxiliary trees are effectively used in order to derive a tree in the weakly equivalent TAG G'. Thus,
in this case, we are in fact concerned with a particular type of tree insertion grammar in the sense of Schabes and
Waters (1995) additionally allowing adjunction constraints in the sense of the usual TAG—definition. Since adding
the possibility of such constraints to the TIG-type does not increase the weak generative power, and since TIGs are
known to constitute a weakly context—free formalism, this yields another proof of the well-known fact that MGs
which do neither employ head movement nor phrasal movement only derive context—free languages (CFLs).%!

3.2. Left Head Adjunction

As mentioned in the introduction, it can be shown that MGs which—beside the simple merge—operation—
permit only left head adjunction triggered by a corresponding strong selection feature, do only derive CFLs as
well. Skipping any formal details here, we just mention that, as far as a complex head of a corresponding MG
is concerned, the dependencies between the (phonetic yields of the) single lexical heads incorporated into the
(phonetic yield of the) complex head and their respective “traces” are nested. This allows us to use a single stack
in order to “correctly redefine” the concept of successive left head adjunction within the weakly equivalent RLIG.??

3.3. Right Head Adjunction

The crucial difference between successive right head adjunction and successive left head adjunction is consti-
tuted by the fact that—within a complex head created by the former derivation mode—the dependencies between
the (phonetic yields of the) single lexical heads incorporated into the (phonetic yield of the) complex head and
their respective “traces” are cross—serial. This kind of dependencies can be made “visible” by means of a respec-
tive specifier being attached right beyond each “trace,” and containing some particular phonetic material; e.g., a
copy of the lexical phonetic material of the head by which the specifier is selected as in the case of the MG G 4,
deriving the copy language {ww | w € {a,b}*}, and consisting of the following 9 lexical items: %

“C™Xg,X a Xqa XX a =Xc c

TCTY,Y b yb Tyyyb o TYce

21. Vice versa, it is not hard to verify that each CFG is weakly equivalent to some MG of this kind. This can be proven rather
straightforwardly, e.g., by starting with a CFG in Chomsky normal form.

22. Note that the type of RLIG needed does use the stack in only the following “normalized” way: once an element has been
popped from the stack, the stack has to be emptied before a new element can be pushed onto the stack. This, of course, is just
a reflex of the successive cyclicity by which a complex complex head is created.

23. Since lexical items are always simple expression, we will usually identify each such item with its head—label. Note further
that, referring to Cornell (1996), the example MG G, is also given in Stabler (1997).

64 Proceedings of TAG+6

3.4. Arbitrary Head Adjunction

An MG which derives the non-CFL {a™b™d"™|n > 0} by means of mixed successive head adjunction is
the MG Ggnpngn from below. We see that, at the same time, while G4~y g» derives cross—serial dependencies
between a’s and d’s by means of successive right head adjunction analogously to the way exploited by Gy,
Gynpngn additionally derives nested dependencies between a’s and b’S as well as between b’s and d’s. Since these
additional nested dependencies are derived by “stepwise intervening” left head adjunction this suggests that a
language like a™b™d"™ is not derivable by an MG which uses only right head adjunction. The MG G g»pn g= CONSiSts
of the following 6 lexical items:

XTzyb xa zd TYxa Y c c
4. Simple Phrasal Movement

Assume Gy to be an MG such that each selection feature that occurs within the label of some lexical entry is
weak, and such that the set of licensees is a singleton set. Thus, G, does not allow any kind of head movement,
but an “indistinguishable” type of phrasal movement. Again, we will skip formal details, when arguing that the
language derivable by G is a CFL, and briefly sketch the crucial point here.

Suppose that an expression ¢ is selected by another expression v, yielding an expression 7 = merge(v, ¢)
such that the head-label of ¢', the subtree of 7 resulting from ¢,2* starts with an (unchecked) licensee instance.
We could additionally “store” this information in the head-label of 7 with the intend of preventing = from being
merged with another expression such that the resulting tree would contain two different maximal projections with
an unchecked licensee instance. More generally, we could additionally “store” the head—label of ¢ within the
head-label of 7; and within the head—label of each expression subsequently derived from 7 we could not only store
the head-label of ¢, but also the number of the still unchecked licensee instances introduced by this head—label as
long as there is still such an unchecked licensee instance. This would enable us to postpone the “actual insertion
of ¢” until it has reached its final landing site.

The last considerations, indeed, provide us rather rather straightforwardly with a method of constructing a
weakly equivalent CFG for Gs. This, at least, is true if we take into account only expressions being derivable
from the lexicon by means of merge and move, and serving to derive a complete: first, it should be mentioned that
there is only a finite number of possibilities for an extended head-labeling in the outlined way.? But the crucial
reason why such a construction becomes finally possible is that each expression = derivable from the lexicon of
Gue, and serving to derive a complete expression contains at most one maximal projection with an unchecked
instance of some licensee feature starting the head-label, since the cardinality of the licensee set is 1.%6 That is to
say, whenever we predict, in virtual terms of our weakly equivalent CFG, a specifier position to be the landing site
of some maximal projection 7;, we do not have to worry about the possibility that 7, in its turn contains a “trace”
which has arisen from extracting some maximal projection 7{ out of 7;. Such a configuration cannot appear under
any circumstances.

Let us also note here that—in a second step—it is possible to directly combine each of the converting methods
presented in Section 3 with the just mentioned one in order to prove that the weak generative capacity of none of
the considered subclasses of MGs allowing different types of head movement is increased if, additionally, the set
of licensees is allowed to contain a single element.

5. Beyond simple phrasal movement

We conclude by emphasizing that, on the other hand, phrasal movement in the sense of the MG-definition
which arises from the interaction of two different licensees already permits us to derive languages not derivable
by any TAG. As an example of a corresponding MG we finally present the MG G o deriving the language
{aPba b dieyrdy | m,n > 0}, and consisting of the following 17 lexical items:

24. Thatis, ¢’ is either the complement or the highest specifier of 7.

25. Recall that the MG lexicon is finite, that each label of a lexical head is a finite string of features, and that an MG builds
structure exclusively by canceling particular feature instances of these labels after an lexical head has been introduced in the
course of a derivation.

26. Recall that, due to the definition of move, the implementation of the shortest move constraint (SMC) within MGs allows
at most one such maximal projection for each different licensee in order to let an expression occur in the derive a complete
expression.

Michaelis 65

X, b “Xay Xdy di X, Y101 yi-11
=Xc1 +Ly Xby b1 =Xb1 Xay - l'1a1 :Xa1 +Lo Xd, dq =Xd1 Xey - I 2c1

Xpy bo “Xay Xd, d2 Xy Y22 Ya-la
“Xey tLa Xp, bo “Xpy Xy - | 202 “Xgp tL1 X g, do TXdy Xep -l 100

Ty, Ty thatlic

References

Chomsky, Noam. 1995a. Categories and Transformations. In Chomsky, 1995b, pages 219-394.

Chomsky, Noam. 1995b. The Minimalist Program. Cambridge, MA: MIT Press.

Cornell, Thomas L." 1996. A Minimalist Grammar for Deriving the Copy Language. Report No. 79, Working papers of the
SFB 340, Tibingen University, Tibingen. Available at http://www.sfs_nphil.uni-tuebingen.de/sfb/
reports/.

de Groote, Philippe, Glyn Morrill and Christian Retorg, editors. 2001. Logical Aspects of Computational Linguistics (LACL
’01), Lecture Notes in Artificial Intelligence Vol. 2099. Berlin, Heidelberg: Springer.

Harkema, Henk. 2000. A Recognizer for Minimalist Grammars. In Proceedings of the Sixth International Workshop on
Parsing Technologies (IWPT 2000), Trento, pages 111-122.

Harkema, Henk. 2001. A Characterization of Minimalist Languages. In de Groote, Morrill and Retoré, 2001, pages 193-211.
Joshi, Aravind K." 2000. Relationship Between Strong and Weak Generative Power of Formal Systems. In Proceedings of the
5th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+5), Paris, pages 107-114.

Kayne, Richard S.” 1998. Overt vs. covert movement. Syntax, 1:128-191.

Kayne, Richard S.”1999. Prepositional complementizers as attractors. Probus, 11:39-73.

Koopman, Hilda and Anna Szabolcsi. 2000. Verbal Complexes. Cambridge, MA: MIT Press.

Mahajan, Anoop. 2000. Eliminating Head Movement. In GLOW Newsletter # 44, pages 44-45. Abstract of the talk held at the
23rd Generative Linguistics in the Old World Conference (GLOW 2000), Vitoria—Gasteiz/Bilbao.

Michaelis, Jens. 2001a. Derivational Minimalism is Mildly Context—Sensitive. In M. Moortgat, editor, Logical Aspects of
Computational Linguistics (LACL ’98), Lecture Notes in Artificial Intelligence Vol.2014. Springer, Berlin, Heidelberg,
pages 179-198.

Michaelis, Jens. 2001b. Transforming Linear Context—Free Rewriting Systems into Minimalist Grammars. In de Groote et al.
(2001), pages 228-244. Also available at http://www. ling.uni-potsdam.de/"michael/papers.html.

Michaelis, Jens and Christian Wartena. 1999. LIGs with Reduced Derivation Sets. In Gosse Bouma, Geert-Jan M. Kruijff,
Erhard Hinrichs and Richard T. Oehrle, editors, Constraints and Resources in Natural Language Syntax and Semantics.
CSLI Publications, Stanford, CA, pages 263-279.

Rambow, Owen and Giorgio Satta. 1999. Independent Parallelism in Finite Copying Parallel Rewriting Systems. Theoretical
Computer Science, 223:87-120.

Schabes, Yves and Richard C. Waters. 1995. Tree Insertion Grammar: A Cubic—time Parsable Formalism that Lexicalizes
Context—Free Grammar Without Changing the Trees Produced. Computational Linguistics, 21:479-513.

Seki, Hiroyuki, Takashi Matsumura, Mamoru Fujii and Tadao Kasami. 1991. On multiple context—free grammars. Theoretical
Computer Science, 88:191-229.

Stabler, Edward P." 1997. Derivational Minimalism. In C. Retoré, editor, Logical Aspects of Computational Linguistics (LACL
’96), Lecture Notes in Artificial Intelligence Vol. 1328. Springer, Berlin, Heidelberg, pages 68-95.

Stabler, Edward P."1998. Acquiring Languages with Movement. Syntax, 1:72-97.

Stabler, Edward P.” 2001. Recognizing Head Movement. In de Groote et al. (2001), pages 245-260. Draft available at
http://www._humnet._ucla.edu/humnet/linguistics/people/stabler/.

Stabler, Edward P. and Edward L. Keenan. 2000. Structural Similarity. In Algebraic Methods in Language Processing.
Proceedings of the 16th Twente Workshop on Language Technology (TWLT 16) joint with the 2nd AMAST Workshop on
Language Processing, lowa City, |A, pages 251-265.

Vijay-Shanker, K. and David J. Weir. 1994. The equivalence of four extensions of context—free grammars. Mathematical
Systems Theory, 27:511-546.

Vijay—Shanker, K. David J. Weir and Aravind K. Joshi. 1987. Characterizing Structural Descriptions Produced By Various
Grammatical Formalisms. In 25th Annual Meeting of the Association for Computational Linguistics (ACL ’87), Stanford,
CA, pages 104-111. ACL.

Wartena, Christian. 1999. Storage Structures and Conditions on Movement in Natural Language Syntax. Ph.D. thesis, Potsdam
University, Potsdam. Available at http://www. ling.uni-potsdam.de/~wartena/.

Weir, David J.” 1988. Characterizing Mildly Context-Sensitive Grammar Formalisms. Ph.D. thesis, University of Pennsylva-
nia, Philadelphia, PA.

Learning Mirror Theory
Gregory M. Kobele, Travis Collier, Charles Taylor, Edward P. Stabler

University of California, Los Angeles

1. Mirror Theory

Mirror Theory is a syntactic framework developed in (Brody, 1997), where it is offered as a consequence of
eliminating purported redundancies in Chomsky’s minimalism (Chomsky, 1995). A fundamental feature of Mirror
Theory is its requirement that the syntactic head-complement relation mirror certain morphological relations (such
as constituency). This requirement constrains the types of syntactic structures that can express a given phrase; the
morphological constituency of the phrase determines part of the syntactic constituency, thereby ruling out other,
weakly equivalent, alternatives. A less fundamental, but superficially very noticeable feature is the elimination of
phrasal projection. Thus the X-bar structure on the left becomes the mirror theoretic structure on the right:

XP X
YN /\
YP X Y Z
AN
X ZP

(Brody, 1997) calls this systematic collapse of X, X' and X P nodes ‘telescope’. Every node may now have
phonetic content, and children are identified as specifiers or complements depending on their direction of branch-
ing; left-daughters are specifiers and right-daughters are complements (previously, specifiers were children of X P,
and complements were children of X'). Furthermore, the complement relation is a “word-forming” relation, where
according to the “mirroring” relation, the phonetic content of each head follows the phonetic content of its com-
plement. For example, MTGs can generate trees like the following, which given the “mirror” relation between
morphology and syntax, is pronounced John sleep -s:

-S
John; sleep
t;

1.1. Trees

A mirror theoretic tree (MTT) can be viewed as a standard binary branching tree together with two functions;
one, a function f from branches to a two element set {right, left}, the other, a function g from nodes to a two
element set {strong, weak}. If a is the parent of a', then a’ is a specifier (or left child) of a if f({a,a)) = left,
and a complement (or right child) of a otherwise. Formally, we represent a MTT as a particular kind of tree
domain:

Definition 1
AMTT 7 = (T, S) where T', S C {0,1}* such that

1. SCT
2. T is prefix closed (ifz € T and x = yz theny € T')

Domination corresponds to the initial substring relation with 2 dominating y iff 2 is an initial substring of y. The
greatest node dominating both z and y, x A y, is their longest common initial substring. The function g from nodes
to {strong, weak} is the characteristic function of the set S:

| strong,ifte S
9(t) = { weak, ift ¢ S

© 2002 Gregory M. Kobele, Travis Collier, Charles Taylor, Edward P. Stabler. Proceedings of the Sixth International Workshop
on Tree Adjoining Grammar and Related Frameworks (TAG+6), pp. 66—73. Universita di Venezia.

Kobele, Collier, Taylor and Stabler 67

From Definition 1 we define f from branches to {right,left} as follows. A child is a left child if itendsina ‘1’,
and it is a right child if it ends ina “0’.

| leftifn=1
@, zn)) = { right,ifn =10

As even internal nodes may have phonetic content, the standard definitions of the yield of a tree will not
suffice. We want a node to be spellt out after its left subtree, and before its right subtree. We define a total order
~< on the nodes of T, such that z << y whenever z is visited before y in an in-order tree traversal of 7'. Thus
2 << y holds between z and y just in case one of the following is true:

1. y <*z and z is in the left subtree of y
2. x <y and y is in the right subtree of x
drz<kzxAyandz Ay <y

This gives us a strict SPEC - HEAD - cOMP ordering. But wait. There’s more. The partitioning of branches into
left branches and right branches is not just to determine a reletive precedence with respect to a parent. Right
branches are different from left branches in kind; a maximal sequence of right branches is what Brody (1997) calls
a morphological word (MW), and a morphological word has a special status with respect to spellout - all the nodes
in a MW are spellt out as a single unit. The relation << determines the relative ordering of MWs at spellout.

We define a morphological word to be a block in (the partition induced by) the equivalence relation = defined
on T in the following manner:

z =~y iffy € 2z0* vz € y0O*

Two nodes are equated by this relation just in case one is the complement of (...the complement of) the other.
As trees are binary branching, the immediate domination relation totally orders each MW. With each MW B, we
associate an element p(B) € B and call p(B) the spellout position of B. Given two MWs B, B, every y € B
is spellt out before any z € B iff p(B) << p(B'). At this point the nodes in each MW must be spellt out in a
contiguous manner (as << totally orders T'), but nothing has been said about the relative order in which they are
spellt out. In keeping with (Brody, 1997) (but see (Kobele, forthcoming) for alternatives), we adapt Brody’s mirror
principle (whence ‘Mirror Theory’) to our terminology:

(1) The Mirror Principle
if z is the complement of y then y is spellt out before z.

Thus, each MW is spellt out in ‘reverse domination order’ (z is spellt out before y iff y <t).

1.2. Mirror Theoretic Grammars

A formal treatment of mirror theory inspired by Minimalist Grammars (Stabler, 1997) is given in (Kobele,
forthcoming), where an empirically grounded restriction of the formalism therein is shown to be weakly equivalent
to MCTAGs (Joshi, 1987).2A mirror theoretic expression is defined to be a mirror theoretic tree along with a
labeling function from the nodes of the tree to a set of labels. A label consists of a phonetic part (which is opaque
to the syntax) and a finite sequence of syntactic features. A mirror theoretic grammar consists of a finite lexicon
of “‘basic’ expressions, together with two structure building operations, merge and move, which build expressions
from others either by adjoining structures, or by displacing sub-parts of structures. Each operation is feature driven,
and “‘checks’ features (and thus a derived expression will have fewer features than the sum total of the features of
the expressions (tokens) used to derive it). The expressions generated by the grammar are those in the closure of
the lexicon under the structure building functions. A complete expression is one all of whose features have been
checked, save for the category feature of the root, and the string language at a particular category is simply the
yields of the complete expressions of that category.

1. The element so picked out, p(B), is defined in (Brody, 1997) to be the ‘deepest’ node, if no nodes in B are strong. If some
nodes in B are strong, then p(B) is the ‘highest’ one of the strong nodes. In other words, if SN B # @, then p(B) = z, where
Vye SNBzxz <*y. IfSNB=0,thenp(B) =z suchthatVy € By <* z

2. Because of the “mirroring” and the relative flexibility in where MWs get spellt out in relation to the other material, even the
movement-free subset of the framework defines a proper superset of the context free languages. See (Michaelis, this volume)
for a discussion closely related to this issue.

68 Proceedings of TAG+6

Definition 2
AMTG G = (%, Syn, Lex, {merge, move}), where

1. 3 is a non-empty set (the pronounced elements)

2. Syn is the disjoint union of the following sets (the syntactic features):

(a) base, a non-empty finite set.
(b) cselect = {=b|b € base}
(c) sselect = {b=|b € base}
(d) licensees = {-b|b € base}
(e) licensors = {+b|b € base}

An expression is a pair ({T', S), p), where (T, S) isaMTT, and x : T — ¥* x Syn* is the labelling function.

3. Lex is a finite set of expressions {(T', S),), such that®

(@ |T|=1,and
(b) p:T — =* x cselect’ (sselect + licensors)”® base licensees*

The shape of the lexical labels is partly determined by the nature of MTTs (and the particular generating func-
tions we have).*The precategory sequence (the features before the base category) allows for up to one com-
plement (cselection features) and up to one specifier (sselection or licensor features). Each lexical item has a
category (a base feature), and no more than one, as nodes in any tree have only at most one parent. There are no
restrictions as to the number of licensee features - movement is ad libitum.

merge merge is a function from pairs of expressions to single expressions. We divide the presentation of the
function definition into two cases according to whether the merged item is merged into the specifier (smerge)
or the complement (cmerge) position.

SMERGE smerge is defined on the pair of expressions ((T1,S1), 1), {{(T2, Sa), uo) iff all of the following
obtain:
- the root of 77 has an available specifier position (1 & T7)
- the first syntactic feature of the root of 77 is b=, and
- the first syntactic feature of the root of 7% is b
In this case, smerge is defined on the pair, and it maps to the expression ({(T', S), u), where
T=T,U1T,
S=5U1S;
the label of the root of T is gotten from the label of the root of T} by deleting the first syntactic feature
the label of the left child of T" is gotten from the label of the root of T, by deleting the first syntactic feature
otherwise, for z € T4, p(x) = p1(z), and for x € T, u(lx) = pao(x)
CMERGE cmerge is defined on the pair of expressions ({7, S1), u1), {{T2, Sa}, uo) iff all of the following
obtain:
- the root of 77 has an available complement position (0 ¢ T1)
- the first syntactic feature of the root of T} is =b, and
- the first syntactic feature of the root of 7% is b
In this case, cmerge is defined on the pair, and it maps to the expression ({T', S), u), where
T =T, U0T,
S =5, U08;
the label of the root of T" is gotten from the label of the root of T} by deleting the first syntactic feature
the label of the right child of T" is gotten from the label of the root of T, by deleting the first syntactic feature
otherwise, for z € T3, p(x) = p1(zx), and for x € Ty, u(0x) = pa(x)

3. @7 should be read as ‘one or zero tokens of &’.
4. Only partly, as there is no functional reason that sselection features cannot precede cselection features. Doing so makes
no difference (other than further complicating the description of a lexical label).

Kobele, Collier, Taylor and Stabler 69

move move is a function from expressions to expressions. move({{T1, S1), u1)) is defined whenever the follow-
ing conditions obtain:

- the root of T3 has an available specifier position

- the first syntactic feature of the root of 77 is +b, and

- there is exactly one node n € T} such that the first syntactic feature in n is - b, and, moreover, n. cannot be in
the same MW as the root of T}

If the above conditions obtain, then move({{T1, S1), 1)) is defined, and is equal to ({7, S),), which is the
result of moving the subtree rooted in the least node in the MW containing n, to the specifier position of the
root. Note that since n is not in the same MW as the root, we must have that n = 210? for some i € N. The
subtree we are to move is ((Tz, Sa), 1 1T2), where T» = {y|zly € T1},and Sz = {y|zly € S1}. Then

o T'=1T5U (T1 — Z’ng)

e S =15 U(S; —z1S,)

o the label of the root of T' is gotten from the label of the root of T by removing the first syntactic feature
the label of 10¢ € T is gotten from the label of n = 210 € T} by removing the first syntactic feature
otherwise, for z € 175, u(z) = p1(zz), and for z € T — (11%), p(z) = p1(2)

Given a MTG G = (X, Syn, Lex, {merge, move}), L(G) denotes the closure of Lex under the structure
building functions merge and move. An expression is complete just in case the only node that has syntactic
features is the root, and it has only a base feature. The string language of G at a category b € base (Ly(G)) is
the set of the yields of the complete expressions whose root’s unique syntactic feature is b. The mirror theoretic
languages (MTLSs) are the string languages of an MTG G at a category b, for some G € MTG and b € baseg.

1.3. Derivations

An expression e € L(G) might have been built up in several ways from the generating functions. A derivation
tree for an expression is a record of one possible sequence of steps taken to derive the expression in question from
lexical items. Givena MTG G, we denote by I'(G) the set of all derivation trees for each expression in the language
of G. eval : T(G) — L(G) is the map which takes each derivation of an expression to the expression it derives.
We define I'(G@) and eval : I'(G) — L(G) by mutual recursion:

1. foreach ¢ € Lexg, £ € T'(G), and eval(£) = ¢

2. for v,v" € T(G), if merge(eval(y),eval(y")) is defined, then v = (y,+') € T'(G) and eval(y") =
merge(eval (7), eval ("))

3. fory € T'(G), if move(eval(y)) is defined, then ' = (y) € I(G) and eval(y') = move(eval(y))
These structures are called derivation trees because it is simple to give them a (standard) tree-interpretation:
1. ¢ € Lexg denotes the tree with one node, labelled ¢, and no branches.

2. {v,7") € T(QG) denotes the tree with root labelled (-, v'), whose left child is the tree denoted by -, and whose
right child is the tree denoted by ~'

3. {v) € I'(G) denotes the tree with root labelled (), and whose only child is the tree denoted by ~

The sequence of lexical items used in a derivation +y is the yield of the tree denoted by +, and, as shown in
(Hale and Stabler, 2001), no two distinct derivations use the same sequence of lexical items.

2. Learning

Adapting a technique familiar from (Kanazawa, 1998) and others, we show that if the lexical ambiguity in
target grammars is restricted, this can provide a basis for generalization from a finite sample. We describe an
algorithm that identifies the class of languages generated by the rigid mirror theoretic grammars (rMTG) (grammars
in which every lexical item has a unique string component) in the limit from any text of "dependency structures.”

70 Proceedings of TAG+6

2.1. Dependancy Structures

Dependency structures show relations among the lexical items in a sentence. Information about these relations
is, at least in many cases, plausibly available to the language learner (surface order, morphological decomposition
and affixation (Baroni, 2000; Goldsmith, 2001) and selection relations (Siskind, 1996)). For example, imagine that
upon hearing “John loves Mary” the language learner is able to infer these relations (Here, ‘s’ is marked as a suffix
(by the dash preceding it), and the arcs indicate that the source selected the target at some point in the derivation):

RN

John love -s Mary

S

A dependency structure (henceforth: ‘d-structure”) is a tuple (V, E, S, u, <), where {V, E) is a directed multi-
graph (i.e. E CV x V isamulti-set), u : V. — ¥* is a labeling function from vertices to phonetic strings, S C V'
is a distinguished subset (of suffixes), and < is a total ordering on V' (the surface order). Intuitively, the vertices
correspond to the lexical items used in a derivation, and there is one edge between two vertices for every pair of
features, one from each of the two lexical items, such that the one checks the other in the course of the derivation.
Formally, a d-structure d is ‘for’ a derivation ~ just in case:®

1. for s = (s1,...,sn) the sequence of lexical items used in +, there is a sequence v = (v, ..., v,) Which
enumerates without repetition the elements of V', and for 1 < i < n, u(v;) is the string component of (the label
of the lexical expression) s;

2. there is a bijection from edges in E to non-leaf nodes in the derivation tree denoted by ~ (or equivalently, to
occurances of left brackets in .. .) such that if edge (v;,v;) is mapped to ', then 4’ checks a syntactic feature
in s; against a syntactic feature in s;

3. v; < vj iff the phonetic features from s; precede the phonetic features from s; at spellout

d(G) = {d|3y € T(G) d is for v} is the d-structure language of the MTG G.
Given a d-structure (V, E, S, u, <), we define the following notions which we will use in the description of
the learning algorithm:

e vEv' just in case there is an edge from v to v'. We write vET o' in case there is a finite sequence of vertices
V1,...,Upt1 SUCh that v; Ev;y1, v = vy, and v’ = v,

e <y isapartial ordering of E such thata <p a’ iffa = (v,v'), a’ = (v",v') and v" Etw

e v <! v (vimmediately precedes v') iff v < v’ and no vertex follows v and precedes v’

e anarc (v,v') is a cmerge arc iff vEv', v € S,and v’ < v

e anarc (v,v') is a move arc iff vEv', and 0" vET 0" &v" Ev'

e anarc (v,v') is a smerge arc iff vEv', and it is neither a cmerge arc nor a move arc

e avertex v is the surface specifier of a vertex v’ iff v’ Ev, =30 v" Etv'&v" Ev, and (v',v) is not a cmerge arc
e a vertex v has been shown weak iff there is a sequence a1, ...,a, of cmerge arcs such that a; = (v, 1),

a; = (t;—1,t;), and there is some v’ such that v < v and v’ is the surface specifier of ¢,,. Intuitively, v has been
shown weak just in case it is pronounced after some specifier it mediately dominates.

5. There could be more than one derivation a d-structure is “for” in any given MTG.

Kobele, Collier, Taylor and Stabler 71

2.2. Learning

We work within the learning paradigm established in (Gold, 1967). There, a learner is a function from finite
sequences of sentences to grammars for languages. When the learner is presented with a sequence of sentences,
she makes a guess as to the language that these sentences are from (in the form of a grammar). A learner converges
on an infinite sequence of sentences s just in case there is some finite ¢ such that for all j > i, ¢(s1,...,$;)
is (some variant of) the learner’s guess on the sequence of the first 4 sentences in s is the same as her guess
on the sequence of the first j sentences in s, namely, G. She identifies a language L (a set of sentences) in
the limit iff on every infinite sequence enumerating the sentences of L she converges to some grammar G for L
(possibly different grammars for different sequences). A learner ¢ identifies a class of languages £ in the limit iff ¢
identifies every L € £ inthe limit. The question we address here is whether the class of rigid d-structure languages
(d(rMTG) = {d(G)|G € rMTG}) is identifiable in the limit. Our result that this class is indeed indentifiable in
the limit relies on a result by Angluin (1980) which shows that a class of languages £ is identifiable in the limit iff
for every L € L there is a finite subset Dy, C L such that no other L’ € £ can both contain Dy, and be properly
contained by L. We describe the construction of such a set for each L € d(rMTGQ), and show that it has these
properties.

First we introduce some concepts that will help us in this section. A substitution is any total function 6 over
the set of base features that fixes the start category. A grammar G is an instance of a grammar G' (G' C G) iff
there is some substitution 8 such that for each lexical expression £ in G, the result of applying the substitution to
every feature in the label of £ (where 6 ‘commutes’ with the complex features (e.g. 8(+b) = +(6(b))) is some
lexical item 6(¢) in G'. G and G’ are alphabetic variants of one another (G O G") iff they are variants of each
other. A grammar G is reduced in the sense of (Kanazawa, 1998) iff there is no G’ such that d(G') = d(G) and
G' C G. One way to think of this is to read the C relation as ‘makes more category distinctions than’ (in the
sense of ‘=aa’ makes fewer category distinctions than *=ab’). Then a grammar is reduced iff you can’t make more
category distinctions and still derive the same language. For example, in a reduced grammar no element b € base
occurs as both a selector/base feature (=b, b=, b) and as a licensee/or feature (+b, - b). This is because movement
and selection features never select the same feature. Thus, one can ‘rename’ all occurances of the selection features
with distinct names without changing the expresivity of the grammar. In the remainder of this paper we will be
focussing on reduced rigid mirror theoretic grammars (rrMTGs). This change of perspective serves to simplify
discussion, and does not alter the class of languages to be learned.

The idea behind the construction of the sets Dy, is to constrain as much as possible the grammars capable of
generating supersets of Dy,. As MTGs differ only in their lexical inventories, we do this by putting information
about the lexicon of a grammar that generates L into Dy,. Given a dependency structure d of a derivation in
which lexical item £ occurs, we can reconstruct not only which types of features £ has (sselect, cselect, licensor,
...), but also the order in which they occur (so if the syntactic features of £ are b= c¢ - d - a, we can determine that
£ begins with a sselect feature of some sort, followed by some base feature, followed by two licensee features of
some kind). To be able to determine which features of the given type £ has, we need to also add information about
what other features each feature of £ can check/be checked by.

We associate with each rrMTG G a finite set D C d(G), such that

1. for each lexical item £ in G, D¢ contains a d-structure containing ¢, if one exists

2. for each weak lexical item £ in G, D¢ contains a d-structure which witnesses £’s weakness (a d-structure in
which £ is shown weak), if one exists

3. for each selector or licensor feature z(f) on every lexical item £ in G, for every feature f on each additional
lexical item ¢', D¢ contains a d-structure of a derivation in which the feature z(f) on £ checks f on #', if one
exists

Now we quickly outline a proof that the rigid MTGs are in fact learnable.

Lemmal LetG,G' € rrMTG suchthat Dg C d(G’) C d(G). Then the lexicons of G and G’ are identical up
to renaming of the syntactic features modulo the strength of their lexical items.

Proof Sketch: By the first clause in the definition of Dg, Lexg and Lexg have the same lexical items with
respect to the string component, and the sequence of syntactic types, as d(G') D D¢, and d(G) D d(G') D Dg:.
By the third clause in the definition of D, every feature of a lexical item has an example in D¢ of every feature it

72 Proceedings of TAG+6

can combine with in the course of a derivation. As Dg C d(G"), d(G") must at least give the same feature to those
elements which can combine with one another, and as d(G") C d(G), d(G') must not unify category features more
than d(G). As d(G) is reduced, it does not unify syntactic categories beyond what is recorded in D. O

Lemma?2 Given G,G' € rr MTG such that the lexicons of G and G’ differ only in the strength they assign to the
lexical item £, if £ is not shown to be weak, then d(G) = d(G").

Proof Sketch: By changing the strength of a node to strong, one ensures only that it is not pronounced after any
surface specifiers of nodes further down in its morphological word, in any derivation. But as £ is never shown to
be weak, there is no derivation v where the surface specifier of a node in £’s MW which ¢ properly dominates,
precedes £ at spellout. O

Theorem 1 Let G € TMTG. Forany G' € M TG, if Dg C d(G"), then d(G") is not a proper subset of d(G).

Proof Sketch: Let Dg C d(G"), and assume d(G") C d(G). We show d(G') = d(G). As Dg C d(G') C d(G),
the lexicons of G and G' are identical save possibly for the strength of their lexical items (Lemmal). Let£ € Lex
and £' € Lexg: be identical except perhaps for their strength. We show that neither £ nor £’ can be shown weak
independantly of the other, and thus the lexicons of G and G" agree on any lexical items that are shown weak. The
conclusion then follows from Lemma 2. If £ were shown weak in G, then some d-structure would be a witness to
itin Dg C d(G"), whereby ¢ would be shown weak as well in d(G"). If £' were shown weak in G, then, as by
hypothesis d(G") C d(G), £ would also be shown weak in G. |

Corollary 1 The class of rigid mirror theoretic languages is identifiable in the limit from texts of dependency
structures.

On a finite sequence ¢t = {ds, ..., d;) of d-structures, our algorithm first constructs a ‘general form’ grammar,
GF(t), assigning to each phonetic string in each dependency structure a unique syntactic category sequence. This
grammar is not normally rigid, and does not generalize (i.e. the language it guesses contains exactly the sentences
it has seen). We then unify lexical items in GF(t) to get a reduced rigid grammar, RG(t).

The idea behind the learning algorithm is that, given a d-structure d, we can almost exactly reconstruct the
derivation «y that d is of - we can not normally determine the strength of lexical items used in ~. Our learner, when
determining the strength of a lexical expression, assumes it to be strong unless there is evidence to the contrary.
During the unification process, if we have two lexical items which differ only in whether they are strong, we unify
them as though they were both weak (as all weak features are data-driven).

Input: a sequence of d-structures ¢ = {dy, . . ., d;) of some rigid MTG G

11. let T be the base feature of the root of each of dy, ..., d;

2. for each non-root node we construct the base + post-base feature sequences, with one feature per incoming
arc, as follows:

(a) with the head of the least incoming arc in we associate the feature f, where f is a new, unique base feature

(b) with the head of each subsequent incoming arc, in turn, we associate - f, where f is a new, unique base
feature

3. we then construct the pre-base sequence, associating with the tail of each outgoing arc one feature as follows:
(a) if the head of the arc is associated with a feature - f, we associate the feature +f with the tail
(b) if the head of the arc is associated with a feature f, then

o if the tail of the arc is a suffix, and if the head of the arc is ordered immediately before the tail by <, the
arc is a cmerge arc, and we associate the feature = f with its tail

o otherwise, the arc is an smerge arc, and associate the feature f= with its tail

2. Collect the lexical categories from dy, .. ., d;, making a lexical item weak if it has been shown so, and strong
otherwise to get an MTG GF(t)

3. Unify the categories assigned to each vocabulary element to get a reduced rigid MTG, RG(t), resolving
strength conflicts in favour of weak features

Kobele, Collier, Taylor and Stabler 73

References

Angluin, Dana. 1980. Inductive inference of formal languages from positive data. Information and Control, 45:117-135.

Baroni, Marco. 2000. Distributional Cues in Morpheme Discovery: A Computational Model and Empirical Evidence. UCLA,
dissertation.

Brody, Michael. 1997. Mirror Theory. ms. University College London.

Chomsky, Noam. 1995. The Minimalist Program. Cambridge, Massachusetts: MIT Press.

Gold, E. Mark. 1967. Language identification in the limit. Information and Control, 10:447-474.

Goldsmith, John. 2001. Unsupervised Learning of the Morphology of a Natural Language. Computational Linguistics,
27:153-198.

Hale, John and Edward P. Stabler. 2001. Notes on Unique Readability. ms. UCLA.

Joshi, Aravind K. 1987. An Introduction to Tree Adjoining Grammars. In A. Manaster-Ramer, editor, Mathematics of
Language. John Benjamins, Amsterdam.

Kanazawa, Makoto. 1998. Learnable Classes of Categorial Grammars. Stanford University.: CSLI Publications.

Kobele, Gregory M. forthcoming. Formalizing Mirror Theory. UCLA.

Michaelis, Jens. 2002. Notes on the complexity of complex heads in a minimalist grammar. In Proceedings of the Sixth
International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+6), Venezia.

Siskind, Jeffrey M. 1996. A Computational Study of Cross-Situational Techniques for Learning Word-to-Meaning Mappings.
Cognition, 61:39-91.

Stabler, Edward P. 1997. Derivational minimalism. In Christian Retoré, editor, Logical Aspects of Computational Linguistics.
Springer-Verlag (Lecture Notes in Computer Science 1328), NY, pages 68-95.

Defining a Lexicalized Context-Free Grammar

for a Subdomain of Portuguese Language
Cinthyan Renata Sachs C. de Barbosa

Electronic Engineering and Computation Program of the Aeronautics Technological Institute (ITA) and
Computer Sciences

Davidson Cury

Informatic Institute of the Federal University of Espirito Santo (UFES), Brazil.

José Mauro Volkmer de Castilho (in memorian)
Informatic Technology Institute of the Federal University of Rio Grande do Sul (UFRGS), Brazil.

Celso de Renna e Souza
Computer Science Division of the Aeronautics Technological Institute (ITA), Brazil.

1. Introduction

According to [1], an emphasis must be given to grammar representations for describing and generating
the sentences that make up a given language and an emphasis on processing and computation that demonstrate
that the grammar for a language has important implications as to how it can be processed. Some observations by
[2] and [3], say that a general-purpose grammars should be linguistically plausive, both to be extensible and to
take advantage of work in computational linguistics. Linguistic theories have become much more
computationally oriented recently, and some large, general-purpose grammars are now available [4]. But the
grammars have to be sufficiently robust to cope gracefully with sentence fragments and ill-formed input. It is
also very important in the database context to have a good treatment of proper names, domain-specific
identifiers, abbreviations and other items which cannot be part of a general-purpose lexicon [2].

A NLP system’s success depends on its knowledge of the application domain, namely the relative
completeness of the natural language model it encapsulates and the appropriateness or efficiency of its
algorithms [5]. In the specific case of the NLs, the study of context-free languages (CFL) has been of special
interest because they permit a simple representation of the syntax, adequate for formal structuring, as for
computational analysis [6]. Context-free grammars (CFGs) have been a well accepted framework for
computational linguistics for a long time [7], [8]. The recognizer algorithms and generator algorithms that
implement CFLs are relatively simple and have a good efficiency. In addition, according to [9], it was the CFGs
with some restrictions that had greater progress in the description of NL.

According to [7], lexicalization is important, from a computational perspective, because, other things being
equal, lexicalized grammars can often be parsed much more efficiently than non-lexicalized ones. In [10] it is
affirmed that this can be done associating each elementary structure in a grammar with a lexical item (terminal
symbol in the context of formal grammars). A type of lexicalization is Greibach Normal Form (GNF) for
Context-Free Grammar (CFQG). In contrast to GNF, that is regarded as a kind of weak lexicalization, for not
preserving structure of the original, Lexicalized Grammar can be considered as a stronger version of GNF, in
the sense that the structures are preserved and not just the string sets (weak generative capacity). Lexicalization
is of interest from a linguistic perspective, because most current linguistic theories give lexical accounts of a
number of phenomena that used to be considered purely syntactic [7]. The information put in the lexicon is
thereby increased in both amount and complexity [10]. According to [10], some of the linguistic formalisms
illustrating the increased use of lexical information are, lexical rules in Lexical-Functional Grammar (LFG),
Generalized Phrase Structure Grammar (GPSG), Head-Driven Phrase Structure Grammar (HPSG), Combinatory
Categorial Grammar, Karttunen’s version of Categorial Grammar, some versions of Chomsky’s Government
Binding Theory (GB theory), and Lexicon-Grammars.

Every method for lexicalized CFGs in the strong sense defined has required context-sensitive operations.
As a result, every method for lexicalizing CFGs has shared with LTAG the unfortunable feature that
lexicalization leads to dramatically decreased rather than increased computational performance [7]. According

to [8], although LTAG is considered to be interesting, it is executed at the cost of decreased efficiency, O(n6)-
time in the worst case [11], [12], [13]. As a result [7], there are no computational advantages in lexicalizing a
CFG using LTAG because of the speed up due to the grammar becoming lexicalized being swamped by the
dramatic increase in fundamental worst case cost. So, we will focus on Lexicalized Context-Free Grammars
(LCFG), a class of grammars originally introduced in [14]. They are attractive because they combine the

© 2002 Cinthyan R. Sachs C. de Barbosa, Davidson Cury, Jos¢ M. Volkmer de Castilho, Celso de Renna e
Souza. Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and Related Frameworks
(TAG+6), pp. 74-79. Universita di Venezia.

Barbosa, Cury, Castilho and Souza 75

elegance of LTAG and the efficiency of CFG [14] and, it is also possible through an algorithm [8] to show how

the O(n3)-time worst case complexity can be achieved for LCFG (n is the length of sentence). Through this
formalism, constructions of CFGs for the definition of the real constructions of an interface, will be dealt with.

In this work the medical area was chosen, with emphasis on a portuguese grammar generating a medical
language for radiological queries over a set of radiographs of a Ewing sarcom case. The treated language subset
includes active and passive voices, relative and interrogative clauses, their combinations and pronouns. The
language generated by this grammar was validated from knowledge obtained in the FLAMA (Tools and
Authoring Language for Modeling Process). This framework had as objective a set of tools and an authoring
language that constitutes the framework of a highly specialized architecture for authoring activities [15], [16].
FLAMA was based on an archetypical reference RUI environment (Representation for Understanding Images)
for the learning of radiology [17]. The access to knowledge contained in the knowledge base will be done
through radiological language which grammar is the focus of investigation through this work. We are
developing a correlated work dealing with parsing techniques for our grammar.

2. Radiological Grammar

Gs: (Neg) Vir (Intens) NP SPR (SPA) (Y) /

1) $’— Comp S / Comp Sq / Comp PPq (Neg) Vir (Intens) SPR NP (SPa) (Y)
2)Sq—>ProS 19) VP — (Neg) Vir (Intens) SPC SPC (SPA) (Y)
3) S — NP (M) VP / VP / ProReto VP 20) VP — (Neg) Vintr (Intens) (SPA) (Y)

4) Sy — Rel S 21) SPC — P NP/ P OblTon

5) NP — (Det) (Mod) N (Mod) (W) 22) SPR — P RefObl

6) W — (W) Mod 23) VP — (Neg) VE AP (Y)

7) NP — (Det) (Mod) Ncom (Mod) (W)
8) NP — NP Conec NP (X)
9) X — (X) Conec NP

24) VP — (Neg) VE NP (Y)
25) VP — (Neg) VE PP (Y)

10) NP — NP S; 26) VP — (Neg) VE Vpar (NP) (por NP) (PP)
11) Det — (Predet) Detbase (Posdet) 27) VP — (Neg) Vestar Vger (Y)
12) Mod — AP / PP 28) Vir — (Neg) Vir Sy
13) N - NS¢ 29) Comp — +wh
14) Ncom — Ncom Sy 30) PP — P NP
15) VP — (Neg) Vir (Intens) NP (SPA) (Y) / 31) PPq — Pq Pro

(Neg) Vir OblAt (Intens) (SPA) (Y) 32) PP —~ Adv .
16)Y — (Y) PP 33) AP — (Intens) (SPA) Adj (SPC)
17) VP — (Neg) Vi (Intens) SPC (SPA) (Y) 34) AP — (Intens) (SPA) Adjcom (SP(C)

35) AP — AP Conec AP (2)

18) VP — (Neg) V t (proap) (Intens) NP SP ¢ (SP A) (Y) /
(Neg) Vir (proap) (Intens) SPC NP (SPA) (Y) /
(Neg) Vir OblAt (Intens) NP (SPA) (Y) /

(Neg) OblAt Vi (Intens) NP (SPA) (Y) /

(Neg) Vir RefCli (Intens) (SPA) (Y) /

36) Z — (Z) Conec AP
37) Adj — Adj Sy
38) Adjcom — Adjcom Sy

FIGURE 2.1 - Surface Grammar

A set of rules that identify references to the various kinds of diagnosis and symptoms are needed. Through
Portuguese Transformational Grammar (GT) [3], [18], [19] it was possible to work the proposed domain for the
following kinds of constructions: grammatical groups as sentence, noun phrase (e.g. “the exam”), verb phrase
(e.g. “has some differential diagnosis™), adjective phrase (e.g. “the osteomyelitis is chronic”), prepositional
phrase (e.g. “the osseous texture is of diffuse form”), adverb phrase, restrictive clause (e.g. “the parameters that
were analyzed led to osteomyelitis”), yes/no sentences (e.g. “The femur is reduced?”), wh-sentences (e.g.
“What is the patient age?”), alternative sentences in the usual form (not cleaved) (e.g. “appear lithic or blastic
lesion?"), sentences of solicitation of explanation (e.g. “Why S?”), existential S (e.g. “Some region was
examined?”), S in the active voice (e.g. “The lesion compromise some region?”), S in the passive voice (e.g.
“Some region is compromised by lesion?”), cleaved S (e.g. “Is the exam that confirmed the diagnosis?”). A
grammar was proposed (fig.2.1) which foresees the treatment of expressions of specific vocabulary (words,
expressions and medical jargon [20]) utilized in radiology. A meticulous study of TG and of Transformation
Rules for portuguese [21] was necessary for constructing a surface grammar (in TG the rewriting rules generate
the deep structure of the sentence) that treats several syntactical aspects of radiological language. Next the
relationship between the surface grammar and LCFG, will be shown.

76 Proceedings of TAG+6

3 Lexicalization of LCFG

In this section, we propose to extend the domain of locality of Radiological CFG in order to make lexical
items appear local to the production rules. The domain of locality of a CFG is extended by using a tree rewriting
system that uses substitution and a restricted form of adjunction. So, the syntactical relations described in the
FCG presented in [21] are needed also in LCFGs. However, these relations are expressed by trees (initial and
auxiliary trees) and operations above. In [22], it is affirmed that, due to formal properties of the adjunction, the
formalism utilized becomes more powerful than FCGs. Not every grammar is in a lexicalized form. Given a
grammar G stated in a formalism, we will try to find another grammar Glex (not necessarily stated in the same

formalism) that generates the same language and also the same tree set as G and for which the lexicalized
property holds. We refer to this process as lexicalization of a grammar. We say that a formalism F can be
lexicalized by another formalism F, if for any finitely ambiguous grammar G in F there is a grammar G’ in F’
such that G’ is a lexicalized grammar and such that G and G’ generate the same tree set (and a fortiori the same
language) [10]. Taking our surface grammar [21], [23] it is possible to map LCFG, permitting in the last
representation an improvement in the computational performance. According to [7], the presence of lexical item
as its leftmost non-empty constituent in LCFG facilitates efficient left to right parsing. The main reason
motivate the construction of an CFG (fig.2.1) is due to number of initial and auxiliary trees in LCFG can be, in
the worst case, much greater than the number of production rules in a FCG (in this case the surface grammar).
The number of elementary trees in Glex is related to the number of acyclic and minimal cycle paths in LG
(lexicalization graph). More details in [7]. By using the theorem exhibited in [8], it is possible to transform the
surface grammar into a LCFG, by means of a special artifice in the treatment of terminals, obtaining
consequently, as in the surface grammar, valid constructions for the radiological language.

In linguistic context, according to [24], the nodes on the frontier in LCFG are preterminal lexical category
symbols such as N (Noun), V (Verb), etc. For denoting these categories, the artifice utilized in this work will be
the insertion of pseudoterminals in the surface grammar so that the theorem can be applied. The
pseudoterminals, denoted by detbase, n, v, etc. (all denoted in small letter) will be in the productions of the
preterminals as in N—n, V —v, etc. After applying the theorem the previous preterminals and these
pseudoterminals will be marked with {, as seen in fig.3.1, indicating that its ~ pseudoterminal child node, will
have to activate a search in a dictionary for verifying if it is possible to use, in this point, the token from the
input string. If possible, the pseudoterminal will be substituted by the terminal at issue. The lexical items,
utilized in the radiological language, are in a dictionary, which is exhibited in [21].

)p\ NG PP
| /MK
Dt N 1 r[e NP Pﬁ/\ﬁvl
Detbased v p
dethase

FIGURE 3.1 - Examples of trees before lexicalization

The principal unit of syntactic information associated with a LCFG entry is a tree structure in which the tree
nodes are labeled with syntactic categories and feature information and there is at least one leaf node labeled
with a /exical category (such lexical leaf nodes are known as anchors). Thus, the lexicon consists of a finite set
of structure each associated with an anchor. The structures defined by the lexicon are called elementary
structures. Structures built by combination of others are called derived structures [10]. With respect to a LCFG
lexicon, this can be defined as the LTAG lexicon, for example, where this consists of a set of trees each one
associated with one or more lexical items [14]. These elementary trees can be viewed as elementary clauses
(including their transformational variants) in which the lexical items participate. The trees are combined by
substitution and a restricted form of adjunction that is context-free in nature.

Fig.3.2 exhibits some of the constructions LCFG utilized in radiological domain. In grammars as LCFG,
and others of the TAG family, the linguistic unit is this elementary tree, which corresponds to a minimal
predicative structure. According to [22], these structures are syntactic and semantic units at the same time. They
are gathered in tree families which encode the different lexical and syntactic rules which may apply to them
[25]. When trees are combined by substitution or adjunction, the corresponding semantic representations are
combined. In [24] focus that the elementary trees are the appropriate domains for characterizing certain
dependencies (e.g., subcategorization and filler-gap dependencies). That is, an elementary tree localizes
agreement dependencies, filler-gap dependencies and predicate-argument dependencies and also serves as a
complex description of the anchor.

Barbosa, Cury, Castilho and Souza 77

Dt N 1 v[e NP p|¢ NP
Detbased v p
dethase

FIGURE 3.1 - Examples of trees before lexicalization

The principal unit of syntactic information associated with a LCFG entry is a tree structure in which the tree
nodes are labeled with syntactic categories and feature information and there is at least one leaf node labeled
with a /exical category (such lexical leaf nodes are known as anchors). Thus, the lexicon consists of a finite set
of structure each associated with an anchor. The structures defined by the lexicon are called elementary
structures. Structures built by combination of others are called derived structures [10]. With respect to a LCFG
lexicon, this can be defined as the LTAG lexicon, for example, where this consists of a set of trees each one
associated with one or more lexical items [14]. These elementary trees can be viewed as elementary clauses
(including their transformational variants) in which the lexical items participate. The trees are combined by
substitution and a restricted form of adjunction that is context-free in nature.

Fig.3.2 exhibits some of the constructions LCFG utilized in radiological domain. In grammars as LCFG,
and others of the TAG family, the linguistic unit is this elementary tree, which corresponds to a minimal
predicative structure. According to [22], these structures are syntactic and semantic units at the same time. They
are gathered in tree families which encode the different lexical and syntactic rules which may apply to them
[25]. When trees are combined by substitution or adjunction, the corresponding semantic representations are
combined. In [24] focus that the elementary trees are the appropriate domains for characterizing certain
dependencies (e.g., subcategorization and filler-gap dependencies). That is, an elementary tree localizes
agreement dependencies, filler-gap dependencies and predicate-argument dependencies and also serves as a
complex description of the anchor.

The sentences of radiological language will be obtained utilizing these structures and the lexical items
contained in dictionary presented in [21]. Some of these sentences are exhibited in fig.3.3 which utilize
elementary trees al3, a50, a26 e a38, and lexical items a, tibia, tem, um, contorno, totalmente, regular, which are
necessary to preterminals Detbase, N, Vtr, Detbase, N, Intens, Adj respectively. The trees that describe
portuguese syntactic structures are grouped in families, specially according to criteria of verbal regency and
transitivity [26]. Hierarchical representations of portuguese LCFG have been proposed, e.g., defining tree
families [21]. A tree family contains the different possible trees for a given canonical subcategorization (or
predicate-argument structure).

s s s NP NP
s
= /NP\/—\VP-L NS Dot NG Modd iﬁ\m ,_.-"'S_"““-
wh e Det N o V/\Pl *** Detbased *** Detbaseo ; —
2 DetLaseo w0 (a26) (a28) h
@®2) (al3) (a21)
-
lTet N Vi HI_P_
i _"J. ___\h_
NP NP Mod AP SPc ‘ - —
| P N .
No v NPT AR adp SR+ PO NPy Derpase et T‘ Maod
Relo St Infenso Adj} (ad7) (a49) | ‘
(a30) (a34) (a38) I Dethase
i -
e LT | totems A
Vo NP *** Vgb AP, mLo § ntens !]J
(a50) (as1) (a54) - |
a e lem um conomo todaimente seqular

FIGURE 3.2 - Elementary structures utilized in
radiological domain FIGURE 3.3 - Substitution in a tibia tem um contorno
totalmente regular
4. Conclusions

In this paper, we have presented some novel applications of LCFG. We have illustrated a radiological
grammar, based on the LCFG formalism. A new approach to grammar in natural language to description of
portuguese utilized in Natural Language Interfaces to Database (NLIDBs) was applied. The formalism TAG
family was used, which is a tree-generating system rather than a string generating system. The set of trees
derived from this family constitutes the object language. To describe these structures of portuguese, the
conventional CFGs gave support in the definition of the syntactic structures of portuguese for LCFG. A
meticulous study about context-free rules of phrase structure of TG was done. These rules of TG that foresee
various linguistic problems of the NLIDBs [27] were defined for the deep structures. Transformation rules
defined for the portuguese were described in [21] for attainment of surface structures. These rules were mapped
for a surface grammar, which was taken as entry in the utilization of theorem presented in [8] that has as output
an LCFG. LCFG is a formalism integrating lexicon and grammar. It has both linguistic advantages (e.g. elegant

78 Proceedings of TAG+6

handling of unbounded dependencies and idioms [28]) and computational advantages, particularly due to
lexicalization ([29]). The lexicalization in the LCFG showed to be interesting not only from the linguistic
perspective, as such formal interest, because it is systematically associated with a lexical anchor. These
structures specify extended domains of locality over which constraints can be stated. In [30] emphasizes the
importance of key-concept of extended domain of locality, which is capable of allowing the dependency
information and phrase structure information to be represented in one structure, that is, an elementary tree. This
feature, according to [30], allows the phrase structure parse tree to be represented in terms of dependency
information. The advantage of the extended domain of locality, according to [31], is that many relationships that
must be mediated via grammar rules in other formalisms can be stated directly in the lexical entries.

The linguistic and mathematical advantages of lexicalized formalisms are useful in practical
applications. Currently, most large scale NLP systems adopt CFG-like grammars, that have to face the problem
of syntactic ambiguity, because the constraints expressed on the syntactic categories are too general to limit the
huge hypothesis space generated by wide-coverage grammars [32]. So, LCFG favored the syntactical analysis of
NL for the portuguese, because a broader domain of locality than usual phrase structure rules. This allows us to
state, for example, subcategorization imposed on an element by another that does not directly dominate it, e.g.,
between the verb and the determiner of its first complement. Other linguistic advantage is that the adjunction
permits the recursion in the composition of trees. The lexicalization notion in the LCFG is also linguistically
very significant by preserving not only the string sets (weak generative capacity) but also the structures, i.e.,
strong generative capacity. The syntactic criteria defined by LCFG restrict the number of possible structures for
a sentence, simplifying the semantic analysis. With relation to concordance criteria, these can be taken outside
grammar, as proposed by [33] for not causing exponential explosion of the rules. In this work the concordance
criteria are similar to top and bottom features [34] that are unified in LTAG.

An important fact, undoubtedly, is that the LCFGs do not require more computational recourses than CFGs.
The greatest computational advantage [7] is that the parsing of an LCFG (obtained by CFG through
lexicalization) is significantly faster than the one of the CFG. Although the string sets generated by LCFG are
the same as those generated by CFG, LCFG is capable of generating more complex sets of trees than CFGs [7].
The fact that LCFG lexicalizes CFG is significant, because every other method for lexicalizing CFG without
changing the trees derived require context-sensitive operations [10] and therefore dramatically increases worst
case processing time. Context-sensitive operations (e.g., mildly context-sensitive formalisms [11]) entail much
larger computational costs for parsing and recognition than CFGs. In particular, the fastest known LTAG parser

require O(n6) - time in the worst case [12] in contrast to O(n3) for CFG. Since LCFG is a restricted case of TAG,
standard O(n6)-time TAG parsers [11], [12], [13] can be used for parsing LCFG. Although they require 0(n6)-

time for TAG parsing, they can be made very easily to require at most O(n4)-time for LCFG. This bound is still
too high since we know that LCFGs generate only context-free languages. Then, recognizer and left to right

parsing algorithm which requires O(n3)-time in the worst case for LCFG has been proposed [14], [7], [21] to
process a sentence of length n. Since the attractive aspects of LTAGs come at some computational cost, LCFG
provides an efficient alternative which does not sacrifice the elegance of the LTAG analyses and which may be
useful in different areas of computational linguistics.

Very restricted natural language does not work particularly well as a straight substitute for a traditional
formal query language. A broader system covering a larger part of the Portuguese grammar and medical
vocabulary is currently under development. The grammar has to be sufficiently robust to cope gracefully with
sentence fragments and ill-formed input, words, expressions and medical jargon utilized in medicine. The
grammar described in this paper has the possibility of to be inserted in broader studies which generate the
portuguese language and not only the radiological language ones. Portuguese language interfaces for another
applications as Operational Systems [35], Expert Systems [36], [37], [38], Intelligent Tutor Systems, etc. [15],
[16], [21], [39] can use these grammar. Stochastic extensions [40] can also be incorporated to grammar for
making it possible to capture both distributional and hierarchical information about portuguese words.

References

[1] KRULEE, G. K. Computer Processing of Natural Language. Englewood Cliffs, NJ: Prentice-Hall, 1991. 456p.

[2] COPESTAKE, A.; JONES, K. S. Natural Language Interfaces to Databases. The Knowledge Engineering Review, [S.1.], v.5, n.4, p.225-
249, 1990.

[3] BARBOSA, C. R. S. C. de. Interfaces em Linguagem Natural para Banco de Dados. Porto Alegre: CPGCC da UFRGS, 1997. 165p.
Trabalho Individual n.640.

[4] GROVER, C. et. al. The Alvey Natural Language Tools Grammar (second release). Cambridge: Computer Laboratory, University of
Cambridge, 1989. (Technical Report 162).

[5] MANARIS, B. Z.; SLATOR, B. M. Interactive Natural Language Processing: Building on Success. IEEE Computer, New York, v.29,
n.7, p.28-32, July 1996.

[6] MENEZES, P. F. B. Linguagens Formais e Automatos. Porto Alegre: Instituto de Informatica da UFRGS: Sagra Luzzatto Editores,
1998. 165p.

Barbosa, Cury, Castilho and Souza 79

[7] SCHABES, Y.; WATERS, R. C. Lexicalized Context-Free Grammar: A Cubic-Time Parsable, Lexicalized Normal Form For Context-
Free Grammar That Preserves Tree Structure. Broadway, Cambridge: Mitsubishi Electric Research Laboratories, June 1993. 30p.
(Technical Report 93-04).

[8] SCHABES, Y.; WATERS, R. C. Lexicalized Context-Free Grammars. In: ANNUAL MEETING OF THE ASSOCIATION FOR
COMPUTATIONAL LINGUISTICS, 31., 1993, Ohio, USA. Proceedings... Ohio: [s.n.], 1993. p.121-129.

[9] RICH, E.; KNIGHT, K. Inteligéncia Artificial. Sao Paulo: Makron Books, 1993. 722p.

[10] JOSHI, A. K.; SCHABES, Y. Tree-Adjoining Grammars and Lexicalized Grammars. In. EUROPEAN SUMMER SCHOOL IN
LOGIC, LANGUAGE AND INFORMATION, 4., 1992, Colchester, U.K. Proceedings... Colchester: University of Essex, 1992. p.1-23.

[11] VIJAY-SHANKER, K. A Study of Tree Adjoining Grammars. Philadelphia, USA: Department of Computer Science, University of
Pennsylvania, 1987. PhD Thesis.

[12] LANG, B. The Systematic Constructions of Earley Parsers: Application to the Production of O(n6) Earley Parsers for Tree Adjoining
Grammars. In: INTERNATIONAL WORKSHOP ON TREE ADJOINING GRAMMARS, 1., 1990, Dagstuhl Castle, FRG.
Proceedings... Castle: [s.n.], 1990.

[13] SCHABES, Y. The Valid Prefix Property and Left to Right Parsing of Tree-adjoining Grammar. In: INTERNATIONAL WORKSHOP
ON PARSING TECHNOLOGIES, 2., 1991, Cancun, Mexico. Proceedings... Cancun: [s.n.], 1991.

[14] SCHABES, Y. Lexicalized Context-Free Grammars. Broadway, Cambridge: Mitsubishi Electric Research Laboratories, Jan. 1993. 16p.
(Technical Report TR 93-01).

[15] CURY, D. FLAMA: Ferramentas e Linguagem de Autoria para a Modelagem da Aprendizagem. Sdo José dos Campos: CPG da
Engenharia Eletronica e Computagao do Instituto Tecnologico da Aeronautica, 1996. 151p. PhD Thesis.

[16] CURY, D.; OMAR, N.; DIRENE, A. I. Modelos Baseados em Estereotipos e Oraculos para a Aprendizagem de Conceitos Visuais.
Revista Brasileira de Informatica na Educagio, n.02, p.43-53, Apr. 1998.

[17] DIRENE, A. I. Methodology and Tools for Designing Concept Tutoring Systems. Sussex: School of Cognitive and Computing
Sciences, University of Sussex, 1993. PhD Thesis.

[18] CHOMSKY, N. Aspects of the Theory of Syntax. Cambridge, MA: MIT Press, 1965.

[19]1 ZORZO, A. F. Gramatica Transformacional com Atributos. Porto Alegre: CPGCC da UFRGS, 1994. 99p. Master Thesis.

[20] BAUD, R. H.; RASSINOUX, A. M.; SCHERRER, J. R. Natural Language Processing and Knowledge Representation of Medical
Texts. Methods of Information in Medicine, [S.1.], v.31, p.117-125, 1992.

[21] BARBOSA, C. R. S. C. de. Gramatica para Consultas Radiologicas em Lingua Portuguesa. Porto Alegre: CPGCC da UFRGS, 1998.
143p. Master Thesis.

[22] ABEILLE, A. et al. Non Compositional Discontinous Constituents in Tree Adjoining Grammar. In: EUROPEAN SUMMER SCHOOL
IN LOGIC, LANGUAGE AND INFORMATION, 4., 1992, Colchester, U.K. Proceedings... Colchester: University of Essex, 1992. p.1-
20.

[23] BARBOSA, C. R. S. C. de.; CASTILHO, J. M. V. de. Gramatica Livre de Contexto Lexicalizada para a Analise Sintatica da Lingua
Portuguesa - Uma Experiéncia na Geragdo de Consultas de uma Interface em Linguagem Natural para Banco de Dados. In:
ENCONTRO PARA O PROCESSAMENTO COMPUTACIONAL DA LINGUA PORTUGUESA ESCRITA E FALADA, 5., 2000,
Atibaia, SP. Anais... Atibaia: ICMC/USP, 2000. 193p. p.155-164.

[24] KROCK, A. Analysing Extraposition in a Tree Adjoining Grammar. In: EUROPEAN SUMMER SCHOOL IN LOGIC, LANGUAGE
AND INFORMATION, 4., 1992, Colchester, U.K. Proceedings... Colchester: University of Essex, 1992. p.107-149.

[25] ABEILLE, A. et al. A Lexicalized Tree Adjoining Grammar for English. Philadelphia, USA: Department of Computer and Information
Science, University of Pennsylvania, Philadelphia, PA, 1990. (Technical Report MS-CIS-90-24).

[26] JOSHI, A.; VIJAY-SHANKER, K.; WEIR, D. The Convergence of Mildly Context-Sensitive Grammatical Formalisms. In: SELLS P.;
SHIEBER, S.; WASOW, T. (Eds.). Foundational Issues in Natural Language Processing. Cambridge, MA: MIT Press, 1991. p.31-81.
[27] ANDROUTSOPOULOS, 1.; RITCHIE, G. D.; THANISCH, P. Natural Language Interfaces to Databases - An Introduction. Journal of

Natural Language Engineering, Cambridge, p.1-50, 1994.

[28] CANDITO, M.H. A Principle-based Hierarchial Representation of LTAGs. In: COLING’96., 1996, Copenhagen, Proceedings...
Copenhagen, [s.n.], 1996. p.194-199.

[29] SCHABES, Y.; ABEILLE, A.; JOSHI, A. K. Parsing Strategies with ‘Lexicalized” Grammars: Application to Tree Adjoining
Grammars. In: INTERNATIONAL CONFERENCE ON COMPUTATIONAL LINGUISTICS, 12., 1988, Budapeste, Hungria.
Proceedings... Budapeste: ACL, 1988. 843p. p.578-583.

[30] JOSHI, A. K.; SRINIVAS, B. Using Parsed Corpora for Circumventing Parsing. In:. WERMTER, S.; RILOFF, E.; SCHELER, G.
(Eds.). Connectionist, Statistical and Symbolic Approaches to Learning for Natural Language Processing. Berlin: Springer-Verlag,
1996. p.413-424.

[31] POPOWICH, F. Lexical Characterization of Local Dependencies with Tree Unification Grammar. Burnaby, Canada: School of
Computing Science, Simon Fraser University, Sep. 1993. 36p. (Technical Report CMPT TR 93-13).

[32] BARBERO, C.; LOMBARDO, V. Wide-coverage Lexicalized Grammars. [S.1.:s.n.], 1996.

[33] MONTEIRO, S. L. Um Subconjunto Regular do Portugués. Rio de Janeiro: Laboratério Nacional de Computagdo Cientifica, 1988. 43p.
(Relatérios de Pesquisa e Desenvolvimento ISSN 0101 6113).

[34] XTAG RESEARCH GROUP. A Lexicalized Tree Adjoining Grammar for English. Pennsylvania: Institute for Research in Cognitive
Science, University of Pennsylvania, 1995. 155p. (Technical Report IRCS 95-03).

[35] MANARIS, B. Z.; DOMINICK, W.D. NALIGE: a User Interface Management System for the Development of Natural Language
Interfaces. International Journal of Man-Machine Studies, [S.1.], v.38, n.6, p.891-892, June 1993.

[36] BARBOSA, C. R. S. C. de. Sistema Especialista Pedagogico. Rio Claro: DEMAC-UNESP. 1992. 120p. Trabalho de Concluso.

[37] OLIVEIRA, C. A. de. Interface em Linguagem Natural para Sistemas Especialistas. In: 20 SIMPOSIO BRASILEIRO DE
INTELIGENCIA ARTIFICIAL. 20-22 nov. 1985, Sdo José dos Campos. Anais... Sdo José dos Campos: 1985. p.173-177.

[38] DREW, C. F. A Natural Language Interface for Expert System Help Desks. In: CONFERENCE ON MANAGING EXPERT
SYSTEM PROGRAMS AND PROJECTS, 1990, Bethesdas, MD. Proceedings... Bethesdas: 1990. p.209-215.

[39] BARBOSA, C. R. S. C. de.; OMAR, N. Detecgio de Erros Durante um Dialogo Tutorial. In: WORKSHOP DE COMPUTACAO, 3.,
2000, Sao José dos Campos, SP. Anais... Sao José dos Campos: CTA/ITA, 2000. 164p. p.1-8.

[40] SCHABES, Y.; WATERS, R. C. Stochastic Lexicalized Context-Free Grammars. Broadway, Cambridge: Mitsubishi Electric Research
Laboratories, July 1993. 12p. (Technical Report 93-12).

Practical, Template—Based Natural Language Generation with
TAG

Tilman Becker
DFKI GmbH

1. Introduction

This paper describes a TAG-based (Joshi and Schabes, 1997), template—based approach to Natural Language
Generation. It extends the idea of lexicalization to whole phrases, similar in style to the representation of idioms
in a TAG grammar. In addition to this, there is a second type of templates: partial derivations.

The first phase in the generator, driven by planning rules, produces a derivation tree which is then used in a
straightforward realizer to create the derived tree. This tree is then the basis for the input to a Concept—To—Speech
synthesis component (Schweitzer, Braunschweiler and Morais, 2002).

There are two basic methods for constructing these two kinds of templates. The first and preferred one is
based on an existing grammar where the templates represent shortcuts that would be used for reasons as simplicity,
efficiency, or because the existing grammar does not contain an interface to the representation language, e.g.,
semantics, that is used as the generator‘s input. The second method which is used so far in the SMARTKOM
project (Wahlster, Reithinger and Blocher, 2001) is necessary when no suitable grammar exists. It allows for
an approach similar to rapid prototyping: only the templates that are needed are specified and the templates are
initially kept as large as possible. Only in the following development steps, the templates are made smaller and
smaller, eventually themselves becoming a grammar.

The following sections briefly present the SMARTKOM project and the generator architecture. Then the use of
fully specified templates is discussed in this context, including their use for concept—to—speech synthesis. Finally
we present the current work, including some tools that are under development.

2. The SmartKom Project

SMARTKOM is a multi-modal, dialogue system currently being developed at several academic and industrial
partners (see www. smar t kom or g). User input modalities are speech, including prosody, various gestures,* and
an interpretation of the user‘s facial expression. The system output is a combination of graphical presentations and
an animated, talking agent, Smartakus, plus various external effects such as controlling a VCR, sending e-mail,
querying databases etc.

The key idea behind the system is to develop a kernel system which can be used within several scenarios and
applications. Currently there exist three such scenarios — public, home, and mobile — with a number of applications
such as EPG (electronic programming guide), scanning and sending documents, route finding, etc. They all are
different in their external appearance but share most of the basic processing techniques. The system depicted in
Figure 1 is the “public scenario” system. Within this scenario, an intelligent kiosk is developed with which one is
able to access the various applications. Development is mainly for German, but some applications are also ported
to English.

2.1. Architecture

Figure 2 shows the overall architecture of the generation system which follows a straightforward classical
pipeline design. On the interfaces to input and output, XSLT stylesheet transformations adapt the various formats,
while internally there are two important sub—components: Preplan, a simple planning engine that maps from the
presentation goals to derivation trees and a TAG component that implements TAG trees with their operations,
including full feature unification.

Preplan is a top—down rule expanding planner, implemented in Java. Rules have associated constraints that
can refer to knowledge bases that are constructed from the input to the generator. The planner then matches parts
of this input to select appropriate templates (i.e., partial derivation trees) and fills them with data from the input.

1. analyzed through an infrared camera, thus obliterating the need for a touch screen.

(© 2002 Tilman Becker. Proceedingsof the Sixth International Workshop on Tree Adjoining Grammar and Related Frameworks
(TAG+6), pp. 80-83. Universita di Venezia.

Becker 81

There | would
like to get
a reservation.

Figure 1: Multi-modal interaction with the system.

e.g., the name of the user is taken from the input and inserted into an existing tree for a name, overwriting an
uninstantiated lexical item in this tree.

XSLT PrePlan TAG XSLT
Text Sentence Syntactic
Planner Planner Realization
What? How? Details

abstract input
derivation tree

goals + knowledge bases
derived phrase structure

Figure 2: Classical pipeline architecture of the generator.

3. Fully Specified Templates

The design decision to use template—based generation in SMARTKOM, is driven by practical considerations:
First, generator output was needed as early as possible in the project. Since there are a number of non—overlapping,
but well-defined applications in SMARTKOM, output for a new application has to be created in a short time,
suggesting the use of templates. On the other hand, simple string concatenation is not sufficient. E.g., for in-
tegrating Concept-to—Speech information, especially in the way the synthesis component of SMARTKOM is de-
signed(Schweitzer, Braunschweiler and Morais, 2002), calls for an elaborate syntactic representation, i.e., phrase
structure trees with features, to guide the decisions on prosodic boundaries. At least since (Reiter, 1995) (also
see (Becker and Busemann, 1999)), the use of templates and “deep representations” is not seen as a contradic-
tion. Picking up on this idea, the generation component in SMARTKOM is based on fully lexicalized generation
(Becker, 1998), packing whole parts of a sentence together into one fully specified template, representing them
not as a string but rather as a partial TAG derivation tree. See also figure 3. All nodes in the TAG trees carry top
and bottom feature structures, see (Vijay-Shanker, 1987), which also contain discourse information as needed for
concept—to—speech synthesis. The current setup uses fully inflected forms, but this is due to be changed soon and
the changes will be minimal. A call to a morphology module will get inflectional information from the feature

82 Proceedings of TAG+6

structures and stem information from the leaf as, e.g., in (Becker, 1998).

S

/\
NN
N

news programs are VP Adv

SN

VP PP tonight

DN
TN

shown on Det N

this channel

"programs’

"news"
CTS:

CTS: "deixis, new'

Figure 3: Derivation tree with CTS (Concept-to—Speech) markup. Each ellipse is a fully specified template. The
sentence—planning process combines such templates to a complete derivation tree.

3.1. Specifying only Relevant Representations

With this approach to specify intermediate levels of representation (which commonly only exist inside the
NLG module), the question remains whether all levels of representation have to be specified. Clearly, this is
desirable, but not necessary in SMARTKOM. Thus only the level of dependency and phrase structure are repre-
sented fully. Dependency is necessary to guide the top—down generation approach, phrase structure is necessary
for (Concept—to—)speech synthesis. However, there is nothing preventing the later inclusion of other levels of rep-
resentation, e.g., adding a level of semantic representation (e.g., (Joshi and Vijay-Shanker, 1999)) which might be
used by a sentence aggregation component.

3.2. Dependency and Speech—Markup

Specifying templates on the level of derivation trees rather than on derived trees or even strings has several
advantages. In the context of Concept-to—Speech synthesis, it is necessary to add markup to parts of the string.
This can be done easily by adding the information to the corresponding node in the derivation tree from where it is
percolated and automatically distributed to the corresponding parts of the utterance when constructing the derived
tree and the string from the derivation tree. Such markup relates to parts of the output that have to (de-)emphasized,
parts that refer to objects in the graphical presentation and must be coordinated with a pointing gesture.

Figure 3 shows a derivation tree with speech-relevant markup on some nodes. Besides mere convenience in the
markup? the additional power of TAG allows the distribution of semantically connected markup to discontinuous
parts in the final string. Since formal complexity is a very different issue in generation than in parsing, we are open
to the use of extensions from the standard TAG formalism as in (Rambow, 1994) or (Gerdes and Kahane, 2001)
which might be necessary for German.

3.3. Tools and Current Work

Currently we have editors available for the planning rules and the TAG-tree templates. Both build on XML

2. E.g., XML-style opening and closing parentheses can be integrated into the trees and thus are realized by a single marked
node vs. the situation in a classical context—free based string-expanding template generator, where opening and closing elements
have to be denoted independently—a typical source for errors.

Becker 83

representations of the knowledge bases and present them in an easily accessible format: a directory structure® as
known from the Windows Explorer for the set of trees and a graphical tree editor for the TAG-trees.*

Current work is centered around adding templates for new applications and has shown that managing a large
set of templates can be problematic. Eventually we hope to switch to the first development method as mentioned
in the introduction: We plan to extend the rule editor with a TAG-parser. To add a new template to the generator,
the user will then type in an example sentence, have it parsed, select the correct parse, mark (delete) the variable
parts, keeping the fixed part and add the remainder of the rule. Thus rules can be created without ever writing trees
by hand.®

File More

| Redraw H Add new root

VP

File Edit More PP VP
[templates. xm| /\ /\
@ [welcome to Smartkam 2 add tree family
@ Tthe rest B P NP v VP
rename tree family | /\ ‘ /\

=

& I becker-loeckelt-epg =
& [Jbecker-loeckelt-phone-biam

& I becker-loeckelt-realobjects- auf Det N sind NP VP

@& G becker-loeckelt-routenplanu] remave tree family /\ /\

o ralfs Kart Det H vP ¥T

@ [becker-loeckelt-kino-nein-er = e = race
h Cut subtree

® [Joverview-auswahl = add tree Copy subtree

[everview-auswahl-all

Kinos v
D overview-auswah|-sehen
D overview-auswah|-auswah DROMETTE U0 |
D overview-auswah|-progral Add a child node markiert
D overview-auswah|-aktuellg | edit tree Remove node + children
[l Il Make node new root

Figure 4: The grammar and tree editor tools.

References

Becker, Tilman. 1998. Fully lexicalized head-driven syntactic generation. In Proceedings of the Ninth International Workshop
on Natural Language Generation, Niagara-on-the-Lake, Ontario, Canada, August.

Becker, Tilman and Stephan Busemann, editors. 1999. May | Speak Freely? Between Templates and Free Choice in Natural
Language Generation., Bonn, September. Workshop at the 23rd German Annual Conference for Artificial Intelligence
(KI799).

Gerdes, Kim and Sylvain Kahane. 2001. Word order in German: A formal dependency grammar using a topological hierarchy.
In Proc. of ACL 2001, Toulouse, France.

Joshi, A. and Y. Schabes, 1997. “Tree—Adjoining Grammars”. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal
Languages, pages 69-124. volume 3. Berlin, New York: Springer.

Joshi, A. K. and K. Vijay-Shanker. 1999. Compositional Semantics for Lexicalized Tree-Adjoining Grammars. In Proc. of the
3rd International Workshop on Computational Semantics, Utrecht, The Netherlands, January.

Rambow, Owen. 1994. Formal and Computational Models for Natural Language Syntax. Ph.D. thesis, University of Pennsyl-
vania, Philadelphia. Available as Technical Report 94-08 from the Institute for Research in Cognitive Science (IRCS).

Reiter, Ehud. 1995. NLG vs. templates.

Schweitzer, Antje, Norbert Braunschweiler and Edmilson Morais. 2002. Prosody Generation in the SmartkKom Project. In
Bernard Bel and Isabel Marlien, editors, Proceedings of Speech Prosody 2002, pages 639-642, Aix-en-Provence, France.

Vijay-Shanker, K. 1987. A Sudy of Tree Adjoining Grammars. Ph.D. thesis, Department of Computer and Information
Science, University of Pennsylvania.

Wahlster, Wolfgang, Norbert Reithinger and Anselm Blocher. 2001. SmartKom: Multimodal Communication with a Life-Like
Character. In Proceedings of Eurospeech 2001, Aalborg, Denmark, September.

3. implemented with JTree

4. Atransformation of the XTAG grammar into the XML format is in the works, the main problem is parsing and translating
the feature equations. Eventually the feature macros need to be incorporated into the editor, too.

5. Which will also avoid inconsistencies in the set of templates.

Relative Clause Attachment and Anaphora:
A Case for Short Binding

Rodolfo Delmonte
Ca' Garzoni-Moro, San Marco 3417, Universita "Ca Foscari", 30124 - VENEZIA
E-mail: delmont@unive.it

Abstract

Relative clause attachment may be triggered by binding requirements imposed by a short anaphor contained
within the relative clause itself: in case more than one possible attachment site is available in the previous structure,
and the relative clause itself is extraposed, a conflict may arise as to the appropriate s/c-structure which is licenced
by grammatical constraints but fails when the binding module tries to satisfy the short anaphora local search for a
bindee.

1 Introduction

It is usually the case that anaphoric and pronominal binding take place after the structure building phase has
been successfully completed. In this sense, c-structure and f-structure in the LFG framework - or s-structure in
the chomskian one - are a prerequisite for the carrying out of binding processes. In addition, they only interact in
a feeding relation since binding would not be possibly activated without a complete structure to search, and
there is no possible reversal of interaction, from Binding back into s/c-structure level seen that they belong to
two separate Modules of the Grammar. As such they contribute to each separate level of representation with
separate rules, principles and constraints which need to be satisfied within each Module in order for the
structure to be licensed for the following one.

However we show that anaphoric binding requirements may cause the parser to fail because the structure is
inadequate. We propose a solution to this conflict by anticipating, for anaphors only the though, the agreement
matching operations between binder and bindee and leaving the coindexation to the following module.

In a final section we discuss data from syntactic Treebanks of English — the Penn Treebank — and Italian,
the Italian Treebank and the Venice Treebank.

1.1 Positive and Negative Constraints

Anaphoric and Pronominal Binding are usually treated as if they were one single grammatical phenomenon,
even though the properties of the linguistic elements involved are quite different, as the subdivision of Binding
Principles clearly shows. However, it is a fact, that the grammatical nature of a pronoun - be it an anaphor (short
or long one), or a free pronoun - is never taken into account when searching for the antecedent. The anaphoric
module of the grammar takes for granted the fact that both the structure associated to the anaphor/pronoun, the
grammatical function - at f-structure level in LFG - and the functional features are consistent, coherent and
respondent to the Grammaticality constraints stipulated in each grammatical theory. It is the structural level that
guarantees consistency, not the Anaphoric/Pronominal Binding Module, which has the only task to add
antecedent-pronoun/anaphor indices in the structure, to be used by the semantic modules.

We chose a couple of examples which represent the theoretical query to be solved, given a certain
architecture of linguistic theories, which may differ in the way in which they reach a surface representation into
syntactic constituents of the input string, but all converge into the need to keep the anaphoric module separate
from the structure building process. The examples are in English but may be easily replicated in other
languages:

(1) The doctor called in the son of the pretty nurse who hurt herself

(2) The doctor called in the son of the pretty nurse who hurt himself

In the second example we have the extraposition of the relative clause, a phenomenon very common in
English but also in Italian and other languages. The related structures theoretically produced, could be the
following ones:

(1)a s[np[The doctor],
ibar[called in],
vp[np[the son,

© 2002 Rodolfo Delmonte. Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and Related
Frameworks (TAG+6), pp. 84-89. Universita di Venezia.

Delmonte

pplof, np[the pretty nurse,
cp[who, s[pro, ibar[hurt],
vp[snfherself]]]]]]]]]
(2)a. s[np[The doctor],
ibar[called in],
vp[np[the son,
pp[of, np[the pretty nurse]],
cp[who, s[pro, ibar[hurt],
vp[sn[himself]]]]]]]

If this is the correct input to the Binding Module, it is not the case that 2a. will be generated by a parser of
English without special provisions. The structure produced in both cases will be la. seen that it is perfectly
grammatical, at least before the binding module is applied to the structure and agreement takes place locally, as
required by the nature of the short anaphor. It is only at that moment that a failure in the Binding Module warns
the parser that something wrong has happened in the previous structure building process. However, as the
respective f-structures show, the only output available is the one represented by 2b, which wrongly attaches the
relative clause to the closest NP adjacent linearly to the relative pronoun:

2b. s[np[The doctor],

ibar[called in],

vp[np[the son,

pplof, np[the pretty nurse,
cp[who, s[pro, ibar[hurt],
vp[sn[himself]]]]]]11]

The reason why the structure is passed to the Binding Module with the wrong attachment is now clear:
there is no grammatical constraint that prevents the attachment to take place. The arguments of the governing
predicate HURT are correctly expressed and are both coherent and consistent with the information carried out
by the lexical form. At the same time the Syntactic Binding has taken place again correctly by allowing
the empty "pro" in SUBJect position of the relative adjunct to be "syntactically controlled" by the relative
pronoun, which is the TOPic binder, in turn syntactically controlled by the governing head noun, the NURSE.
There is no violation of agreement, nor of lexical information, nor any other constraint that can be made to
apply at this level of analysis in order to tell the parser that a new structure has to be produced.

2 Parsing Strategies and Preferences

In order for a parser to achieve psychological reality it should satisfy requirements coming simultaneously
from three different fields/areas: psycholinguistic plausibility, computational efficiency in implementation,
grammatical constraints. Principles underlying the parser architectures should not belong exclusively to one or
the other field disregarding issues which might explain the human processor behaviour. Principles are bestowed
psychological reality in performance whenever they may be safely tested, on a statistically relevant sample of
individuals. So we annect a lot of importance to the fact that the parser actually behaves like what is expected
with human processors. In this case and only in this case we say that the principles are predictive and that the
parser we implemented is actually relevant for a theory of parsing.

Among contemporary syntactic parsing theories, the garden-path theory of sentence comprehension
proposed by Frazier(1987a, b), Clifton & Ferreira (1989) among others, is the one that most closely represents
our point of view. It works on the basis of a serial syntactic analyser, which is top-down, depth-first - i.e. it
works on a single analysis hypothesis, as opposed to other theories which take all possible syntactic analysis in
parallel and feed them to the semantic processor.

Differently from what is asserted by global or full paths approaches (see Schubert, 1984), we believe that
decisions on structural ambiguity should be reached as soon as possible rather than deferred to a later level of
representation. In particular, Schubert assumes “...a full paths approach in which not only complete phrases but
also all incomplete phrases are fully integrated into (overlaid) parse trees dominating all of the text seen so far.
Thus features and partial logical translations can be propagated and checked for consistency as early as possible,
and alternatives chosen or discarded on the basis of all of the available information(ibid., 249).” And further on
in the same paper, he proposes a system of numerical ‘potentials’ as a way of implementing preference trade-
offs. " These potentials (or levels of activation) are assigned to nodes as a function of their
syntactic/semantic/pragmatic structure and the preferred structures are those which lead to a globally high
potential. Other important approaches are represented by Hindle et al., 1993, who attempt to solve the problem
of attachment ambiguity in statistical terms. The important contribution they made, which was not possible in
the ‘80s, is constituted by the data on attachment typologies derived from syntactically annotated corpora.

85

86 Proceedings of TAG+6

Our parser copes with ambiguity while at the same time allowing for psychological coherence. Parser
architecture is presented in Fig.1 below. The structures produced by the parser take only different processing
time to allow for backtracking to take place within the main parser body: but then the right attachment is
achieved and the complete structure is produced with the right binding.

We implemented two simple enough mechanisms in order to cope with the problem of nondeterminism and
backtracking. At bootstrapping we have a preparsing phase where we do lexical lookup and we look for
morphological information: at this level of analysis of all input tokenized words, we create a stack of pairs input
wordform - set of preterminal categories, where preterminal categories are a proper subset of all lexical
categories which are actually contained in our lexicon. The idea is simply to prevent attempting the construction
of a major constituent unless the first entry symbol is well qualified. When consuming any input wordform, we
remove the corresponding pair on top of stack.

Fig.1 Deterministic Parser Architecture with Lookahead and WFST
SYSTEM ARCHITECTURE I°

Semantic Consistency Check
Top-Down for every
DGC-based Syntactic Constituent
Grammar Rules Starting from CP level

Verb Guidance From

/ Subcategorization
Frames

Lexical Look-U
echaOroo p Tense, Aspect and

Time Reference:
Time Relations and s Quantifier Raising
Reference Interval

Pronominal Binding at f-structure level

In order to cope with the problem of recoverability of already built parses we built a more subtle
mechanism that relies on Kay's basic ideas when conceiving his Chart(see Kay, 1980). Differently from Kay,
however, we are only interested in a highly restricted topdown depthfirst parser which is optimized so as to
incorporate all linguistically motivated predictable moves. An already parsed RC is deposited in a table lookup
accessible from higher levels of analysis and consumed if needed. To implement this mechanism in our DCG
parser, we assert the contents of the RC structure in a table lookup storage which is then accessed whenever
there is an attempt on the part of the parser to build up a RC. In order to match the input string with the content
of the store phrase, we implemented a WellFormed Substring Table(WFST) as suggested by Kay(1980).

Now consider the way in which a WFST copes with the problem of parsing ambiguous structure in his
chart. It builds up a table of well-formed substrings or terms which are partial constituents indexed by a locus, a
number corresponding to their starting position in the sentence and a length, which corresponds to the number
of terminal symbols represented in a term. For our purposes, two terms are equivalent in case they have the
same locus and the same length. In this way, the parser would consume each word in the input string against the
stored term, rather than against a newly built constituent. In fact, this would fit and suit completely the
requirement of the parsing process which rather than looking for lexical information associated to each word in
the input string, only needs to consume the input words against a preparsed well-formed syntactic constituent.

However, in order for a parser to show coherent psychological behaviour it should show “garden path”
effects while simulating a condition of failure to parser at propositional level (see Pritchett). Full paths parsers,
and in general all bottom-up chart-like parsers will not show any of the garden-paths effects simply because
failure is prevented from taking place by the fact that all possible parses are always available and can be
retrieved by the parser itself. The question that is posed by our two examples will not however be covered by a
full-paths parser seen that there is no principled reason in the grammar to prefer one structure over the other.
Failure only takes place in the pronominal binding module which is usually a separate module of the parser.

Full Morphological
Analysis

3 Short Anaphora

Delmonte

The parser we use has shown the effect of "garden path", in that it has gone into a loop with the unwanted
result of "freezing" the computer, due to data overflow. In other words, as soon as the Binding Module tries to
process the f-structure received as input, seen that short anaphora requires binding to take place within a local
domain, f-command - the corresponding c-command in functional terms, applied to grammatical functions and a
graph structure - will impose the same level of containment for both the pronoun and the antecedent. And seen
that the only antecedent available is the empty SUBJect which has functional features inherited by means of
syntactic control from the governing relative pronoun, the agreement match is attempted, and a failure ensues
systematically.

As a result of a failure at the Binding Level, a call to the structural level is issued which attempts to build
the structure another time. But seen that no failure has taken place at this level of analysis, the result will be the
same as the previous one. And this process will go on indefinitely, seen that the two modules obey different
Principles and satisfy them separately.

We will now put forward a theoretical proposal regarding exclusively short anaphors, thus disregarding
long anaphors and reciprocals in particular or "proprio" in Italian, which call for a different treatment. The
proposal we will make is very simple:

"short anaphora must be checked for agreement with their available binder already at the level of satisfaction of
grammatical principles, before the structure is licensed"

This requirement is not introduced by the need to improve on the implementation side of the parser, but
responds to theoretical principles inherent in the formulation of the Binding Principles. Short anaphora not only
obey positive constraints, as opposed to the other pronominals, they also carry a locality requirement which is
equivalent to the same domain in which Grammaticality Principles apply, such as the ones expressed in LFG -
Uniqueness, Completeness, Consistency. At each "propositional" level, corresponding to a simple f-structure
and roughly to a Complete Functional Complex in GB terms(see Chomksy 1986, 169), all arguments of the
governing predicate must be checked for completeness - they must all be present at functional level, even if they
may be lexically empty; they must be coherent, only those included in the corresponding lexical form must be
present; each functional attribute must be assigned to a unique functional value. And in our case no violation is
detectable seen that the attributes belonging to the empty "pro" SUBJect are unique even though they are not
appropriate to bind the short anaphor OBJect of the same predicate HURT. However there is no indication in the
grammar that they should be checked for agreement at this level of analysis.

By anticipating the working of the Binding Module, we assume that Short Anaphors belong partly to the
Grammar level and partly to the Binding level: they belong to the grammar level since they require and can to
be licensed at sentence or propositional level withouth their f-features being in agreement with their antecedent
and binder. Besides, they belong to the binding level where agreement takes place and coindexation follows, in
case of success.

As to cases in which the anaphor is contained within a NP in SUBJect position of a sentential complement,
the search for the antecedent is suspended not being available locally and no agreement match can be
performed. This will not apply to anaphors contained within the NP of the OBJect seen that the antecedent is
available.

A failure in the Anaphoric Module will simply cause the Parser to backtrack but the structure produced will
not change seen that the failure has taken place in a separate module. Of course, the alternative is using a single
unification mechanism that takes context-free rules with all possible alternatives, builds a tentative structure
than unifies functional features, and in case of failure tries another possible structure. However this perspective
is not only computationally inefficient, it is basically psychologically unfeasible: there will be no principled
reason to tell Garden Path sentences apart from the rest seen that all sentences can be adjusted within the parser,
sooner or later. Also processing time is not controllable seen that the parser will produce all possible structures
anyway and there is no way to control the unification mechanism in a principled manner. On the contrary, in a
parser like ours, the order of the rules is controlled strictly, and also the way to produce backtracking is
controlled, seen that the parser has a lookahead mechanism that tells the parser which rule to access or not at a
given choice point.

Going back to our couple of examples of the Extraposed Relative Clause containing a Short Anaphor, the
question would be to prevent Failure since we do not want Constituent Structure Building to be dependent upon
the Binding of the Short Anaphor. The only way out of this predicament is that of anticipating in Sentence
Grammar some of the Agreement Checking Operations as proposed above. So the Parser would be able to
backtrack while in the Grammar and to produce the attachment of the Relative Clause at the right place, in the
higher NP headed by the masculine N, “the son”. The important result would be that of maintaining the integrity
of Syntax as a separate Module which is responsible in “toto” of the processing of constituent structures. The
remaining Modules of the Grammar would be fully consistent and would use the information made available in
a feeding relation, so that interpretation will follow swiftly.

87

88 Proceedings of TAG+6

To integrate this suggestion coming from Implementation problems, into the theoretical Framework of LFG
or other similar theories we simply need to integrate GRAMMATICALITY PRINCIPLES as they have been
stipulated so far, to be consisting of:

- UNIQUENESS; COHERENCE; COMPLETENESS

with the additional restriction:

- BOUND ANAPHORA AGREEMENT
i.e. short anaphors should be checked before leaving sentence grammar, for agreement with their
antecedents iff available in their Minimal Nucleus. In particular, seen that in our framework
Quantifier Raising is performed before Anaphoric Binding and will produce new arcs in the graph to
represent the scope of quantifiers, this will also undergo failure in order to try a new analysis. This is
both time-consuming and unrealistic. A simpler way to solve this problem is to introduce Short
Binding as has been defined above. In this way we split Bound Anaphors and make them obey the
same principles of Sentence Grammar to which they belong in all respect. In Fig.2 below we show
how anaphoric binding and grammatical principles interact. In Fig.2b Anaphoric Binding interacts
with Syntax thus causing a failure to take place which cannot be recovered seen that there are other
intervening parsing modules. In Fig.2a, on the contrary we postulate the separation between the
output of the syntax to be fully autonomous from QR and AB, thus resulting in a more efficient and
psychologically viable simulation.

Fig.2a Anaphora Independent Syntactic Parsing Fig.2b Anaphora Dependent Syntactic Parsing

ANAPHORA INDEPENDENT ANAPHORA DEPENDENT
CONSTITUENT STRUCTURE CONSTITUENT STRUCTURE

C-STRUCTURE

cyNTAKE T

F-STRUCTURE

QUANTIFIER
RAISING

QUANTIFIER
RAISING

ANAPHORIC
BINDING

ANAPHORIC
BINDING

4 Experimental Results from Treebanks

We decided to look at corpus data derived from available treebanks in order to ascertain whether the
phonemon we are modeling is actually present in real texts. We also wanted to verify whether the RC
extraposition was subject to variation from one language to another. We searched in the available
treebanks, PennTreebank for English with 1,000,000 tokens, and the Treebank of Italian we are
currently working in for syntactic constituenty XML annotation as well as the Venice Treebank made
up of approximately the same number of tokens for a total of 300,000 tokens.
We considered only relative clause with morphologically expressed complementizer, thus
disregarding all reduced relative clauses. As to the distinction between extraposed vs. non-extraposed
we simply looked at the number of brackets — only one - intervening between the constituent label
introducing the relative clause in PennTreebank, which is the following (SBAR (WH, and none in the
VeniceTreebank. For all remaining cases we counted an extraposed RC.

We tabulated the results in the Table 1. below where we see that Italian is a language much richer on
Relative Clauses than American English. In particular the amount of relative clauses in the Italian Venice
Treebank is 3 times that of the PT. Yet more interesting seems the ratio of Head Adjacent vs. Non Head

Delmonte 89

Adjacent RCs: we see that here, whereas Italian has 1 potentially ambiguous RC every 4 RCs, PT has 1 every 6.
We can thus conclude that Italian is much more ambiguous to be parsed than English as far as relative clause
attachment is concerned.

Table 1. Treebank Derived Structural Relations for Relative Clauses

Total No. | Total No. Total No. Head Non Head

Tokens Sentences | Rel.Cls. Adjacent Adjacent
PENN Treebank 1,000,000 ' 44008 11559 8906 = 77.05% | 2653 = 22.9%
SUSANNE Corpus 130,000 | 5975 1380 1089 =78.9% | 291 =21.1%
VENICE Treebank 300,000 | 11108 5155 3867=75% | 1288 =25%

However, the most interesting fact is constituted by the proportion of relative clauses in relation to the total
number of sentences: Generic American English in the Susanne Corpus, counts 1 relative clause every 5/6
sentences; Specialized American English in the PT, goes up to 1 relative clause every 4 sentences. Italian raises
the proportion to one relative clause every 2 sentences. Data reported by J.Fodor are in favour of a Head
Adjacent use of RC in English, being a language governed by a phonologically related strategy of Minimal
Attachment which tends to prevent RC Extraposition. This state of affairs would have RC production in English
more restricted than in languages like Italian, which allow for multiple syntactic binders, both adjacent and non-
adjacent ones. Data reported in Table 2. seem to support this hypothesis.

Table 2. Treebank Derived Structural Relations for Relative Clauses

Total No. Total No. | Total No. | Complex Ratio Ratio
Tokens Sentences | Rel.Cls. Relative Rel.Cls. Rel.Cls
Clauses / Sentences /Tot.Tokens
T 1,000,000 | 44008 11559 | 2724 25.8% 1.16%
reebank
CUSANNE 150,000 15915 1380 106 17.44% 0.92%
orpus
VENICE 300,000 11108 5155 - 46.40% 1.72%
Treebank
References

Clifton C., & F. Ferreira(1989), Ambiguity in Context, in G.Altman(ed), Language and Cognitive Processes, op.cit., 77-104.

Delmonte R., D.Bianchi(1991), Binding Pronominals with an LFG Parser, Proceeding of the Second International Workshop
on Parsing Technologies, Cancun(Messico), ACL 1991, pp. 59-72.

Delmonte R.(2000), Generating and Parsing Clitics with GETARUN, Proc. CLIN'99, Utrech, pp.13-27.

Delmonte R.(2000),(to appear), Parsing Preferences And Linguistic Strategies, Proc. Workshop Communicating Agents,
IKP, Bonn, pp.15.

Delmonte R.(2000), Parsing with GETARUN, Proc. TALN2000, 7° conférence annuel sur le TALN,Lausanne, pp.133-146.

Fodor J.(2002), Psycholinguistics cannot escape prosody, Invited Talk, SpeechProsody2002, Aix-en-Provence.

Frazier L.(1987a), Sentence processing, in M.Coltheart(ed), Attention and Performance XII, Hillsdale, N.J.,
Lawrence Elbaum.

D.Hindle & M.Roth(1993), Structural Ambiguity and Lexical Relations, Computational Linguistics 19, 1, 103-120.

Schubert L.K.(1984), On Parsing Preferences, Proc. of COLING, 247-250.

Kay Martin(1980), Algorithm Schemata and Data Structures in Syntactic Processing, CSL-80-12, Xerox Corporation, Palo
Alto Research Center.

Pritchett B.L.(1992), Grammatical Competence and Parsing Performance, The University of Chicago Press, Chicago.

A Left Corner Parser for Tree Adjoining Grammars

Victor J. Diaz', Vicente Carrillo’, and Miguel A. Alonso?

tUniversidad de Sevilla and fUniversidade da Corufia

1. Introduction

Tabular parsers can be defined as deduction systems where formulas, called items, are sets of complete or
incomplete constituents (Sikkel, 1997; Shieber, Schabes and Pereira, 1995). Formally, given an input string w =
ai -..a, Withn > 0 and a grammar G, a parser IP is a tuple (Z, H, D) where Z is a set of items, # is a set of
hypothesis ([a;,7 — 1,i] with 1 < ¢ < n) that encodes the input string, and D is a set of deduction steps that
determines how items are combined in order to deduce new items. The deductive approach allows us to establish
relations between two parsers in a formal way. One of the most interesting relations between parsers are filters
because they can be used to improve the performance of tabular parsers in practical cases. The application of a
filter to a parser yields a new parser which performs less deductions or contracts sequences of deductions to single
deduction steps.

One well-known example of a filter is the relation between Earley and Left Corner (LC) parsers for Context-
Free Grammars (CFGs). A LC parser reduces the number of items deduced by Earley’s parser using the left corner
relation. Given a CFG, the left corner of a non-terminal symbol A is the terminal or non-terminal symbol X if
and only if there exists a production A — Xwv in the grammar, where v is a sequence of symbols. In the case
of A — &, we consider ¢ as the left corner of A. The notion of the left corner relation allow us to rule out the
prediction performed on X by an Earley’s parser.

Most tabular parsers for Tree Adjoining Grammars (TAGS) are extensions of well-known tabular parser for
CFGs. For example, we can cite a number of tabular parsers for TAGs defined on the basis of the Earley’s al-
gorithm (Alonso Pardo et al., 1999; Lang, 1990; Joshi and Schabes, 1997; Nederhof, 1999). Although, several
approaches have been described to improve the performance of TAGs parsers, most of them based on restrictions
in the formalism (Schabes and Waters, 1995) or compilation into finite-state automata (Evans and Weir, 1998), to
the best of our knowledge, no attempt has been made to improve the practical performance of Earley-based parsers
for TAGs by introducing the left-corner relation.

2. Notation

Let G = (Vn,Vr,S,I,A) be a TAG, where Viy and V- are the alphabets of non-terminal and terminal
symbols, respectively, S € Vi is the axiom, and I and A are the set of initial and auxiliary trees, respectively.
We refer to the root of an elementary tree v as R” and to the foot of an auxiliary tree 3 as F4. The set adj(M")
includes every auxiliary tree that may be adjoined at node M”. We use a dummy symbol nil ¢ A for denoting
adjoining constraints. If adjunction is not mandatory at M7, then nil € adj(M"). If adjunction is forbidden at
M7, then adj(M™) = {nil}. We say M7 is an adjunction node if there exists an auxiliary tree 5 which can be
adjoined at that node.

Although TAGs are tree-rewriting systems, we can translate every elementary tree - into a set of productions
P (7). This notation will be useful when defining the set of items for TAGs parsers since dotted productions can be
introduced for representing partial parse trees. We define a production N7 — N7'... N for every node N and
its ordered g children N ... N7 inan elementary tree. We refer to the set of productions related to an elementary
tree - as P(vy). For technical reasons, we consider additional productions T — R, T — Rf and F# — 1 for
each initial tree « and each auxiliary tree 8. No auxiliary tree can be adjoined at the two fresh nodes (top) T and
(bottom) L.

*

Supported in part by Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnoldgica (Grant TIC2000-
0370-C02-01), Ministerio de Ciencia y Tecnologia (Grant HP2001-0044) and Xunta de Galicia (Grant PGIDT01PXI110506PN).

© 2002 Victor J. Diaz, Vicente Carrillo, and Miguel A. Alonso . Proceedings of the Sixth International Workshop on Tree
Adjoining Grammar and Related Frameworks (TAG+6), pp. 90-95. Universita di \enezia.

V. J. Diaz, V. Carrillo, and M. A. Alonso 91

3. An Earley-based Parser for TAGs

To get a better understanding of our proposal, we first overview the Earley-based parser IPg for TAGs defined
in (Joshi and Schabes, 1997; Alonso Pardo et al., 1999). This parser does not guarantee the valid prefix property.

Given the input string w = a4 .. . a, Withn > 0 and a TAG grammar G, the items in the deductive system IPg
will be of the form:

[NT = dev,i,j | p,q]

where N7 — év € P(v) and 1, j, p, q are indices related to positions in the input string. The intended meaning
of the indices 0 < ¢ < j is that & spans the substring a;1 . .- a;. When a node in § dominates the foot of -, the
values of p and ¢ are known and the substring spanned by the footis ap41 ...a, Withi <p <g <j.

As we said, we consider the input string a; . . . a,, is encoded with a set of hypothesis [a;,%—1,]. Furthermore,
being ¢ the empty word, we assume that [e, 4, 4] trivially holds for each 0 < i < n.

We will now introduce the set of deduction steps Dy, for IPg:

__ myni Sc Pred Comp AdjPred FootPred FootComp AdjComp
Dy = DI U DS U D4 U DEO™ U Dy U DE UDg uDs

The recognition process starts by predicting every initial tree:

DIni: I
E ST Ser%00] o, €

Scanner deduction steps can be applied when the recognition reaches a node V7 whose label is the empty
string or a terminal symbol which matches the current symbol in the input string:

[N" — 6 V0,i,j,p,4q],
[label(V7), j, j + |label(V'7)][]
[NY = 8V e v,i,j + |label(V7)|, p, q]

Sc __
Dyt =

where |w| denotes the length of the w word.

The more important deduction steps in the Earley parser for CFGs are those corresponding to predictions and
completions. In the case of TAGs, we have three kinds of predictions with their associated completion deduction
steps: subtree, adjunction and foot.

e Subtree prediction: This deduction step is similar to predictions in Earley’s parser for CFGs. Whenever there is
no mandatory adjunction on a node M7 located in a tree +, i.e. nil € adj(M7), we can continue the top-down
recognition of the subtree rooted with A/ 7:

NY = de M,i,j5 | p,q]

DPred: [
" [M’Y _>.U7j7j | _;_]

nil € adj(M")

e Subtree completion: Once the the subtree rooted with A7 has been completely recognized, we must continue
the bottom-up recognition of the elementary tree -y:

[N" = deMv,i,j | p,ql,
[M7" — ve,j,k | p,q]
DR = il € adj(M"”
B [N7 = 6M ev,i,k | pUP,qUq] € adi(M?)

wherepU g =pifqg=—,pUq=qif p= —, being undefined in other case.

e Adjunction prediction: Let 8 be an auxiliary tree that can be adjoined on a node M7, i.e. 8 € adj(M"). When
the recognition of ~ reaches M7, a new instance of the auxiliary tree 8 must be predicted:

AdjPred — [N’Y —)5.M’7U,’L’,j | paq]

D di(MY
b [T_).Rﬂaj:j | _a_] ﬂea J()

92 Proceedings of TAG+6

e Foot prediction: Considering that 3 € adj(M7), when the recognition of an auxiliary tree 8 has reached its
foot, we must start the recognition of the subtree excised by the adjunction?:

FB > el k k | =, =]
DFootPred — [5 vy) MY
" [M7_>.67k7k | _7_] ﬂeadJ()

e Foot completion: Once the recognition of the excised subtree rooted with M is exhausted we must continue
with the recognition of the auxiliary tree 3 that has been adjoined:

[MY — de,k,1 | p,dl,
DFootComp — [FB - .J-J k7k | R _]
E [FA > Le k1| k1]

B € adj(M™)

e Adjunction completion: Once the recognition of the auxiliary tree 3 is exhausted, we must continue the recog-
nition of the tree v where the adjunction was performed:

[T—)RBO,j,m | k1,
[MY — ve, k,l | p,q],
DAdeomp: [N’Y—)(SOM’YI/’/L',']' | plaql]
g [NT = 6M" ev,i,m | pUp,qU]

B € adj(M")

The input string a; . . . a,, belongs to the language defined by the grammar if and only if for some a € I is
obtained a final item:
[T = R%,0,n | —,—]

4. A Left Corner Parser for TAGS

In order to extend the left corner parser for CFGs to the case of TAGs, we need to define the left corner relation
on elementary trees, taking into account that we can not miss any admissible adjunction during the recognition.
Therefore, an item

[NY > 5 M v,i,j | p,q]

must be deduced if there exists an auxiliary tree that can be attached to M, even when § is empty.

Given an elementary tree ~y, we say that M is a left corner of N”, denoted N” >, M7, if and only if
NY — M7y € P(y) and M"” is a node with a null adjoining constraint. As usual, we will denote with >7 the
reflexive and transitive closure of the left corner relation.

Informally, left corner relation for TAGs goes down on nodes of elementary trees starting on a node labeled
with a non-terminal symbol and ending on an adjunction node, i.e, nodes where an adjunction can be performed.
When there not exists such adjunction node, the left corner relation can also end in a L node or a node whose label
is a terminal symbol or the empty word e. As it is the case in CFGs parser, the left corner relation for TAGs only
depends on the grammar, and it can be computed and stored before applying the parser.

We will go to the definition of the left corner parser Py, for TAGs. The set of items and hypothesis for
IPrc is the same as IPg. Left corner relation is applied only in the case of predictive deduction steps. Therefore,
while DIni, DSe, pLomP pEeotComp apg pAdiComp romains the same in the left corner parser, we must replace the

following: DEred, DAdiPred ang pRootPred
4.1. Filtering Subtree Predictions
We now introduce the following deduction steps (DFEdLC, DFged’, DES™PEC) replacing DE?. Given a

subtree rooted with A where no adjunction is mandatory, these new steps filter subtree predictions applied on
nodes that are left corners of M 7.

1. The valid prefix property is not fulfilled due to DE°°¢F*d since every subtree rooted with a node M where 8 € adj(M™)
is introduced in the recognition.

V. J. Diaz, V. Carrillo, and M. A. Alonso 93

e Inthe case that A/ >} O” and the left-most daughter of O is labeled with a terminal symbol or ¢, we can go
down on the tree directly to that node:

[NT = de Mv,i,4,p,q],
PPredLC _ [label(V'7), 4, + |label(V7)|]
Le [0 = V7 ew,j,j + [label(V7)], —, -]

e Inthe case that /™ >; O” and O7 is a node labeled with a non terminal symbol whose left-most daughter P~
is an adjunction node, we will stop at that node:

DPred' — [N’Y — J.nyaiajapatﬂ
e [07 - .P7U7j7j>_7_]

e In the bottom-up traversal we should go up on those nodes O and Q” that are left corners of M7:
[NFY _> 6 e Mrylj?’i)j?p) q]7

[O’Y _> w'?j’ k7pl7ql]

DCompLC —
LC [QY = O7 ewv,j,k,p',q']

4.2. Filtering Adjunction Predictions

We now explain the set of deduction steps (ngjpredw, ngjpredl and Dﬁ’é‘jc‘)mpw) replacing Da4iFred,
Let M7 be a node in an elementary tree v where the auxiliary tree 8 can be adjoined. These new deduction steps
filter predictions on those nodes that are left corners of the top node of 3.

e When T >} OF and the left-most daughter of OF is a node V? labeled with a terminal symbol or e, we will
apply:
[NY = e Mv,1,j,p,4q],
DAdjPredLC [label(V7), j, j + |label(VF)]]
LC

[08 = VB ew,j,j+ [label(VB)|,—,]

e When T >; O and 0P dominates on the left a node P# such that either P is an adjunction node or P# is the
1 node of 3, we will apply:
DAdered' — [N’Y —Je M7V7i7j7p7 q]
Le [OB %.Pﬁvajaja_a_]

o During the bottom-up recognition we must go up on the tree through the nodes O” that are left corners of the
top node of 3:
[NY = 6 e M"v,i,j,p,q],
DAdeompLC — [OIB - w.aja kap’; (I']
ke [QF = OF e v, j, k.1, q]

4.3. Filtering Foot Predictions

We now show the set of deduction steps (DFoptPredl.C pFootPred’ gpg pFootCompLCy repiacing pEootPred,
Let M” be a node in an elementary tree - such that 8 can be adjoined. Suppose the recognition has reached
a node EX where it is not mandatory to perform an adjunction and that E# >} L. These new deduction steps
filter predictions on nodes belonging to the auxiliary tree 8 and to the elementary tree v where the adjunction is
performed:

e When M? >7 O7 and the left-most daughter of O7 is a node V7 labeled with a terminal symbol or & we will
apply:
[Dﬁ —de EBV:jaka R _]7
_ [label(V7), k, k + |label(V7)|]

DFootPredLC —
Le [0 = V7 e, k, k + [label(V7)|, —, —]

94 Proceedings of TAG+6

Sentence Time Reduction Items Reduction
Srini bought a book -3% -44%
Srini bought Beth a book -5% -47%
Srini bought a book at the bookstore -6% -46%
he put the book on the table -8% -44%
x he put the book -13% -42%
the sun melted the ice -11% -48%
the ice melted -14% -46%
Elmo borrowed a book -1% -45%
* a book borrowed +5% -41%
he hopes Muriel wins -12% -49%
he hopes that Muriel wins -16% -49%
the man who Muriel likes bought a book +6% -42%
the man that Muriel likes bought a book -2% -44%
the music should have been being played for the president -28% -56%
Clove caught a frisbee -4% -45%
who caught a frisbee -1% -45%
what did Clove catch -13% -49%
the aardvark smells terrible -4% -46%
the emu thinks that the aardvark smells terrible -12% -48%
who does the emu think smells terrible -14% -49%
who did the elephant think the panda heard the emu said smells terrible -14% -49%
Herbert is angry -24% -53%
Herbert is angry and furious -21% -54%
Herbert is more livid than angry -25% -51%
Herbert is more livid and furious than angry -18% -50%

Table 1: Results of the experiment based on XTAG
o Inthe case M >} O” and the left-most daughter of O” is a node P” such that either P is an adjunction node
or P7 isthe L node of ~, prediction is stopped at P7:

DFootPred’ — [Dﬁ —de Eﬂll,j,k, B _]
Le [OY = ePYv Kk k,—,—]

e During the bottom-up recognition we must go up on the tree through the nodes O7 that are left corners of M7,
the node where the adjunction was performed, guaranteeing we do not go up beyond M7 itself, i.e. M7 # O7:

[Dﬂ _>6.E5V7j7k)_7_]7

,DFootCompLC — [O’Y — we, k: l7p7 q]
re [Q" = O ew,k,1,p,q]

5. Experimental results

The time complexity of the algorithm with respect to the length n of the input string is O(n®) for both parsers.
The improvement in the performance of Left Corner parsers comes from the reduction in the size of the chart
(the set of deduced items). It is clear that this reduction depends on the grammar and the input string considered.
We have made a preliminary study where we have tested and compared the behavior of the LC parser and the
Earley-based parser explained before.

We have incorporated both parsers into a naive implementation in Prolog of the deductive parsing machine
presented in (Shieber, Schabes and Pereira, 1995). We have taken a subset of the XTAG grammar (XTAG Research
Group, 2001), consisting of 27 elementary trees that cover a variety of English constructions: relative clauses,
auxiliary verbs, unbounded dependencies, extraction, etc. In order to eliminate the time spent by unification, we
have not considered the feature structures of elementary trees. Instead, we have simulated the features using local

V. J. Diaz, V. Carrillo, and M. A. Alonso 95

constraints. Every sentence has been parsed without previous filtering of elementary trees. Table 1 includes the
reduction ratio with respect to the parsing time in seconds and with respect to the chart size. Briefly, we can remark
that LC parser shows on average a time reduction of 11% and a chart size reduction of 50%.

6. Conclusion

We have defined a new parser for TAG that is an extension of the Left Corner parser for Context Free Gram-
mars. The new parser can be view as a filter on an Earley-based parser for TAGs where the number of predictions
is reduced due to the generalized left corner relation that we have established on the nodes of elementary trees.
The worst-case complexity with respect to space and time is the standard one for TAG parsing, but preliminary ex-
periments have shown a better performance than classical Earley-based parsers for TAG. Finally, as further work,
we are investigating the conditions the parser should satisfy in order to guarantee the valid prefix property.

References

Alonso Pardo, Miguel A., David Cabrero Souto, Eric de la Clergerie and Manuel Vilares Ferro. 1999. Tabular Algorithms
for TAG Parsing. In Proc. of EACL’99, Ninth Conference of the European Chapter of the Association for Computational
Linguistics, pages 150-157, Bergen, Norway, June. ACL.

Evans, Roger and David Weir. 1998. A structure-sharing parser for lexicalized grammars. In COLING-ACL’98, 36th Annual
Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguis-
tics, Proceedings of the Conference, volume I, pages 372-378, Montreal, Quebec, Canada, August. ACL.

Joshi, Aravind K. and Yves Schabes. 1997. Tree-Adjoining Grammars. In Grzegorz Rozenberg and Arto Salomaa, editors,
Handbook of Formal Languages. Vol 3: Beyond Words. Springer-Verlag, Berlin/Heidelberg/New York, chapter 2, pages
69-123.

Lang, Bernard. 1990. The systematic construction of Earley parsers: Application to the production of @ (n®) Earley parsers
for tree adjoining grammars. In Proc. of the 1st International Workshop on Tree Adjoining Grammars, August.

Nederhof, Mark-Jan. 1999. The Computational Complexity of the Correct-Prefix Property for TAGs. Computational Linguis-
tics, 25(3):345-360.

Schabes, Yves and Richard C. Waters. 1995. Tree Insertion Grammar: A Cubic-Time Parsable Formalism That Lexicalizes
Context-Free Grammar Without Changing the Trees Produced. Computational Linguistics, 21(4):479-513, December.
Also as Technical Report TR-94-13, June 1994, Mitsubishi Electric Research Laboratories, Cambridge, MA, USA.

Shieber, Stuart M., Yves Schabes and Fernando C. N. Pereira. 1995. Principles and Implementation of Deductive Parsing.
Journal of Logic Programming, 24(1-2):3-36, July-August.

Sikkel, Klaas. 1997. Parsing Schemata — A Framework for Specification and Analysis of Parsing Algorithms. Texts in
Theoretical Computer Science — An EATCS Series. Berlin/Heidelberg/New York: Springer-Verlag.

XTAG Research Group. 2001. A Lexicalized Tree Adjoining Grammar for English. Technical Report IRCS-01-03, University
of Pennsylvania, USA.

Context-Free Parsing of a Tree Adjoining Grammar Using
Finite-State M achines

Alexis Nasr*, Owen Rambow', John Chent, and Srinivas Bangalore}

* Université Paris 7, University of Pennsylvania, { AT&T Labs — Research

nasr @i ngui st.jussieu.fr, ranbow@mnagi . ci s. upenn. edu, jchen@ esearch. att.com
srini @esearch. att.com

1. Introduction: A Dependency-Only Par ser

In this paper, we describe work in progress that originated with the goal of creating a dependency parser
which does not use phrase structure, but does use an explicit generative (and of course lexicalized) encoding of the
grammar.® The motivation for this goal is threefold.

e First, we believe that the phrase structure used by many (if not most) linguistic theories is useful only in deriving
the syntactic behavior of lexical heads (or classes of lexical heads) from more general principles(which is of
course the goal of syntactic theory); once derived, the syntactic behavior can be expressed in simpler terms that
can be easier to manipulate in a computational setting.? Furthermore, applications need as output from a parser
something close to dependency (typically, lexical predicate-argument structure), but not phrase-structure.

e Second, we prefer an explicit encoding of a grammar in an inspectable declarative syntactic formalism over
an implicit encoding in a computational framework. While we believe that explicit grammars have various
advantages, such as the ability to test different syntactic hypotheses, or the possibility of hand-crafting grammars
for limited domains (as is commonly done in commercial speech-based systems), we do not attempt to justify
this preference further.

e Third, we believe that generative formalisms have certain advantages over constraint-based formalisms, in par-
ticular computational advantages. A large body of research on parsing in generative formalisms can be reused
for different formalisms if they share certain basic properties, and we exploit this fact.

The formalism we used is based on that presented in (Kahane et al., 1998), but in the first phase we have
omitted the non-projectivity, leaving us with a simple generative algorithm which allows us to lexicalize a context-
free grammar by allowing regular expressions in the right-hand side.® We call this formalism GDG,or Generative
Dependency Grammar. Its parsing algorithm, naturally, expresses the regular expressions as finite-state machines
(FSMs), and the chart parser records FSMs and the state they are in during the parse.

It is well known that the derivation tree of a Tree Adjoining Grammar (TAG) is a dependency tree if the
grammar is lexicalized (though not always the linguistically most plausible one), and as a result, there are many
parallels between a dependency analysis and a TAG analysis if we abstract from the phrase structure of the latter
(Rambow and Joshi, 1997). In fact, a dependency parse can be seen as a direct parse of a TAG derivation tree.
And furthermore, we can derive a grammar in our lexicalized GDG formalism from a TAG grammar in a relatively
straightforward manner. This has advantages in grammar reuse. Given the close relation between dependency and
TAG, our approach can be seen as an exercise in applying the FSM-based parsing techniques of Evans and Weir
(1997) and (1998) to the Tree Insertion Grammars (TIG) of Schabes and Waters (1995), though the different origin
of the approach (dependency parsing vs. TAG parsing) translates to differences in the way the FSMs are used to
parse.

In this overview, we introduce GDG and its parsing algorithm in Section 2, and describe how we compile a
TAG to a GDG in Section 3. We discuss the empirical adequacy and speed of the parser in Section 4, and conclude
with a discussion of how our projected work relates to other current work in parsing. We postpone a discussion of
related work in formalizing dependency to another publication.

1. We would like to thank David Chiang, Anoop Sarkar, and three insightfully critical anonymous reviewers for their com-
ments, explanations, and suggestions.

2. We leave open whether this point also has cognitive relevance.

3. Inthis we follow a suggestion made by Abney (1996), essentially extending the formalism of (Gaifman, 1965).

© 2002 Alexis Nasr, Owen Rambow, John Chen, Srinivas Bangalore. Proceedings of the Sixth International Workshop on Tree
Adjoining Grammar and Related Frameworks (TAG+6), pp. 96-101. Universita di Venezia.

Nasr et al. 97

2. GDG and Parsing GDG

An Extended Context-Free Grammar (or ECFG for short) is like a CFG, except that the right-hand side is a
regular expression over the terminal and nonterminal symbols of the grammar.# At each step in a derivation, we
first choose a rewrite rule (as we do in CFG), and then we choose a string of terminal and nonterminal symbols
which is in the language denoted by the regular expression associated with the rule. This string is then treated
like the right-hand side of a CFG rewrite rule. A Generative Dependency Grammar (GDG) is a lexicalized ECFG.
For our formalism, this means that the regular expression in a production is such that each string in its denoted
language contains at least one terminal symbol. When we use a GDG for linguistic description, its left-hand side
nonterminal will be interpreted as the lexical category of the lexical item and will represent its maximal projection.
The right-hand side symbols represent the active valency of the lexical head of the rule, i.e., the categories that
must or may (depending on whether the symbol is optional) be dependents on this lexical head for it to be the root
of a well-formed subtree. Passive valency (a representation of where and to what other heads a lexical head may
attach itself) is not explicitly encoded.

The parsing algorithm is a simple extension of the CKY algorithm for CFG. The difference is in the use of
finite state machines in the items in the chart to represent the right-hand sides of the rules of the ECFG. A rule with
category C as its left-hand side will give rise to a finite state machine which we call a C-FSM; its final states mark
the completed recognition of a constituent of label C. Let T" be the parse table for input sentence W and GDG G
such that T; ; contains (M, g) iff M is a C-FSM, g is one of the final states of A/, and we have a derivation C' of
substring w; - - -w; from C'in G.

Initialization: We start by adding, for each ¢, 1 < i < n, w; to T} ;.

Completion: If T; ; contains either the input symbol w or an item (M,) such that g is a final state of A/, and
M isaC-FSM, thenadd to T; ; all (M', ¢") such that M is a rule-FSM which transitions from a start state to state
¢' oninput w or C.

Scanning: If (M1, q1) is in T; i, and Ty41,; contains either the input symbol w or the item (M3, g2) where g»
is a final state and M is a C-FSM, then add (M1, ¢) to T; ; (if not already present) if M/, transitions from ¢; to ¢
on either w or C.

Note that because we are using a dependency grammar (or, in TAG terms, parsing the derivation tree directly),
each scanning step corresponds to one attachment of a lexical head to another (or, in TAG terms, to an adjunction
or a substitution). At the end of the parsing process, a packed parse forest has been built. The nonterminal nodes
are labeled with pairs (M, ¢) where M is an rule FSM and q a state of this FSM.

Obtaining the dependency trees from the packed parse forest is performed in two stages. In a first stage, a
forest of binary syntagmatic trees is obtained from the packed forest and in a second stage, each syntagmatic tree
is transformed into a dependency tree.

3. Compilation of a TAG into GDG

In fact, we do not derive a formal GDG from a TAG but instead directly compile a set of FSMs which are
used by the parser (though we consider the distinction irrelevant, as FSMs and regular expressions are easily inter-
convertible). To derive a set of FSMs from a TAG, we do a depth-first traversal of each elementary tree in the
grammar (but excluding the root and foot nodes of adjunct auxiliary trees) to obtain a sequence of nonterminal
nodes. Each node becomes two states of the FSM, one state representing the node on the downward traversal on
the left side (the left node state), the other representing the state on the upward traversal, on the right side (the
right node state). For leaf nodes, the two states immediately follow one another. The states are linearly connected
with e-transitions, with the left node state of the root node the start state, and its right node state the final state
(except for predicative auxiliary trees — see below). To each non-leaf state, we add one self loop transition for each
tree in the grammar that can adjoin at that state from the specified direction (i.e., for a state representing a node
on the downward traversal, the auxiliary tree must adjoin from the left), labeled with the tree name. For each pair
of adjacent states representing a substitution node, we add transitions between them labeled with the names of the
trees that can substitute there. For the lexical head, we add a transition on that head. For footnodes of predicative

4. ECFG has been around informally since the sixties (e.g., the Backus-Naur form); for formalizations see (Madsen and
Kristensen, 1976) or Albert et al. (1999).

98 Proceedings of TAG+6

auxiliary trees which are left auxiliary trees (in the sense of Schabes and Waters (1995), i.e., all nonempty frontier
nodes are to the left of the footnode), we take the left node state as the final state. There are no other types of leaf
nodes since we do not traverse the passive valency structure of adjunct auxiliary tees. Note that the treatment of
footnodes makes it impossible to deal with trees that have terminal, substitution or active adjunction nodes on both
sides of a footnode. It is this situation (iterated, of course) that makes TAG formally more powerful than CFG; in
linguistic uses, it is very rare.> The result of this phase of the conversion is a set of FSMs, one per elementary tree
of the grammar, whose transitions refer to other FSMs. We give a sample grammar and the result of converting it
to FSMs in Figure 1.

The construction treats a TAG as if were a TIG (or, put differently, it coerces a TAG to be a TIG): during the
traversal, both terminal nodes and nonterminal (i.e., substitution) nodes between the footnode and the root node
are ignored (because the traversal stops at the footnode), thus imposing the constraint that the trees may not be
wrapping trees and that no further adjunction may occur to the right of the spine in a left auxiliary tree. Further-
more, by modeling adjunction as a loop transition, we adopt the definition of adjunction of Schabes and Shieber
(1994), as does TIG. Chiang (2000) also parses with an automatically extracted TIG, but unlike our approach, he
uses standard TAG/TIG parsing techniques. Rogers (1994) proposes a different context-free variant, “regular-form
TAG”. The set of regular-form TAGs is a superset of the set of TIGs, and our construction cannot capture the added
expressive power of regular-form TAG.

As mentioned above, this approach is very similar to that of Evans and Weir (1997). One important difference
is that they model TAG, while we model TIG. Another difference is that they use FSMs to encode the sequence
of actions that need to be taken during a standard TAG parse (i.e., of the derived tree), while we encode the active
valency of the lexical head in the FSM. A result, in retrieving the derivation tree, each item in the parse tree
corresponds to an attachment of one word to another, and there are fewer items. Furthermore, our FSMs are built
left-to-right, while Evans and Weir only explore FSMs constructed bottom-up from the lexical anchor of the tree.
As aresult, we can perform a strict left-to-right parse, which is not straightforwardly possible in TAG parsing using
FSMs.

4. Adequacy of GDG and Initial Run-Time Results

To investigate the adequacy of a context-free parser for English, as well as the speed of the parser, we use
an automatically extracted grammar called “Bob” (Chen, 2001). Bob has been extracted from Sections 02-21 of
the Penn Treebank. Parameters of extraction have been set so that the tree frames of the resulting grammar have
a “moderate” domain of locality, and preserve many but not all of the empty elements that are found in the Penn
Treebank (typically those cases where empty elements are found in the XTAG grammar, such as PRO subjects).
Bob consists of 4909 tree frames. We tested our parser with Bob on 1,814 sentences of Section 00 of the PTB
with an average sentence length of 21.2 words (excluding pure punctuation, i.e., punctuation which does not play
a syntactic role such as conjunction or apposition). We evaluate performance using accuracy, the ratio of the
number of dependency arcs which are correctly found (same head and daughter nodes) in the best parse for each
sentence to the number of arcs in the entire test corpus. We also report the percentage of sentences for which we
find the correct analysis (along with many others, of course).

To show that GDG is adequate for parsing English (an empirical question), we use the correct supertag as-
sociated with each input word and evaluate the performance of the parser. We expect only those sentences which
do not have a context-free analysis not to have any analysis at all. This is indeed the case: there is no case of
non-projectivity in the test corpus. Note that since we analyze matrix verbs as depending on their embedded
verb, following the TAG analysis, long-distance wh-movement is not in fact non-projective or us. However, the
punctuation mark associated with the matrix verb does cause non-projectivity, but since we are disregarding true
punctuation, this does not affect our result.

The average run-time for each sentence is 56ms (parsing using the correct supertag for each word, and no other
supertag), which to our knowledge is significantly quicker than existing full-fledged TAG parsers.® We show the

5. Our construction cannot handle Dutch cross-serial dependencies (not surprisingly), but it can convert the TAG analysis of
wh-movement in English and similar languages.

6. Note that the extracted grammar does not have any features, so no feature unification is performed during parsing. Agree-
ment phenomena can be enforced by using extended label sets, at the cost of increasing the size of the grammar. (This is
a parameter in the extraction algorithm.) Of course, features in TAG are always bounded in size anyway, and hence always
equivalent to an extended label set.

Nasr et al.

Name Tree FSM
t1[no] NP
/\ no
DT NP«
t4[bearing]
t4[force] N|P
NN<¢
t31[has] S
OO On O
NP, VP
/\
VBZ{$ NPJ
t34[it]
NP 30 t47
|
PRP{ ‘n i @
t36[our] NP
our
5 O—=—)
PRP$ NPx
t43[work] NP
work
. O—==Q)
NN¢ NPx
t47[today] NP
N t5
NP NP 43
|
NN) | A
O O

99

Figure 1: Bob subgrammar for sentence It has no bearing on our workforce today and set of FSMs that corresponds

to that subgrammar

100 Proceedings of TAG+6

dependence of parse time on sentence length in Figure 2. As is known both theoretically and empirically (Sarkar,
1998), lexical ambiguity has a drastic effect on parse time. We have not yet run experiments to show the relation
(and, as mentioned above, this is where we hope to profit from using FSMs).

0.25 T T T
avg parse time —+—
X ** 3 *3527687e-06 ---—----
02 5
0.15 - 5
1]
©
=
[=]
(5]
[}
2]
0.1 5
0.05 - 5
0 L =
0 5 10 15 20 25 30 35 40 45

sentence length

Figure 2: Average analysis time (in ms) against sentence length

5. Parsing Using L exicalized Grammars

Recently, parsers using bilexical stochastic models which are derived from phrase-structure corpora with the
aid of “head percolation tables” have been successfully developed (Magerman, 1995; Collins, 1997)). In some
sense, these approaches use an unlexicalized formalism (CFG) and implicitly lexicalize it.” The use of the same
tool (head percolation tables), often the same tables, in automatically extracting TAG grammars raises the question
whether a stochastic TAG parser or TIG parser (such as (Chiang, 2000)) using bilexical stochastic models can ever
outperform the implicitly lexicalized approaches, since they use the same kind of data, though packaged differ-
ently (David Chiang, personal communication). We suggest that the interest in pursuing parsing using explicitly
lexicalized grammar formalisms such as TAG, TIG, or GDG lies not in a simple replication of the results obtained
previously using head percolation. Rather, the lexicalized formalisms allow for a different approach, which is not
possible with the implicitly lexicalized approaches: namely gathering as much syntactic information as possible
about the syntactic properties of the words of the input sentence using very fast algorithms prior to (or interleaved
with, but separate from) parsing.® The best-known such approach is supertagging (Bangalore and Joshi, 1999).
While supertagging has been explored in the past (Bangalore and Joshi, 1999; Chen, 2001), we are not aware of a
systematic investigation into the relation between the quality of supertagging, the use of n-best supertagging, parse
quality, and parse time (but see initial results in Chen et al. (2002)). We intend to perform such investigations
using the framework we have developed, and hope that the use of an explicit lexicalized grammar formalism can
be shown to be useful precisely because it allows us to use other disambiguation techniques which the implicitly
lexicalized formalisms do not support.

7. Of course, this work can also be interpreted as a rediscovery of the core insight of TAG.
8. Some parsers make use of prior part-of-speech parsing, which provides some very shallow syntactic information.

Nasr et al. 101

References

Abney, Steven (1996). A grammar of projections. Unpublished manuscript, Universitat Tubingen.

Albert, Jirgen; Guammarresi, Dora; and Wood, Derick (1999). Extended context-free grammars and normal form algorithms.
In Champarnaud, Jean-Marc; Maurel, Denis; and Ziadi, Djelloul, editors, Automata Implementations: Third International
Workshop on Implementing Automata (WIA’98), volume 1660 of LNCS, pages 1-12. Springer Verlag.

Bangalore, Srinivas and Joshi, Aravind (1999). Supertagging: An approach to almost parsing. Computational Linguistics,
25(2):237-266.

Chen, John (2001). Towards Efficient Statistical Parsing Using Lexicalized Grammatical Information. PhD thesis, University
of Delaware.

Chen, John; Bangalore, Srinivas; Collins, Michael; and Rambow, Owen (2002). Reranking an n-gram SuperTagger. In
Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and Related Formalisms (TAG+6), Venice,
Italy.

Chiang, David (2000). Statistical parsing with an automatically-extracted tree adjoining grammar. In 38th Meeting of the
Association for Computational Linguistics (ACL’00), pages 456-463, Hong Kong, China.

Collins, Michael (1997). Three generative, lexicalised models for statistical parsing. In Proceedings of the 35th Annual Meeting
of the Association for Computational Linguistics, Madrid, Spain.

E. Black et al. (1991). A procedure for quantitatively comparing the syntactic coverage of english grammars. In Proceedings
of the February 1991 DARPA Speech and Natural Language Workshop. DARPA.

Evans, Roger and Weir, David (1997). Automaton-based parsing for lexicalized grammars. In 5th International Workshop on
Parsing Technologies (IWPT97), pages 66—76.

Evans, Roger and Weir, David (1998). A structure-sharing parser for lexicalized grammars. In 36th Meeting of the Association
for Computational Linguistics and 17th International Conference on Computational Linguistics (COLING-ACL’98), pages
372-378, Montréal, Canada.

Gaifman, Haim (1965). Dependency systems and phrase-structure systems. Information and Control, 8:304-337.

Kahane, Sylvain; Nasr, Alexis; and Rambow, Owen (1998). Pseudo-projectivity: A polynomially parsable non-projective de-
pendency grammar. In 36th Meeting of the Association for Computational Linguistics and 17th International Conference
on Computational Linguistics (COLING-ACL’98), pages 646—652, Montréal, Canada.

Madsen, O.L. and Kristensen, B.B. (1976). LR-parsing of extended context-free grammars. Acta Informatica, 7:61-73.

Magerman, David (1995). Statistical decision-tree models for parsing. In 33rd Meeting of the Association for Computational
Linguistics (ACL’95).

Rambow, Owen and Joshi, Aravind (1997). A formal look at dependency grammars and phrase-structure grammars, with
special consideration of word-order phenomena. In Wanner, Leo, editor, Recent Trends in Meaning-Text Theory, pages
167-190. John Benjamins, Amsterdam and Philadelphia.

Rogers, James (1994). Capturing cfls with Tree Adjoining Grammars. In 32nd Meeting of the Association for Computational
Linguistics (ACL’94). ACL.

Sarkar, Anoop (1998). Conditions on Consistency of Probabilistic Tree Adjoining Grammars. In 36th Meeting of the Associa-
tion for Computational Linguistics and 17th International Conference on Computational Linguistics (COLING-ACL’98),
pages 1164-1170, Montreal.

Schabe(zs, ;(ves and Shieber, Stuart (1994). An alternative conception of tree-adjoining derivation. Computational Linguistics,
1(20):91-124.

Schabes, Yves and Waters, Richard C. (1995). Tree Insertion Grammar: A cubic-time, parsable formalism that lexicalizes
Context-Free Grammar without changing the trees produced. Computational Linguistics, 21(4):479-514.

How to prevent adjoiningin TAGs
and itsimpact on the Aver age Case Complexity

Jens Woch

University of Koblenz, Germany

The introduction of the adjoining operation to context-free grammars comes at high costs: The worst case time
complexity of (Earley, 1968) is O(n®), whereas Tree Adjoining Grammars have O(n®) ((Schabes, 1990)). Thus,
avoiding adjoining as far as possible seems to be a good idea for reducing costs (e.g. (Kempen and Harbusch,
1998)). Tree Insertion Grammars (TIGs, (Schabes and Waters, 1995)) address this problem more radically by
restricting the adjoining operation of TAGs such that it is no context-sensitive operation anymore. The result
is O(n3) worst case parseability which stems from TIG’s context-freeness. However, to preserve TAG’s mildly
context-sensitiveness the adjoining operation must not be restricted in any way. Another solution would be simply
to call the adjoining operation less frequently: The production of items directly depends on the fashion of the
underlying grammar and often adjoining is used to make the grammar more comprehensible or more adequate to
the linguistic phenomenon even if there would be simpler representations as, for instance, left- or right recursion.

This abstract (1st) sketches a way of reducing item generation through grammar transformation by using
Schema-TAGs (S-TAGs, as introduced by (Weir, 1987), where tree sets are enumerated by regular expressions)
which in contrast to TIGs keeps weak equivalence and performs better than factoring as proposed by (Harbusch,
Widmann and Woch, 1998), and (2nd) provides a proof of the average case time complexity of S-TAGs based on
the proposed transformation.

In the following, adressing of nodes occurs in the fashion of (Gorn, 1967), i.e. each node of a tree gets a
unigue number — beginning with zero — which preserves the structure of the tree. For example, 1.2 points to the
second daughter of the first daughter of a root node, and in grammar G, of Fig. 2, (A,,2) identifies the foot node
of A,. The regular expressions of S-TAGs are defined as “schema descriptors”: Let g be a Gorn number, then

|g| is a schema descriptor.

If u and v are schema descriptors, then 1+ v, describing the alternative between p and v, is a schema descriptor.
If 4 and v are schema descriptors, then u.v, describing the concatenation of 1 and v, is a schema descriptor.

If u is a schema descriptor, so are (u) (bracketing), u* (arbitrary iteration) and u@m n e N (n times iteration)
schema descriptors.

If |g| is a schema descriptor, so is |n—n.g|,n € IN a schema descriptor (the via g addressed subtree is cut out
from the via n addressed (sub)tree).

Reduction of item production by factoring

A first idea of circumventing adjoining is to avoid it by reducing generation of items, on which Predict can be
applied. Thus, the idea is to aggregate common substructures appropriately, i.e. to condense the grammar in order
to get rid of redundancies (Harbusch, Widmann and Woch, 1998).

In general, factoring is applied to the schema descriptors (the regular expressions) of the S-TAG and can be
done by applying, e.g., the following rules:

1) a.y'Ry.B=a.yyK g =a.yl+lk+D) g

2 a.(y.0).B+---+0a.(y.0m).B=0a.y.(0,+---+ Om).B
() a.yf+a.p=a.y%0g

@) a.(y+y).B=a.yp

where a, B,Y, 0y, ..., 0m are arbitrary complex schema descriptors. Rule (1) saves nothing, since the amount
of predictions remains the same, as well as the amount of alternatives k — I. However, applying it reversely, in
combination with rule (4) in case of alternatives it is probably possible to factor y up to | times, such that y(%k=1
remains as infix, which is not reduce-able any more. The factoring of rule (2) not only saves m — 1 predictions of y,
but also of a and 3. Thus, rule (2) saves 3(m — 1) predictions. Finally, rule (3) reduces the number of predictions
of a and 3 down to 1, while rule (4) divides the number of predictions caused by y by 2.

Generally, the above rules save 3N ¢|[ADJ(n;)| predictions and 3Nl m;c|ADJ(n;)| completions with m; being
the number of occurrences of node n; € N, which can be factored out ¢ times. Obviously, each circumvented

© 2002 Jens Woch. Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and Related Frameworks
(TAG+6), pp. 102-107. Universita di Venezia.

Jens Woch 103

prediction saves the whole cycle of left and right prediction, resp. completion. Additionally, and much more
important, it reduces the amount of hypothesis checking needed within the operations, as expressed by the factor
m; of the above sum.

Factoring, however, is not able to effectively prevent (unnecessary) adjoinings, it simply reduces redundancies.
This strategy only pays back if direct processing mechanisms are applied, who do not explicitely iterate alternatives
of schemata as instances of trees (cf. (Harbusch and Woch, 2000)).

Preventing adjoining (at least, partially)

A more promising approach to circumvent adjoining is to prevent it. The use of null- and selective constraints,
which restrict adjoining at the node, at which they are attached, perform this very good, but the application of
constraints always should be linguistically motivated. However, adjoining is often used for modelling simple
left, resp. right recursion of the context-free form S — a§, resp. S — Sa. Auxiliary trees, whose terminal nodes
are unexceptional either to the left or to the right of the root-to-foot spine are modelling exactly this behaviour.
Transforming those trees do not compromise the underlying linguistic concept. Those trees can be merged with
the help of schema descriptors into the trees, in which they should adjoin and after merging can completely be
removed from the auxiliary tree set. Hence their prediction is effectively prevented.

Definition 1 (Simplified S-TAG (S?>-TAG)) Let the 6-tuple G = (N, T,S,1,A, %) be a Schema-TAG.

e The tree schema 3 € A is called right recursive, if and only if for each tree t|[g holds, that the foot node of t is the

rightmost node of the frontier of t.
e The tree schema 3 € A is called left recursive, if and only if for each tree tIB holds, that the foot node of t is the

leftmost node of the frontier of t.

G is called Simplified S-TAG, or S2-TAG, if for each B € A holds, that 3 is neither left nor right recursive.

Theorem 1 (L(S?>-TAG) = L(S-TAG)) Let G be an S-TAG and G’ be an S?-TAG. Then L(G) = L(G').

This is shown by transforming auxiliary left and right recursive tree schemata into equivalent schema descrip-
tor representations and vice versa. Def. 1 states, that an auxiliary schema (3 is right/left recursive, if and only if all
tpare right/left recursive. With other words, for the decision whether a schema is right/left recursive, its schema
descriptor has to be investigated. To make things easier, this aspect is not mentioned in the following discussion,
but should be kept in mind.

s: X[1.plip+] S Y [k s: X[Iplp+]

X1+ Xp Y |1..q] Yie YooY X1 Xp Y (L Jr)* 2 gl
/\ —
Z1-Zq Y1 Yr Zi-Zq
@ 2

Figure 1: Avoiding (right-recursive) adjoining by iteration

L(S-TAG) C L(S?>-TAG):

Case 1: Right recursion

To be applied to each B € ADJ(n),n € N, where f3 is right recursive. Fig. 1 shows the elimination of an auxiliary
schema, which effectively performs right recursion at node (Sl,Y)l. Without loss of generality, the descriptors

1. Itis not possible to give correct absolute Gorn addresses for nodes of S, in that example, because it is not known, whether
X is the root node or not. Hence, for the time being, the Gorn number is replaced with the node label, e.g. (S,,Y), which also
should be non-ambiguous in Fig. 1.

104 Proceedings of TAG+6

shown in Fig. 1 are simple enumerations of the respective children nodes, in order to make the relocation arith-
metics clear, but they could be arbitrary complex, as long as the position of the foot node does not change.

Given that S, is adjoinable at (S;,Y), the substructures of (S,,0) (without foot node), namely Y, ... Y;, are
copied over as children of (S, Y) to the left of its own children Z, ... Zq, giving the sibling’s sequence Y;...Y; Z;...Zq.
Then the descriptor (]1]...|r|)*, which licenses the arbitrary repetition of S,’s childrenY; ... Y;, is added as prefix
to the descriptor of (S;,Y). After that, the Gorn numbers |1]...|q|, which referred to the now right-shifted nodes
Z, ... Zg, are updated to |r|...|r +q|. Apply this to any node Y of grammar G, except for foot nodes, because they
would be destroyed by attaching children to it?. See Fig. 2 for an example how the right-recursive auxiliary tree
A, is eliminated through the transformation process.

G1 I. S A1e A: S Az2eA: S
N RN
€ a § b § c

G2 L sprR Ar S [RlBM
1

a ¢ absS c

*

Figure 2: L(G,;) = {w|w € {a,b}*c",|b| = |c|} = L(G,) = {w|w € (a*b)"a*c"}

However, things are getting more complicated, if [ADJ(n)| > 1, i.e. there exist more than one auxiliary schema
B with root node n: The prefixes, which iterate the substructures of the auxiliary schemata have to be combined as
alternatives: Having the descriptors oj, ..., 0; from the root node of auxiliary schemata f3;, ..., B; would result in
descriptor 0 = (0] +---+ 0j)*.0. The respective Gorn numbers {|l|,...,|Bim|} € O'i,...,{|1|,...,|[3jmj|} €0,
would be relocated to

{|1|73|B|m|} € O-il

/

{lﬁim+"'+Bj—lmj71+1|a"-a|ﬁin\+"'+Bjmj|} € Gj

/

{|Bim+"'+Bjmj+l|7--->|ﬁir‘q +"'+Bjmj+q|} € G

This relocation reveals an important characteristics of the transformation process: Either the transformation
is done simultaneously, or later transformations lead to unhealthy grammars: If, e.g., after transforming g3;, ... ,BJ-
the auxi!iary tree Bj+l has to be transformed, then the resulting descriptor o falsely would be (0j+1)*-(0i 4t
0;)".0; instead of (g +---+ 0} + 0j,1)".0r.

Case 2: Left recursion
Analogue.

Case 3: Both recursions

To be applied to each 8 € ADJ(n1),n € N holds, that, where (3 is either right or left recursive. This case is
performed like left and right recursion, but simultaneously: Let 0,.-.,0j be schema descriptors from the root
node of left recursive auxiliary schemata f3;,...,B;, and gy,...,0; schema descriptors from the root node of
right recursive auxiliary schemata f,,...,[,, each without the Gorn number for their foot nodes. Let oy be
the original descriptor of the node, in which f3;,..., may adjoin. Then the resulting schema descriptor is
(6] +---+ 0))*.0{.(0 +--- + ¢])* with the Gorn number relocations are performed as described above.

2. This suffices, because the children are attached as well to the node, in which adjoining occurs.

Jens Woch 105

After applying case 1,2 or both for each node n € N, ADJ(n) is either empty, or 33 € ADJ(n7) with S is neither
left nor right recursive. See Fig. 3 for an example how the right-recursive auxiliary tree A; and the left-recursive
auxiliary tree A, or eliminated simultaneously through the transformation process.

G1 I. S A1€ A: S A2eA: S
l N N

a § *S b
G2 I: S [1%.12] 13*
/I\

a € b

Figure 3: G, is the result of transforming G,

L(S%-TAG) C L(S-TAG):
Trivial, since each S2-TAG is an S-TAG per definition. |

Gentle application of rules (1)—(4) of page 102 to g might be advisable. As a side note, transforming the grammar
G={S=1vy, S= SB, S= aS} simultaneously is not the same as transforming G’ = {S =y, S = aSB}
(which is not allowed, anyway). The former grammar G expresses a"yB™, whereas G’ expresses a"yp", but fa-
tally, after transformation the resulting descriptors would be identical for G and G’: Something according to a*y3*.

Whilst the method of transforming whenever possible auxiliary schemata greatly reduces the costs as shown
below, there are two aspects to consider:

e Rewriting of auxiliary tree schemata raises the redundancies of the grammar, such that maintainability suffers.

e Furthermore, as side effect of the last point: The principle of locality of TAGs may get lost, where (groups
of) auxiliary schemata are completely replaced with that method. Thus, the intended linguistic concept of that
(group of) auxiliary schemata is scattered throughout the grammar.

G1 I. S A1€ A: S A2eA: S
PN /I\
€ a § b S ¢

*

}

G3 Ii: S []2 I: U A: S (1213114l
1

U ¢ a UbS c

Figure 4: Transformation of G, of Fig. 2 with substitution

A solution to get rid of those drawbacks is to introduce unique substitution tree schemata for each transformed
auxiliary schema as shown in Fig. 4. The modularisation effect of substitution remedies the redundancies similar
to adjoining and preserves the locality of simple left or right auxiliary schemata.

106 Proceedings of TAG+6

Theorem 2 (Average Case of S>-TAGs) The average case for S>-TAGs is O(n?).

The assumption here is that in S>-TAGs adjoining rarely happens, since the most common, i.e. pure left or
right auxiliary schemata are not existent. Those non-transformable schemata, which are neither left nor right
recursive, however, are very seldom even in large grammars. The XTAG grammar ((Doran et al., 1994)), for
example, consists of more than 1000 trees and only about three non-transformable ones. Therefore, the average
case assumption is that there are barely any adjoining operations at all.

According to (Schabes, 1990), Right Completion and Move Dot Up are by far the most expensive operations:
Their worst case complexity is O(n®) and this is the reason for the overall worst case complexity of O(n®). Assum-
ing that there are no adjoinings, the left/right prediction and completion operations (LP1, LC, RP1, RC) as well
as move dot up (MU2.2) (the dotted node subsumes a foot node) do not apply to any state. The latter ommission
reduces the complexity of MU to the complexity of MU2.1(the dotted node does not subsume a foot node), which
is O(n®). Following from the worst case behaviour of S-TAGs, MU is still the most expensive operation. There-
fore, the algorithm takes at most O(n®) time to process a given state set S;. Having at most n state sets, the overall
complexity for S?>-TAGs under above assumption is O(n%). As a side note, Schabes’ algorithm performs worse
than Earley for complete context-free TALSs.

Further investigations

Whilst L(G;) = L(G,) = {w|w = a"b™} (cf. Fig. 3), attaching indices to the terminals in the order of their
prediction makes clear that the number of hypotheses varies heavily between G, and G,: aabb can be predicted
by G, in the sequence a,a,bsb, only. G;, however, is able to predict it as any sequence of {a;a;b,b,ijkl €
PERM(1234)}. The consequence is the prediction of all possible sequences, which leads to heavily interconnected
derivation graphs. Applying null constraints at (A;,2) and (A,, 1) would help to reduce the number of predictions
by the half, because the sequence of a and b would be determined to aj...a b,...b, withii < jandk <, but
nevertheless the prediction order of a’s and b’s would be mixed up. The transformed grammar G, however, only
permits one derivation, and that is linear from left to right. Thus, the total number of items produced by G, is a
fraction of that of grammar G,, as depicted in Fig. 5 and 6, in which the relative growth of time (TR), number
of items (IR) and number of operations performed (OR) are shown. In G,, e.g. for n = 20 approx. 5500 times
more operations are performed than for n = 2. The time behaviour of G, is linear, and that is not surprising,
since the only production rule left in G, is regular. In G, e.g. for n = 20 only about 7 times more operations are
performed than for n = 2. The open question is whether this is an artifact of the example’s simplicity, or whether
this behaviour can be expected and to what degree in larger grammars after transforming them into S2-TAGs.

5.000 e GLTR '
4.000 = GLR
= - G1-OR
s 3.000 !
£
*2,000 i
1.000 o
a ,:,._‘;::1'-'»""."
1 = - - RPVTIITR WP -t L
2 4 6 8 10 12 14 16 18 20
input length

Figure 5: Relative growth of item numbers (IR), operations (OR) and time consumption (TR) for G

Jens Woch 107

71 -+ G2-TR e
6 = G2-IR o
-a- G2-OR

2 4 6 8 10 12 14 16 18 20
input length

Figure 6: Relative growth of item numbers (IR), operations (OR) and time consumption (TR) for G,,

References

Doran, Christine, Dania Egedi, Beth Ann Hockey, Bangalore Srinivas and Martin Zaidel. 1994. XTAG System — A Wide
Coverage Grammar for English. In Makoto Nagao, editor, Procs. of the 15th International Conference on Computational
Linguistics (COLING), volume 2, pages 922-928, Kyoto, Japan, August 23-28.

Earley, Jay. 1968. An Efficient Context—Free Parsing Algorithm. Ph.D. thesis, Carnegie-Mellon University, Pittburgh, PA,
USA.

Gorn, Saul. 1967. Explicit definitions and linguistic dominoes. In John Hart and Satoru Takasu, editors, Systems and Computer
Science. University of Toronto Press, Toronto, Canada, pages 77-115.

Harbusch, Karin, Friedbert Widmann and Jens Woch. 1998. Towards a Workbench for Schema-TAGs. In Anne Abeillé,
Tilman Becker, Owen Rambow, Giorgio Satta and K. Vijay-Shanker, editors, Procs. of the 4th International Workshop on
Tree Adjoining Grammars and Related Formalisms (TAG+4), pages 56-61, University of Pennsylvania, Philadelphia, PA,
USA, August 1-2. Institute for Research in Cognitive Science. IRCS-Report 98-12.

Harbusch, Karin and Jens Woch. 2000. Direct Parsing of Schema-TAGs. In Harry C. Bunt, editor, Procs. of the 6th Interna-
tional Workshop on Parsing Technologies (IWPT), pages 305-306, Trento, Italy, February 23-27. Institute for Scientific
and Technological Research.

Kempen, Gerard and Karin Harbusch. 1998. Tree Adjoining Grammars without Adjoining? The Case of Scrambling in
German. In Anne Abeillé, Tilman Becker, Owen Rambow, Giorgio Satta and K. Vijay-Shanker, editors, Procs. of the
4th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+4), pages 80-83, University of
Pennsylvania, Philadelphia, PA, USA, August 1-2. Institute for Research in Cognitive Science. IRCS-Report 98-12.

Schabes, Yves. 1990. Mathematical and Computational Aspects of Lexicalized Grammars. Ph.D. thesis, University of Penn-
sylvania, Philadelphia, PA, USA.

Schabes, Yves and Richard C. Waters. 1995. Tree Insertion Grammar: Cubic-Time, Parsable Formalism that Lexicalizes
Context-Free Grammar without Changing the Trees Produced. Computational Linguistics, 21(4):479-513.

Weir, David. 1987. Characterising Mildly Context-Sensitive Grammar Formalisms. PhD. proposal, University of Pennsylva-
nia, Philadelphia, USA, 1987.

Quantification Over Situation Variables in LTAG: Some
Constraints

Maribel Romero
University of Pennsylvania

1. Introduction

Some natural language expressions —namely, determiners like every, some, most, etc.— introduce
quantification over individuals (or, in other words, they express relations between sets of individuals). For
example, the truth conditions of a sentence like (la) are represented in Predicate Logic (PrL) by binding the
occurrences of the individual variable x with the quantifier V, as in (lb).1

(1) a. Every professor run the marathon.
b. Vx [professor(x) — run-the-marathon(x)]

In a similar way, it has been argued that certain expressions introduce quantification over possible worlds or
possible situations (Lewis 1973, among many others). The set of possible worlds includes the actual world --
where the individuals are the way they actually are-- and any other logically possible world --where individuals
may have different properties from the ones they have in actuality. In this paper, I assume a Situation Semantic
framework (Barwise-Perry 1983, Kratzer 1989, von Fintel 1994) and do not quantify over entire possible
worlds, but over parts of possible worlds, i.e., over possible situations.” In (2a), e.g., the speaker predicates the
property of being in the Bahamas by 5pm of Jorge in all the (actual or non-actual relevant) situations s where all
my actual obligations are fulfilled. This is informally represented in (2b). The variable s, stands for the
situation at which the sentence as a whole is evaluated (the actual situation), and the variable s ranges over the
possible (actual or non-actual) situations considered.

(2) a. Jorge has to be in the Bahamas by Spm.
b. [[(2a)]1(sg) =1 iff Vs [all my actual obligations in s are fulfilled in s — in(jorge, bahamas, Spm, s)]

The present paper has two goals.

The first one is to implement in LTAG the semantics of some natural language expressions that quantify
over possible situations. In particular, I will propose lexical entries for the modal auxiliary must, for the
intensional adverb probably and for the adverb of quantification sometimes.” The proposal will model insights
from the philosophical and linguistic literature (Stalnaker 1968, Lewis 1973, Cresswell 1990, Kratzer 1979) into
the LTAG quantificational schemata developed in Kallmeyer-Joshi (2001).

The second, more important aim is to account, within LTAG, for a certain constraint on binding of situation
variables discussed in Percus (2000) (see also Musan 1995 for related observations on time variables). In an
nutshell, this binding constraint requires the following. Whereas predicates within (simple) Noun Phrases (NPs)
can be evaluated with respect to a non-local situation binder, the situation variable of the main predicate in the
Verb Phrase (VP) has to be bound by the closest c-commanding situation operator. It will be argued that this
constraint follows automatically if, using the LTAG denotations proposed in this paper, the compositional
semantics is computed on the derivation tree rather than on the derived tree.

The paper is organized as follows. In section 2, I will briefly present Kallmeyer-Joshi’s (2001) proposal for
quantifiers over individuals and extend it to quantifiers over situations. Semantic denotations for must, probably
and sometimes will be spelled out in LTAG. Section 3 introduces the core data on the behavior of NPs versus

1. (1b) is a simplified version. Once we add situation variables, the denotation of (1a) for a given evaluation situation s, is
represented as in (i). [[.]] is the interpretation function from linguistic expressions to their intensions.

1) [[(1a)]](sp) =1 iff Vx [professor(x,s)) — run-the-marathon(x,sy)]

2. The choice of situations instead of worlds is orthogonal to the arguments in this paper. Situations are best fitted to
account for adverbs of quantification (always, sometimes, often, etc.) involving indefinites and donkey-anaphora (see von
Fintel 1994).

3. The denotation of other members of each category can, of course, be easily modeled after the proposed entries (e.g., for
modals like can, might, would, should; intensional adverbs like necessarily, possibly, perhaps, unlikely; and adverbs of
quantification like always, usually, often, rarely.)

© 2002 Maribel Romero. Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and Related
Frameworks (TAG+6), pp. 108-117. Universita di Venezia.

Romero 109

VPs with respect to situation binding. Section 4 derives the asymmetric behavior of NPs and VPs with respect
to situation binding. We will consider a simple case with one situation adverb. It will be shown that the freedom
of the NP situation variable and the locality of the VP situation variable follow in a straightforward way if we
apply the compositional semantics to the derivation tree instead of the derived tree. A more complex case will
be briefly considered, where two situation adverbs are at issue. Section 5 concludes.

2. Quantification over possible worlds in LTAG

A sentence a denotes a proposition, [[a]], i.e., a function from possible worlds to the truth values in {0,1}.
A way to encode the denoted proposition [[at]] is to equate with a Ty2 formula the conditions under which [[a]]
applied to the actual situation s, will yield 1. This is done for a simple example in (3), and its LTAG
correspondent is given next to it. Note that, in a Ty2 formula (Gallin 1975), all logical predicates (formal
translations of nouns, adjectives and verbs) include a situation argument, represented using the variables s, (by
convention, the actual situation, the evaluation situation of the sentence as a whole), and s, s, s, etc.

ly: visit(x,y,s0)
(3) [[Pat visits Kate]](sp) =1 iff visit(p,k,sg) pat(x)

kate(y)

arg: -

Let us introduce quantificational determiners into this Ty2 intensional framework. Kallmeyer-Joshi propose
that the contribution of a quantificational determiner consists of two parts: on the one hand, the quantificational
NP adds an argument to the predicate-argument structure of the sentence; on the other, it introduces a scopal
element, a logical operator which takes scope over (at least) that predicate-argument structure. For each
quantificational determiner, these two components are separated into two trees, as exemplified in (4)-(5): the
predicate-argument component substitutes into the appropriate argument slot in the verb’s tree, and the scopal
component adjoins to the root node of the verb tree.

(4) Some/A:
B S 1;: some(x, hy,hs)
ry= hg
arg: r;
% NP b pax,s’)
/\ lg = h]
D‘et N| arg: <p,, 01>
some
(5) Every:
B2 S Is: every(y,hz,hq)
= h4
arg: rp
a2 NP Lipays”)
/\ 145 h3
D‘et N| arg: <py, 01>
every

An example sentence is given in (6). The remaining basic trees and their LTAG denotations are spelled out
in (7)-(9). Following the derivation tree in (10), these denotations compose to yield the final denotation in (11).
Note that the relative scope of two quantifiers every and some remains underspecified in this output denotation.

110 Proceedings of TAG+6

The two possible scopal readings are determined by the disambiguation functions 8, and §, in (12).*
(6) A student visited every club.

(7) Visited:

Ao S
S 1,: visit(x,y,s ")
NP| VP arg: <x, 00>,
N <y,011>
A% NP|
|
visited

(8) Student:

o3 N
| q;: student
student arg: -
(9) Club:
Oy N
| qq: club
club arg: -
(10) Derivation tree:
Qo
N T
B g (5] B2
| |
o3 Oy

(11) Output denotation:

Z]Z some(x,h;,hg), lgi every(y,hg,h4),
Ly visit(x,y,s "), L: (qq: student)(x,s’), L (qq: club)(y,s”)
loshg, lgsh], l()sh4, Z4Sh3

arg: -

(12) Scope disambiguation functions:
a. 8, for the scope some >> every = { <hy,l>, <hy,I3>,<h3,14>,<hy, 15>}
b. 8, for the scope every >> some = { <hy,l>, <hy,lp>,<h;,15>,<hy, 1>}

The semantic representations above are faithful to Kallmeyer-Joshi’s proposal expect for the fact that we
have introduced a situation variable for each predicate, namely s’, s, s 7. In this case, since there is no situation
binder in the sentence, all three situations variables are identified with the evaluation situation sy. The result of
this variable identification is spelled out in (13).

(13) [[4 student visited every club]](so) =1 iff 3Ix [student(x,s9) A Yy [club(y,sg) — visit(x,y,s0)]] or
Yy [club(y,sp) — 3x [student(x,s¢) A Visit(x,y,S0)]]

Z]Z some(x,h;,hg), lgi every(y,hg,h4),

Ly: visit(x,y,50), 1 (q: student)(x,sg), 1 (qz: club)(y,sy)
ZO = hg, lgs h], l()s h4, 145 h3

arg: -

4. T will ignore the semantic contribution of tense throughout the paper.

Romero 111

Let us now extend Kallmeyer-Joshi’s quantification procedure, already intensionalized, to quantification
over situations. In the same way that quantificational NPs introduce quantification over individuals, it has been
argued that modal auxiliaries, intensional adverbs and adverbs of quantification quantify over possible situations
(Kratzer 1979, 1989, von Fintel 1994). A small difference between the two quantification procedures concerns
the so called “restrictor”. The restrictor subformula for NPs —e.g., club(y,sy) in (13)-- originates from the noun
inside it, whereas the restrictor for modals is (mostly) contextually given. For example, (14) can be understood
as quantifying over deontic situations (roughly, situations where all our actual obligations are fulfilled) or over
epistemic situations (roughly, situations such that, as far as the speaker knows, could be the actual situation s).
These two readings are encoded in the Ty2 formulae (14a)-(14b) by placing the 2-place predicates Deo and Epi
--defined in (15)-- in the restrictor of the situation quantifier.

(14) John must run.
a. Vs’ [Deo(s’,sg) — run(j,s’)]
b. Vs’ [Epi(s’,sg) — run(j,s’)]

(15)a. Deo(s”,s’) =1 iff s”is a situation accessible from s’ such that all the obligations in s’ are fulfilled in s”.
b. Epi(s”,s’) =1 iff s”is a situation accessible from s’ such that, for all the speaker knows, s’ could be s”.

Following Kallmeyer-Joshi’s quantification schemata, I propose to implement quantification over situations
in LTAG as follows. The semantic contribution of the tree for run and the tree for John is given in (16)-(17).
The double semantic contribution of must under its deontic reading is provided in (18). Note that must carries
universal quantificational force, that is, the scopal part of must includes the quantifier every, this time applied to
a situation variable s’. Other items like may or perhaps, expressing existential force, would yield a comparable
double semantic value. Furthermore, note that, whereas every in (5) needs to look for its restrictor in its 01
address, I have spelled out the restrictor of must —contextually provided—directly in the predicate-argument part
of must itself, for simplicity reasons.

(16) Run:
o S ly: run(x,s”)
T arg: <x, 00>
NP} VP
|
run
(17) John: john(x)
oy I\|TP arg: -
John
(18) Must:
B g Iz every(s”’,hy,hy)
ri<h;
arg: 1
B, VP
T~ l;: Deo(s”’,s”)
must VP* L=h
arg: <s“‘, 01>

The reader may have noticed a further difference between the predicate-argument value of must in (18) and
the predicate-argument value of every in (5): must’s , has an address for one of its internal variables (namely
s”’, marked in boldface), but every’s a, does not. This difference stems from the fact that the predicate-
argument part of every will be substituted into the verb’s tree, whereas the predicate-argument part of must will
be adjoined to the verb’s tree. Now, recall that the difference between a substituted element and an adjoined
element yields the following effect in (L)TAG. The to-be-adjoined element can identify one or more of the
variables within its semantic value with the variables (of the appropriate type) provided at a given address in its
tree. But the to-be-substituted element does not have any address in its tree for the tree it is substituting into.
Hence, there is no way it can force any such variable identification. For the case at issue, this means that the
predicate-argument part of every in (5) cannot force identification of y or s ” with any variable in the tree for

112 Proceedings of TAG+6

visit. The predicate-argument part of must in (18), instead, is allowed to identify s’ with a variable provided at
the 01 address, that is, with the situation variable provided by the tree of run. This difference, as we will see, will
play a crucial role to capture the data forthcoming in section 3.

The denotations in (16)-(18) are combined following the derivation tree in (19). The result is (20).

(19) Derivation tree for (14):

(3]
e
(&%) Bi B2

1;: every(s ™, hy,hy)

] I: Deo(s ”’,s¢), lp: run(x,s”’’), john(x)
(20) [[John must run]](sp) = 1 iff L<hy, ly<h,

Vs’ [Deo(s’,sp) — run(j,s’)]

arg: -

Finally, before turning to the data in section 3, let me introduce the double semantic value of two situation
adverbs that will be needed later in the paper: probably and sometimes. The restrictor predicate for sometimes is
described in (21).

(21)Part(s”,s’) =1 iff the situation s” is part of the situation s’.

(22) Probably: I;: most(s”, by, hz)
B S* rish;
arg: 1
B> VP L Epi(s”’s”)
/\ l
h=h
probably Vp* arg: <s“‘, 01>
(23) Sometimes: I;: every(s”’,hy,hy)
B3 S* rish;
arg: 1
B4 VP Ly: Part(s ;s ")
/\ ZZ = h]
sometimes VPp* arg: <s“‘, 01>

3. An asymmetry with situation variables: NPs can be transparent or opaque, but VPs must be opaque

Take the sentence in (24) under the reading where every has scope inside the if-clause. Farkas (1997)
—among others-- notes that there is still an ambiguity, rooted on the situation variable that we assign to the
complex predicate poor child: we may be talking about the set of poor children in the hypothetical situations s’
introduced by the conditional (opaque reading), or, interestingly, we may interpret it as the set of poor children
in the actual situation s, (transparent reading). The transparent reading is particularly salient in (25), since (25)’s
opaque reading yields a contradiction in the hypothetical situations and, hence, is pragmatically odd.

(24) If you fed every poor child, I would be happy.
a. Opaque NP: In every situation s’ accessible to sq: if you fed in s’ all the poor children in s’, I am happy
ins’.

Romero 113

b. Transparent NP: In every situation s’ accessible to sy: if you fed in s’ all the people who are poor
children in the actual situation sy, I am happy in s’.

(25) If every poor child was very rich instead, I would be happy
a. # Opaque NP: In every situation s’ accessible to sy: if all the poor children in s’ are very rich in s’, [am
happy in s’.
b. Transparent NP: In every situation s’ accessible to s,: if all the people who are poor children in the
actual situation s, are very rich in s’, [am happy in s’.

The same ambiguity obtains in simpler sentences with modals and intensional adverbs. Take (26)-(27)
under the reading where the indefinite determiner scopes under the (deontic) modal must (or should). Still, the
complex predicate poor child can be interpreted with respect to the deontic situations s’ (opaque reading) or
with respect to the actual situation s, (transparent reading). Again, the transparent reading is particularly clear in
(27), since the opaque reading is pragmatically out.

(26) A poor person must / should be fed.
a. Opaque NP: In every situation s’ accessible to s, where all our obligations in s, are fulfilled: a poor
person in s’ in fed in s’.
b. Transparent NP: In every situation s’ accessible to s, where all our obligations in s, are fulfilled: a person
who is a poor person in the actual situation s, is fed in s’.

(27) A poor person must / should be rich.
a. # Opaque NP: In every situation s’ accessible to sy where all our obligations in s, are fulfilled: a poor
person in s’ is rich in s’.
b. Transparent NP: In every situation s’ accessible to s, where all our obligations in s, are fulfilled: a person
who is a poor person in the actual situation s, is rich in s’.

Percus (2000) adds the interesting observation that a transparent reading of the main predicate in the VP is
impossible. That is, even if we give the subject NP scope under the relevant intensional operator and we
interpret it opaquely (so that the intensional operator binds at least one situation variable and it does not yield
vacuous quantification), the VP predicate cannot be interpreted as transparent:

(24) If every poor child was fed, I would be happy.
c. * Transparent VP (and opaque NP): In every situation s’ accessible to sy: if all the poor children in s’ are
fed in sy, [am happy in s’.

(25) If every poor child was very rich instead, I would be happy
c. * Transparent VP (and opaque NP): In every situation s’ accessible to sy: if all the poor children in s’ are
rich in s, I am happy in s’.

(26) Some poor person must / should be fed.
c. * Transparent VP (and opaque NP): In every situation s’ accessible to s, where all our obligations in s
are fulfilled: a poor person in s’ in fed in s,.

(27) Some poor person must / should be rich.
c. * Transparent VP (and opaque NP): In every situation s’ accessible to s, where all our obligations in s
are fulfilled: a poor person in s’ in rich in s,.

The readings (24c-27c¢) are simply impossible. Let us take sentence (26) and judge it in the scenario 2.
The sentence is judged false. But the reading (26c) is true in this scenario. Since a sentence with reading (26¢)
should be judged true in the all scenarios that make the reading (26c¢) is true, and since (26) is not judged true in
one such scenario, (26) lacks the reading (26c¢).

(28) Scenario Z,4 for (26) :
In the actual situation s,, Pat, Lucy, Miguel and nobody else are fed. Our obligation (as evil witches and
wizards) is to make at least one of them (any of them) poor. There are no further obligations in s,. In
particular, there is no obligation to feed anybody.

The same reasoning applies to (27) and the scenario Z,;. Sentence (27) is false in X,;, whereas the reading
(27¢) is true in X»7. Hence, sentence (27) lacks reading (27c).

114 Proceedings of TAG+6

(29) Scenario Z,; for (27) :
In the actual situation s, Pat, Lucy, Miguel and nobody else are rich. Our obligation (as evil witches and
wizards) is to make at least one of them (any of them) poor. There are no further obligations in s,. In
particular, there is no obligation to make anybody rich.

I leave examples (24)-(25) and the construction of the relevant scenarios as an exercise for the reader.
However, before concluding this section, let me illustrate the asymmetry between the situation variables in NPs
and VPs with adverbs of quantification as well. The following example, from Percus (2000), has a transparent
NP reading ((30a)), but it lacks a transparent VP reading ((30b)). The sentence is judged true in scenario Z3p, —a
scenario that makes the transparent NP, opaque VP reading true-- but false in scenario 23, —a scenario where
the opaque NP, transparent VP reading is true.

(30) The winner sometimes lost.
a. Transparent NP, opaque VP reading: In some (relevant) situations s’ that are part of sy: the winner in s
lostins’.
b. * Opaque NP, transparent VP reading: In some (relevant) situations s’ that are part of sy: the winner in s’
lost in s,.

(31) Scenario Zs, for (30):

We are in a situation s, that contains a game among five participants. The game is such that there is exactly

one winner of the game and exactly one loser of the game. The other three participants neither win nor lose

(e.g., if the winner receives money and the loser pays, the other three participants neither receive nor pay

money). The game consists of fifteen rounds (each of which can be considered a natural sub-situation s’ of

so). Each round has exactly one winner and exactly one looser, and, as before, the other three participants of

each round neither win nor lose. The winner of the game is the person that wins more rounds, and the loser

of the game is the person who loses more rounds. (In case of tie, the relevant participants play until there is

no tie.).

a. X30,: This time, in situation sy, Sue, the winner of the game, lost rounds 2 and 3, whereas Mario, the loser
of the game, won no round at all.

b. X30: This time, in situation sj, Sue, the winner of the game, lost no round at all, whereas Mario, the loser
of the game, won rounds 6 and 9.

In sum, the question we need to answer is the following: Why is the main predicate in a VP necessarily
opaque with respect to the immediate situation operator, whereas predicates embedded in an NP can be
interpreted as opaque or transparent?

4. Capturing the asymmetry in LTAG semantics

To rephrase the question in LTAG terms, take the semantic representation in (32). Why is there a choice
between I,: poor-person(x, sy) and /,: poor-person(x, s’), whereas only the opaque situation option /;:
rich(x, s’) is available?.

(32) [[Some poor person must be rich]](sy) = 1 Ly: every(s iy, hy)
iff Vs’ [Deo(s’,s0) — I5: some(x, i3, hy)
3x [poor-person(x, s/s’) A rich(x,s’)]] 1;: Deo(s’,sp), L: rich(x, s°), I poor-child(x, sy /s”)
ZIS h], lgs hg, 145 hg, lgs h4
d (for must>>every) = arg: -

{<hg,hy>, <hy 13>, <hy,1;>, <hs,1,>}

The question is particularly puzzling for grammars where the compositional semantics is performed on the
derived tree. Take a GB Logical Form tree or an LTAG derived tree where the modal must takes scope over the
determiner some. We have assumed, as proven in Gallin (1975), that the expressive power needed to generate
intensional readings in natural language amounts to a Ty2 formal language where we have direct quantification
over situation (or world) variables. Furthermore, following Percus (2000), every predicate in a sentence is in
principle allotted its own situation variable. That yields, roughly, the syntactico-semantic representation in (33).
Note that, in the derived tree, the situation operator [[musf]] combines with the denotation of its sister as a
whole. Why should [[must]], then, make a distinction between NP situation variables and verbal situation

Romero

variables if they are all equally available within its sister’s denotation? How could we possibly account for the
fact that [[must]] will necessarily bind s in rich(x,s ”’) and will only optionally bind s " in poor-person(x,s ”)?’

(33) Some poor person must be rich.

1P
/ \
every(s’h;,hy) must IP/ VP
/ \
NP VP /‘ v
/\
some poor-person (be) rich
some(x, 3, hy) poor-person(x,s”) rich(x,s”)

If, instead, we perform the semantic computation on the LTAG derivation tree using the proposed
denotations, the asymmetry between NPs and main predicates follows straightforwardly from the way the
derivation proceeds. Take the denotations below and the derivation tree in (38):

(34) (Be) rich: ly: rich(x,s)

i /S\ arg: <x, 00>
NP| AP
=~
(be)-rich
(35) Must
1 every(s’,hy,hy)
Bl S* rr= hg
arg: r;
P2 VP I;: Deo(s’,s)
/\ lg = h]
must vp* arg: <s‘, 01>
(36) Some / A:
Bs S
I3: some(x, hz,,hy)
< hy
P arg: rp
(&%)
T~ Ly pa(x,s™)
Det N\I, 145 h3
\ arg: <p,, 01>
some

5. A reviewer suggested the possibility that situation variables are not indices generated as sister of predicates, but indices
introduced by the determiner in the NP. This way, NPs would have a free situation variable that may be optionally bound
higher up, whereas the main predicate in a VP would not have a free situation variable at any point (e.g. [[(be) rich]] would
be AxAs.rich(x,s)). However, being introduced by a determiner is neither a necessary nor a sufficient condition for an NP to
be optionally transparent. First, bare plurals can have a transparent reading, as Kratzer’s (i) illustratres. Second, NPs with a
determiner acting as main predicates in copular sentences cannot be transparent: (ii) lacks the VP transparent reading as
much as (25) and (27).

(i) Sue wanted to put belladonna berries in the salad because she mistook them for raspberries.

(i) If some poor child was the richest child instead, I would be happy.

In fact, Percus (2000), who assumes a GB Logical Form derived tree as the input to the semantics, does not capture the
binding asymmetry in the semantics. He proposes, instead, a syntactic constraint on LF, basically a Binding Theory for
situation variables.

115

116 Proceedings of TAG+6

(37) Poor-person:
o3 N qi: poor-person
| arg: -
poor-person

(38) Derivation tree for Some poor people must be rich:

a

N T

Bs B2 Bs sz

a3

In this derivation tree, §, (the semantic part of must in charge of identifying the variable s’ with another
situation variable at the address O1) applies to o;, the main predicate’s denotation, and it ensures that the two
situation variables are identified. $, never applies to the denotation o, of the NP some poor people, thus it
cannot enforce variable identification with it. In fact, given that we follow the derivation tree and not the derived
tree, B, does not even apply to a semantic object that includes the contribution of a,. That is, 3, only finds o at
the 01 address, and not oy composed with o,. Hence, the obligatory situation variable identification encoded in
the denotation (3, cannot choose a variable from o, but only from the main predicate’s denotation o; found at
the 01 address.

This way, the main predicate in Some poor people must be rich, namely rich, is necessarily opaque with
respect to must, whereas no such constraint can be imposed for the predicate poor-people buried in the NP. The
NP is, hence, free to be interpreted as transparent or as opaque with respect to the modal. If it is transparent, we
take the option of identifying its situation variable with the actual situation sy; if it is opaque, we identify it with
the situation variable s’ introduced by the modal. This derives the existing readings of the sentence represented
in (32), and it successfully excludes the non-existing ones.

To conclude this section, I will briefly consider a more complicated case involving two situation
quantifiers, about which I will tentatively make some speculations. Recall example (30), repeated below with
the added intensional adverb probably. Besides the readings discussed in section 3, Percus (2000:214ff) notes
that, in examples with two situation operators in a c-command relation, the c-commanding one necessarily binds
the second situation variable of the immediately c-commanded one. In our example (39), this means that the
second situation variable introduced by sometimes cannot be identified with the actual situation sy, but it has to
be identified with the situation variable that probably quantifies over, namely s’. This is shown in (40): the
second situation variable in /;:Part(s ”,s”) (in boldface) has to be locally bound by the quantifier most introduced
by sometimes.®

(39) The winner probably sometimes lost.

(40) [[The winner probably sometimes lost]](sp) = 1 lp: most(s’,hy,hs)
iff I,: some(s ", hs,hy)
MOST s’ [Epi(s’,s0) | 12 Epi(s’,s0), Is: Part(s”,s”), I;: lost(x, s)
[3s” [Part(s”,s’) A vy.winner(y, so/s’/#s”)=x A Is: vy.winner(y, so/s /#s ")=x
lost(x,s”)]] lishy, lysh, lz<h;s li<hy
arg: -

Using the denotations of probably and sometimes provided in (22) and (23), this result can be easily
achieved if the B, denotation of probably in (22) adjoins to the P4 denotation of sometimes in (23), and P4
adjoins to the tree for /ost. This type of dependent adjunction is defended in Vijay-Shanker 1987. The

6. The NP the winner can now be evaluated with respect to any of the tree situations sy, 5" and s”, though the last one
yields a pragmatically odd reading.

Romero

mandatory identification obtains straightforwardly. I leave to the reader the compositional semantic computation
of this example.

A second possibility, presented in Schabes-Shieber (1991), consists of performing multi-adjunction of both
adverbs at the same node of the main predicate’s tree. If this syntactic approach is pursued, both the {3,
denotation of probably and the B, denotation of sometimes apply to the meaning of /ost. The mandatory
identification of variables encoded in 3, and 3, would then yield the wrong result in (41):

117

Z()Z most(s ”,h],hg)
. . 1,: some(s ", hs,hy)
(41) MOST s” [Epi(s”,s0)] . 1;: Epi(s ”,s0), I3: Part(s”, so/s’), Iy lost(x, s”)
[3s” [Part(s”,s0/s”) A Ly.winner(y, sp/#s”)=x A Is: vy.winner(y, so/fs ”)=x
IOSt(X:S)]] l,sh,, l4sh2, lgshg, l4sh4

arg: -

This is what the wrong result consists of: the variable identification instructions in 3, and 4 force both
most and some to try to bind the same variable occurrence s ”. This is not just an empirical wrong result, but an
impossible task in Predicate Logic (PrL): one variable occurrence can only be bound by one quantifier. Hence, if
this type of multi-adjunction is pursued, perhaps it is possible to ban this result on principled logical grounds, by
appealing to a secondary variable identification procedure when the default one cannot be successfully
implemented in PrL. I leave the issue open at this point.

5. Conclusions

We have seen that situation variables in NPs and in main predicates behave asymmetrically: NPs can be
transparent and opaque with respect to the immediately c-commanding situation operator, whereas main
predicates can only be opaque. Following Kallmeyer-Joshi’s (2001) quantification procedure, I have proposed a
double semantic value for the modal mus¢, for the intensional adverb probably and for the adverb of
quantification sometimes. The asymmetry between NPs and main predicates has been shown to follow if we
apply the proposed denotations to the derivation tree.

References

Barwise, Jon and John Perry. 1983. Situations and Attitudes, Cambridge, Mass.: MIT Press.

Cresswell, M. 1990. Entities and indices, Dordrect: Kluwer.

von Fintel, Kai. 1994. Restrictions on Quantifier Domains, Amherst, Mass: GLSA.

Farkas, Donca. 1997. Evaluation indices and scope. In: A. Szabolcsi (ed.), Ways of scope taking, Drodrecht: Kluwer.

Gallin, Daniel. 1975. Intensional and Higher-Order Modal Logic: with Application to Montague Semantics, Oxford: North-
Holland.

Kallmeyer, Laura and Aravind Joshi. 2001. Factoring Predicate Argument and Scope Semantics: Underspecified Semantics
with LTAG. Penn- Univ. Paris 7 manuscript.

Joshi, Aravind. and K. Vijay-Shanker. 1999. Compositional semantics with LTAG: How much underspecification is
necessary? In: Blunt H. C. and E.G.C. Thijsse, eds., Proceedings of the third international workshop on computational
semantics, Tilburg.

Kratzer, Angelika. 1979. Conditional necessity and possibility. In: Baeuerle, Egli and von Stechow, eds., Semantics from
different points of view, Berlin: Springer.

Kratzer, Angelika. 1989. An Investigation of the Lumps of Thought. Linguistics and Philosophy 12: 607-653.

Lewis, D. 1973. Counterfactuals, Oxford: Blackwell.

Musan, R. 1995. On the temporal interpretation on noun phrases, MIT Ph. D. diss.

Percus, O. 2000. Constraints on some other variables in syntax. Natural Language Semantics 8:173-229.

Schabes, Yves and Stuart M. Shieber. 1991. An Alternative Conception of Tree-Adjoining Derivation. Computational
Linguistics 20.1: 91-124.

Stalnaker, R. 1968. A theory of conditionals. In: Rescher, ed., Studies in Logical Theory, Oxford: Blackwell.

Vijay-Shanker, K. 1987. 4 Study of Tree Adjoining Grammars, University of Pennsylvania Ph. D. dissertation.

One More Per spective on Semantic Relationsin TAG

James Rogers
Earlham College, USA

1. Introduction

It has often been noted that the derivation trees of “standard” TAG grammars for natural languages (Group,
1998) resemble semantic dependency trees (Mel’€uk, 1988). More interesting, from a formal perspective, are the
ways in which the derivation trees and the dependency trees diverge for certain problematic constructions. The
desire to fix these cases has led to a variety of proposals for modifying or extending the TAG formalism rang-
ing from Tree-Local Multi-component TAGs (TL-MCTAG) and Set-Local Multi-component TAGs (SL-MCTAG),
through reconceptualization of the adjoining operation (Schabes and Shieber, 1994), through D-Tree Grammars
(DTG) (Rambow, Vijay-Shanker and Weir, 1995) and Graph-driven Adjunction Grammar (GAG) (Candito and Ka-
hane, 1998b), through reformalization of elementary trees in terms of C-Command rather than domination (Frank,
Kulick and Vijay-Shanker, 2000), through the use of Meta-Grammars (Dras, 1999; Dras, Chiang and Schuler, To
Appear), and through interpreting the semantic relations in a predicate-argument structure derived, but distinct,
from the derivation trees (Joshi and Vijay-Shanker, 1999; Schuler, 1999). In this note, we look at some of these
problematic constructions from yet another formal perspective—a mild extension of TAGs with well-constrained
generative capacity which allows semantic dependency to be expressed as a relation orthogonal (in a quite literal
sense) to constituency and linear precedence.

We should be clear at the outset, our focus is nearly exclusively formal—we explore ways of expressing these
relationships in the extended formalism without pursuing their potential linguistic repercussions. Neither is our
account exhaustive. There are problematic constructions that have not yet yielded to this approach. Our goal is
to introduce the techniques involved, to explore their limits and, possibly, open up discussion of their linguistic
consequences.

We will look five at examples from the literature:

roasted red peppers.

Does Gabriel seem to eat gnocchi?

Does Gabriel seem to be likely to eat gnocchi?
What does Mary think that John seems to eat?

a M w DN

That Paul has to stay surprised Mary.

Again, our intent is not to offer novel linguistic analyses of these constructions—the analyses we five are taken
from that literature. Rather, we offer slightly different formal interpretations of those analyses, ones that seem to
work out without seriously distorting the original spirit of TAG.

2. Generalized Tree-Adjoining Grammar

The mechanism we employ is a form of higher-order adjunction obtained as a natural extension of the Gen-
eralized Tree-Adjoining Grammar of Rogers (Rogers, 1999). GTAG starts with an interpretation of adjunction
as concatenation of local three dimensional tree-like structures in direct analogy with the concatenation of local
(two dimensional) trees characteristic of CFGs. One consequence of this perspective is that, as with CFGs, the
derivation structures and the derived structures are the same: they are, in essence, the structures one obtains by
expanding the nodes in a standard TAG derivation tree to instances of the elementary trees they represent. A second
consequence is that it is an easy step to extend these three dimensional grammars in a way that is analogous to the
way that CFGs are extended to admit regular expressions on the rhs of productions in GPSG. Here we allow the
yields of the local three dimensional trees to form any local set. Finally, the generalization from two dimensional
grammars to three dimensional grammars suggests a natural generalization to higher dimensions. This leads to an
infinite hierarchy of grammar types (Rogers, To Appear) which are equivalent, in weak generative power, to the
grammars in Weir’s Control Language Hierarchy (Weir, 1992).

(© 2002 James Rogers. Proceedings of the Sixth I nter national Workshop on Tree Adjoining Grammar and Related Frameworks
(TAG+6), pp. 118-126. Universita di Venezia.

Rogers

119

Concatenation of four-dimensional elementary structures

IRCONIPRREE bépper
Three-dimensiona yield

Figure 1: roasted red pepper

120 Proceedings of TAG+6

We will use the four dimensional grammars, not because of their additional weak generative capacity, but,
rather, because the fourth dimension allows us to encode semantic relations independently of the relations—linear
precedence, domination, and the relation expressed in the derivation trees—already built into TAG. The funda-
mental operation of the four dimensional grammars (concatenation of local four dimensional trees) is equivalent
to adjunction of three dimensional trees. Again at this level, we can allow the yields of the local four dimensional
trees to form any local set of three dimensional trees.

3. Multiple Modifiers

The issue in (1) (Schabes and Shieber, 1994) is the multiple modifiers of pepper. In the standard TAG account
red adjoins into roasted and the derived auxiliary tree then adjoins into pepper. The correct semantic relationship,
however, is a direct relation between pepper and each of modifiers red and roasted. Schabes and Shieber (Schabes
and Shieber, 1994) suggest relaxing the notion of adjunction for modifier trees to allow both red and roasted to
adjoin into the same node of pepper. Rambow, Vijay-Shanker and Wier (Rambow, Vijay-Shanker and Weir, 1995)
employ a similar mechanism called sister adjunction. In our approach (Fig. 1), we retain the standard adjunction
of the one modifier tree into the other, but we do this in the elementary structure: the concatenation of the three-
dimensional structures representing the modifiers forms the three-dimensional yield of a single four-dimensional
local tree. This, then, adjoins as a whole into the elementary structure for pepper. The result is a local relationship,
in the fourth dimension, between each of the modifier trees and the noun tree.

4. Raising Verbs and Sub-Aux Inversion

The issue in (2) is the interaction of the raising verb and the subject-aux inversion. In standard TAG accounts
doesand seems cannot occur in the same elementary tree. This leads either to a violation of CETM (in practice) or
to a TL-MCTAG account or, in DTG, to the use of subsertion to interleave two underspecified trees. Our account
depends on reinterpreting the elementary structure of eat as a four dimensional structure in which the yield, in
effect, represents the subject as being adjoined into the root of the [y/peat].2 This allows the structure for does
seemto adjoin in the fourth dimension at that root node, in effect simultaneously adjoining (in the third dimension)
does seem into the root of [\/peat] and the subject into the root of [\/pseem]. Once again, we have a local semantic
relationship between the two elementary structures in the fourth dimension. More importantly, does and seems
inhabit the same elementary structure but, in effect, wrap around the subject in the three dimensional yield.

5. Multiple Raising Verbs

In example (3) (Frank, Kulick and Vijay-Shanker, 2000) the problem of the last example is exacerbated by
multiply nested raising verbs. Frank, Kulick and Vijay-Shanker (2000) point out that, under the usual assumption
that adjunction at the foot of a structure is prohibited, this sentence cannot be obtained from elementary structures
that observe the CETM even by TL-MCTAG.

Given our interpretation of (2), the account of (3) follows with little additional complication. The does
seem structure simply attaches to the to be likely structure which then attaches to the eat structure. Following
the three-dimensional spines in taking the three-dimensional yield, the subject ends up attaching to the root of
[vpseem]. Following the two-dimensional spines in taking the the two-dimensional yield of the result, the com-
posite [does Gabriel seem] effectively adjoins into the root of the [y/pto be likely].

1. Ininterpreting the figures, the solid lines represent adjacency in the first dimension (string adjacency), the dashed lines
represent adjacency in the second dimension (immediate domination), the dotted lines represent adjacency in the third dimen-
sion (the adjunction relationship) and the dash/dot-dot-dot lines represent adjacency in the fourth dimension. In addition, spines
are marked, in each of the second and third dimensions, by doubling the lines. (Spines are trivial in the first dimension and
irrelevant in the major dimension.) The significance of the spines is that the maximal point in the spine marks the foot of the
structure. As in standard TAG, the foot is the point at which the structure dominated by the point of adjunction is attached in
forming the (n — 1)-dimensional yield of an n-dimensional structure.

2. Since there is no identification of the root and foot nodes with the node at which they adjoin we are free to label these nodes
independently. We leave open the question of appropriate label for the root node of the eat structure. Note that the relaxation
of the requirement that the root/foot/node of adjunction bear the same label is not new here—it was effectively abandoned at
least by the introduction of FTAG. Formally, if we allow either features or adjunction constraints, the labeling constraint has no
substantive effect on the generative capacity.

Rogers 121

Concatenation of four-dimensional elementary structures N

Three-dimensional yield

Figure 2: Does Gabriel seem to eat gnocchi

122 Proceedings of TAG+6

VR -~ h
om
BN
/AN
/AN
/ AN
/ W
/ AN
A
/
/ AN /

. - \ /
7 \) ~\ /
. A\
tobelikely — VP* /
/
/
/
/
/
!
\
\\>7A
{
! - = -
\ -7 -
\ -7
. -

Concatenation of four-dimensional elementary structures

e . w seem V P*
PR LN AN W
oy AR AN

/7N)

7\ tobelikey VP*
.- V |

NP,
to eat

Three-dimensional yield

Figure 3: Does Gabriel seem to be likely to eat gnocchi

Rogers 123

6. Interaction of Bridge and Raising Verbs

The fundamental issue in example (4 (Dras, Chiang and Schuler, To Appear) is, again, the inconsistency be-
tween the relations expressed in the derivation tree of the standard TAG account and the semantic relations between
the constituent phrases. Standardly, the tree for seems adjoins into the tree for eat at the root of [\/pto eat] and the
tree for think adjoins into the eat tree at the root of [gJohn to eat]. Consequently, there is no direct relationship
between the think structure and the seem structure. Dras, Chiang and Schuler (To Appear) get the desired rela-
tionships (think—seem—eat) by using a two-level TAG in which the elementary trees of the first-level TAG are
generated by a second-level TAG.

As we note below, this approach is pretty much equivalent to adopting a fourth dimension. Working within
the current framework, this analysis turns out to be only slightly more complicated than the last. The interesting
issue here is the complementizer that which belongs in the same initial structure as seem, but which needs to be
separated from seem by the subject in the final two-dimensional structure. Here, again, we resort to attaching,
in the third-dimension, the complementizer to the root of the [seem] substructure in much the same way that we
attach the subject to the root of the VP in the main verb structure. With this configuration, the complementizer and
seem are in the same elementary structure but can be wrapped around the does Mary think structure in the same
way that John and to eat do.

Finally, note that, in this case, the root of the [y/pthink] tree already has the Mary tree attached. Rather than
pass the three-dimensional spine through that node, we pass it through the VP* node. Hence, that and John end up
following the entire yield of does Mary think rather than being embedded in the middle of it.

7. Modifiers of Sentential Subjects

The final example (5) is from Candito and Kahane (1998a). It is also treated in Schuler (1999). The standard
TAG account has have to adjoining into stay and the result substituting into surprise. But, adopting the semantic
account that it is the fact that Paul hasto stay that is surprising, we would expect to find direct semantic relations
between surprise and have to and between have to and stay. To capture this, we can let the stay structure attach
at the three-dimensional root of the has to structure and attach the has to structure at the S substitution node of
the surprise structure. When these are collapsed to three dimensions, the has to structure ends up attached at the
three-dimensional foot of the stay structure, which properly places it between Paul and stay in the two-dimensional
yield.

One of the potentially attractive aspects of this formal interpretation is that it is equally possible to attach has
to to stay (at the root of [y/pstay]) from which one obtains a reading in which it is the fact that what Paul has to do
is to stay that is surprising.

8. Conclusions and Relationship to Other Approaches

For each of the problematic constructions we started with, we have obtained structural configurations that ex-
press the intended semantic relationships directly while preserving the CETM in atomic, fully specified elementary
structures. Moreover the semantic relations are consistently expressed in one particular structural relation, that of
adjacency in the fourth dimension of our structures. While the notion of grammars over four dimensional objects
may seem conceptually obscure, one can dispell much of that obscurity if one simply considers each dimension to
represent a single type of relationship. Our structures have four dimensions solely because there are four types of
relationship we need to express.

While each of the configurations we have proposed has been tailored to the needs of the construction we
were attempting to capture, there does seem to be considerable regularity in the way the the elementary structures
are arranged. Although we have made no attempt to motivate these structures on linguistic grounds, none of them
seems completely beyond the pale. Whether the potential for overgeneration can be constrained in a principled way
remains to be seen, but the fact that, at least in one case, a potential alternation reflects a corresponding ambiguity
in the semantics is a little encouraging.

Formally, our approach is closest to that of Dras, Chiang and Schuller’s use of Multi-Level TAGs (Dras, Chiang
and Schuler, To Appear), in that both accounts employ mechanisms equivalent to the second level of Wier’s Control
Language Hierarchy. From our perspective, the structures generated by Multi-Level TAGs, in a sense, conflate
relations of different type by encoding them with the same formal relation. This leads to structures that are quite
complex and of less than ideal transparency. In clearly distinguishing the semantic relations from the syntactic

Proceedings of TAG+6

124

Figure 4: What does Mary think that John seems to eat

Rogers 125

)‘ \y s
1

- surprise’ NP\L L RN

-4

surprisé NPi

Figure 5: That Paul has to stay surprised Mary

126 Proceedings of TAG+6

ones, our approach is, perhaps, more closely related to that of Joshi and Vijay-Shanker (Joshi and Vijay-Shanker,
1999) in which semantic relations are not read directly off of the derivation trees but are rather expressed directly
in semantic structures derived from those trees. In our approach, however, we preserve the original intuition that
the structures generated by the syntactic analysis might directly express the semantic relationships.

References

Candito, Marie-Helene and Sylvain Kahane. 1998a. Can the TAG Derivation Tree Represent a Semantic Graph? An An-
swer in the Light of Meaning-Text Theory. In Fourth International Workshop on Tree Adjoining Grammars and Related
Formalisms (TAG+4), University of Pennsylvania.

Candito, Marie-Helene and Sylvain Kahane. 1998b. Defining DTG Derivations to get Semantic Graphs. In Fourth Interna-
tional Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+4), University of Pennsylvania.

Dras, Mark. 1999. A Meta-Level Grammar: Redefining Synchronous TAG for Translation and Paraphrase. In Proceedings of
the 37th Annual Meeting of the Association for Computational Linguistics (ACL’99), pages 80-87, Univ. of Maryland.

Dras, Mark, David Chiang and William Schuler. To Appear. A Multi-Level TAG Treatment of Dependency. Journal of
Language and Computation.

Frank, Robert, Seth Kulick and K. Vijay-Shanker. 2000. Monotonic C-Command: A New Perspective on Tree Adjoining
Grammar. Grammars, 3(2-3):151-173.

Group, The XTAG Research. 1998. A Lexicalized Tree Adjoining Grammar for English. Technical Report IRCS-98-18,
Institute for Research in Cognitive Science.

Joshi, Aravind K. and K. Vijay-Shanker. 1999. Compositional Semantics with Lexicalized Tree-Adjoining Grammar (LTAG):
How Much Underspecification is Necessary? In Proceedings of the 2nd International Workshop on Computational Se-
mantics.

Mel’€uk, Igor A. 1988. Dependency Syntax: Theory and Practice. SUNY Series in Linguistics. Albany, NY: State University
of New York Press.

Rambow, Owen, K. Vijay-Shanker and David Weir. 1995. D-Tree Grammars. In Proceedings of the 33rd Annual Meeting of
the Association for Computational Linguistics (ACL’'95), pages 151-158, Cambridge, MA.

Rogers, James. 1999. Generalized Tree-Adjoining Grammar. In Sxth Meeting on Mathematics of Language, pages 189-202.

Rogers, James. To Appear. wMSO Theories as Grammar Formalisms. Theoretical Computer Science.

Schabes, Yves and Stuart M. Shieber. 1994. An Alternative Conception of Tree-Adjoining Derivation. Computational Lin-
guistics, 20(1):91-124.

Schuler, William. 1999. Preserving Dependencies in Synchronous Tree Adjoining Grammars. In Proceedings of the 37th
Annual Meeting of the Association for Computational Linguistics (ACL’99), pages 88-95, Univ. of Maryland.

Weir, David J. 1992. A Geometric Hierarchy Beyond Context-Free Languages. Theoretical Computer Science, 104:235-261.

Using an Enriched TAG Derivation Structure
as Basisfor Semantics

Laura Kallmeyer
| aur a. kal | neyer @i ngui st. jussieu.fr
TALaNa-Lattice, University Paris 7, 2 place Jussieu, 75251 Paris Cedex 05, France

Abstract

Most of the proposals for semantics in the Tree Adjoining Grammar (TAG) framework suppose that the derivation
tree serves as basis for semantics. However, in some cases the derivation tree does not provide the semantic links one
needs. This paper concentrates on one of these cases, namely the analysis of quantifiers as adjuncts. The paper proposes to
enrich the TAG derivation tree and use the resulting structure as basis for semantics. This allows to deal with quantifiers,
even in PPs embedded into NPs, such that an adequate semantics with appropriate scope orders is obtained. The enriched
derivation structure allows also to treat other cases that are problematic for the assumption that a TAG semantics can be
based on the derivation tree.

1. TAG and the syntax-semantics interface
1.1. Lexicalized Tree Adjoining Grammars (LTAG)

A LTAG (Joshi and Schabes, 1997) consists of a finite set of trees (elementary trees) associated with lexical
items and of composition operations of substitution (replacing a leaf with a new tree) and adjoining (replacing an
internal node with a new tree). The elementary trees represent extended projections of lexical items and encapsulate
syntactic/semantic arguments of the lexical anchor. They are minimal in the sense that all and only the arguments
of the anchor are encapsulated, all recursion is factored away.

LTAG derivations are represented by derivation trees that record the history of how the elementary trees are
put together. A derived tree is the result of carrying out the substitutions and adjoinings. For a sample derivation
see the TAG analysis of (1) in Fig. 1. The numbers at the nodes in the derivation tree are the positions of the nodes
where the trees are added: John is substituted for the node at position (1), Mary for the node at position (22) and
always is adjoined to the node at position (2).

(1) John always loves Mary.

,/j\ derived tree:
NPJ > VP S o

A e T —] derivation tree:

! L A S Ly love

| Ny 4 John ADV VP

NP ADV VP loves ! .

\ \ | | N (Ljohn | (22)mary
John always NP always Vv NP (2)always

Mary loves Mary

Figure 1: TAG derivation for (1)

1.2. Compositional semantics with LTAG

Because of the localization of the arguments of a lexical item within elementary trees TAG derivation trees
express predicate argument dependencies. Therefore it is generally assumed that the proper way to define compo-
sitional semantics for LTAG is with respect to the derivation tree, rather than the derived tree (see e.g. Shieber and
Schabes, 1990; Candito and Kahane, 1998; Joshi and Vijay-Shanker, 1999; Kallmeyer and Joshi 1999, 2002).

The overall idea is as follows. Each elementary tree is connected with a semantic representation. The way
these semantic representations combine with each other depends on the derivation tree. Following Kallmeyer
and Joshi (1999, 2002), in this paper, we will adopt ‘flat” semantic representations as in, for example, Minimal
Recursion Semantics MRS, (Copestake et al., 1999). (2) shows the elementary semantic representations for (1).

© 2002 Laura Kallmeyer. Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and Related Frame-
works (TAG+6), pp. 127-136. Universita di Venezia.

128 Proceedings of TAG+6

Iy : love’(z1, z2) T Iy : always’(hs) ,
(2) hl Z ll m g]_ Z l2,h,2 Z S1 M
arg: — arg: —
arg: (z1, (1)), (w2, (22)) arg: gu, s1

Roughly, a semantic representation consists of a conjunctively interpreted set of formulas (typed lambda-
expressions), scope constraints and a set of argument variables. The formulas may contain labels and holes
(metavariables for propositional labels). In the following, i1, 15, . . . are propositional labels, k1, hs, .. . are propo-
sitional holes, s1, s2, ... are propositional argument variables (whose values must be propositional labels) and
g1, 92, - - - are hole variables (special argument variables whose values must be holes). Argument variables may be
linked to positions in the elementary tree, as it is the case for the variables of love.

The use of holes is motivated by the desire to generate underspecified representations (as in, e.g., Bos, 1995)
for scope ambiguities. In the end, after having constructed a semantic representation with holes and labels, disam-
biguation is done which consists of finding bijections from holes to labels that respect the scope constraints and
that are such that no label is below two labels that are siblings (e.g., this ensures that nothing can be in the restric-
tion and the body of a quantifier at the same time). In the semantic representation for love, there is for example a
hole h; above the label [; (indicated by the constraint h; > ;). Between h; and [y, other labels and holes might
come in (introduced for example by quantifiers or adverbs) or, if this is not the case, I; will be assigned to h; in
the disambiguation(s).

When combining semantic representations, values are assigned to argument variables and, roughly, the union
of the semantic representations is built. The values for the argument variables of a certain (elementary) semantic
representation must come from semantic representations that are linked to it in the derivation tree.

The linking of argument variables and syntactic positions restricts the possible values as follows: In a substi-
tution derivation step at a position p, only argument variables linked to p get values. In an adjunction step, only
argument variables that are not linked to any position can get values. In the case of a substitution, a new argument
is inserted and therefore a value is assigned to an argument variable in the old semantic representation. However,
in the case of an adjunction, a new modifier is applied and therefore a value is assigned to a variable in the semantic
representation that is added. In this sense, in a substitution step, the variable assignment is downwards whereas in
an adjunction step it is upwards.

The derivation tree in Fig. 1 indicates that the value of z; needs to come from the semantic representation of
John, the one of x5 from Mary and the values of g, and s; need to come from love. Consequently, 1 — =, 22 —
y,g1 — hy and s; — [1. As a result we obtain the semantic representation shown in (3).

I : love’(z,y), john’(z), mary’(y), l2 : always’(hs)
@) | M =2l,hi>1l,he >l

arg: —

According to (3), hy > I, Io > ho (because hy appears inside a formula labelled [5) and hy > [;. Conse-
quently h; # Iy and therefore the only possible disambiguation is h; — l2, ha — I1. This leads to the semantics
john’(z) A mary’(y) A always’(love’(z,v)).

1.3. Separating scope and predicate argument information

A central aspect of (Kallmeyer and Joshi 1999, 2002) is the idea that the contribution of a quantifier is sepa-
rated into a scope and a predicate argument part. Accordingly, quantifiers have a set of two elementary trees and
mulicomponent TAGs are used. An auxiliary tree consisting of a single node is linked to the scope part of the
semantics of the quantifier, while an initial tree is linked to the predicate argument part. E.g., consider (4).

(4) every dog barks

Fig. 2 shows the syntactic analysis of (4) in this framework. The semantic representations corresponding to
the four elementary trees are shown in (5).

li: bark’(wl) Iy : every’(w,h2,h3) I3 :pl(l') . doq’
G| Lhh s1 < hg I3 < hs u
arg: arg: s arg: py ag- —

Laura Kallmeyer 129

e derived tree:
3 NF(\VP S derivation tree:
4 | N barks
NP----—\ \ NP VP T
D{\N L ba‘rks Dm \\/ (O)every-1 (1)ev‘ery-2
evz‘ery o ’\\l | | | (2)dog
dog every dog barks
Figure 2: Syntactic analysis of (1)
/S\ derived tree: derivation
NJ VP S tree:
No-.. A \‘/ N/\VP ab?ie
T s \ ;
D(\N* fffff N ab‘oie D‘et ’T‘ Y (1)c‘h|en
cha‘que chi‘en chaque chien aboie (O)chaque

Figure 3: Syntactic analysis of (7)

The scope part of the quantifier (second representation in (5)) introduces a proposition containing the quan-
tifier, its variable and two holes for its restrictive and nuclear scope. The proposition this semantic represen-
tation is applied to (variable s1) is in the nuclear scope of the quantifier (s; < h3). The predicate argument
part (third representation in (5)) introduces a proposition p; (x) where p; will be the noun predicate dog’. This
proposition is in the restrictive scope of the quantifier (I3 < h2). The values for the argument variables are
1 — ¢,81 — l1,p1 = ¢1 which leads to (6). The only disambiguation is hy — I, ho — I3, hs — I3 which leads
to every’(z,dog’(x), bark’(z)).

Iy : bark’(z), l2 : every’(x, ha, h3), I3 : dog’(x)
®)| lh<hi,li <hsl3 < h
arg: —

To account for cases with more than one quantifier, a restricted use of multiple adjunctions is necessary.

2. Quantifiers as adjuncts
2.1. The problem

The approach of Kallmeyer and Joshi is problematic in cases where quantifiers are analyzed as adjuncts. Such
an analysis however is proposed for English in (Hockey and Mateyak, 2000) and for French in (Abeillé, 1991).
Abeillé’s proposal for French is even adopted in the French TAG implemented at the University Paris 7 (Abeillé,
Candito and Kinyon, 2000). In the following we will sketch the French quantifier analysis.

(7) chaque chien aboie

According to Abeillé (1991), in (7), the French translation of (4), the noun is first added to the verb by
substitution, and then the quantifier is adjoined to the noun (see Fig. 3). In the derivation tree, there is no link (i.e.,
no edge) between the quantifier and the verb. However, the variable introduced by the quantifier is an argument
of the verb, and, furthermore, the proposition introduced by the verb is part of the nuclear scope of the quantifier.
(This is why [; was assigned to the argument variable s; in (5).) Therefore, for semantics, a link between the
quantifier and the verb is needed.

The use of a second elementary tree for the scope part that is adjoined to the whole sentence would require
non-local MCTAG since the quantifier is not adjoined to the verb but to the noun. Non-local MCTAG is much more
powerful than TAG and a solution using TAG or a mildly context-sensitive TAG variant is preferable. Therefore |
will not adopt the idea of (Kallmeyer and Joshi, 2002) to separate the contribution of a quantifier into two parts.

130 Proceedings of TAG+6

An advantage of not doing so is that multiple adjunctions are not necessary. Multiple adjunctions are problematic
because in combination with multicomponent derivations, they extend the generative power of the grammar, and
therefore their use needs to be restricted.

2.2. Enriching the derivation tree

The syntactic analysis of (7) shows that, if one wants to retain the semantic analysis given in (5) for quantifiers,
the quantifier chaque in Fig. 3 needs to have access to both elementary semantic representations, the one of aboie
and the one of chien. This means that the derivation tree is too restrictive, it does not provide the dependency
structure one needs for semantics. On the other hand, the way syntactic elements are put together in a derivation
reflects predicate-argument relations, i.e., seems still to provide the dependencies semantics should be based on.
Therefore this paper proposes to keep the idea of using the derivation tree for semantics, but to enrich the derivation
tree in order to obtain the semantic links one needs.

The basic intuition is as follows: In Fig. 3 for example, the quantifier is adjoined to the root of the initial
tree for chien, and consequently in the derived tree it will be a direct neighbour not just of the elementary tree for
chien but also of the one for aboie (see Fig. 4 where the elementary tree of the quantifier is marked by a triangle).
Therefore there is a syntactic link between the quantifier and the verb and this should enable the quantifier to have
semantic access to the verb. For this reason, in the case of an adjunction at a root node of some elementary -, the
adjoined tree is not only connected to - but also to the tree to which - was added in some previous derivation step.
The enriched derivation structure used for semantics is called e-derivation structure for short. The e-derivation
structure of (7) is shown in Fig. 4, the additional link, i.e., the one that does not be part of the derivtaion tree, is
depicted as a dotted edge.

derived tree: S
e-derivation
N~ VP structure:
\ aboie -+ _
Det N Vv \ »
\ \ (L)chien
.~ chague N aboie |]
””””””””” - (0)chaque --
chien

Figure 4: Derived tree and e-derivation structure of (7)

In a feature-structure based TAG (FTAG, (Vijay-Shanker and Joshi, 1988)), the additional connection between
the qunatifier and the verb is even more obvious, since a unification of feature structures from all three trees (here
aboie, chaque and chien) takes place. See Fig. 5 for a general FTAG derivation sequence of substitution and
adjunction at the root of the tree that was added by substitution. In the derived tree, the root of the adjoined
tree carries a top feature structure that results from unifying feature structures from all three trees involved in
this derivation. In this sense, the links in a e-derivation structure reflect unifications of feature structures between
elementary trees.

This feature-structure view is related to the question whether in the derived tree in Fig. 4, it is appropriate to
consider the upper N node as being part of just the elementary tree of the quantifier, as done in standard TAG,
instead of considering it as a node shared between the three elementary trees. | will not further pursue this question
in this paper.

As mentioned above, trees that are neighbours of each other in the derived tree, should be related in the
e-derivation structure. However, it is not just neighbourhood in the derived tree that determines whether two
elementary trees are linked in the e-derivation structure. If this was the case, such a link (for example the one
between chien and aboie) would be destroyed when adjoining at the root of the lower tree. Consequently, the
e-derivation structure would not be monotonic with respect to derivation. Since semantics will be defined based on
this structure, non-monotonicity is something one definitely wants to avoid.

Therefore | propose the following definition of e-derivation structure: all edges occurring in the derivation
structure are also e-derivation links. Furthermore, two nodes labelled + and g are linked if in the derivation tree
there are nodes v/, A1, - - ., B, such that 4' is daughter of v, 3; daughter of 4’ with position 0 (adjunction at the
root of v'), B;+1 is daughter of 8; with position 0 (1 < ¢ < n) and 8,, = 8. (The definition applies to the derivation

Laura Kallmeyer 131

S

[tOUtIUt,]

AN oLk] g
|l N T

A !
¥ t t
N 4] [Hus,]

AN

Figure 5: E-derivation structure reflects unifications of feature structures between elementary trees

3

of (7) with «y being the elementary tree of aboie, 4’ being the elementary tree of chien and 8; = 8,, = 3 being the
one of chaque.) Fig. 6 sketches the general definition of the e-derivation structure.

Figure 6: E-derivation structure

Two kinds of edges are distinguished in e-derivation structures: edges belonging also to the derivation tree are
called primary edges whereas edges that do not belong to the derivation tree are called secondary edges. We will
see that this is a useful distinction, since primary edges seem to be stronger with respect to semantics.

The e-derivation structure is a graph, not necessarily a tree. This is one of the differences compared to the
meta-level derivation structure proposed in (Dras, Chiang and Schuler, 2000) that is also intended to represent a
“more semantic” dependency structure than the original derivation tree.

It is important to emphasize that the e-derivation structure is a way of making information about shared nodes
(or in an FTAG shared feature structures) explicit that is already present in the original derivation tree. In this sense
a semantics based on the e-derivation structure is still a semantics based only on the derivation tree.

For the semantics of (7), the representations in (8) are used. These are more or less the same as in (Kallmeyer
and Joshi, 2002), except that the quantifier contribution is not separated into two parts.

I : aboire’(z1) || Iy : chaque’(z, ha, h3), I3 : p1(z) - chien’
@ hh s1 < hs, I3 < hy 6117
arg: (z1, (1)) arg: s1,p1 ag- —

I will keep the idea that in case of a substitution, the variable assignment is downwards while in case of
an adjunction it is upwards. An argument variable linked to a substitution position p receives its value from an
elementary tree below or equal to the tree substituted at position p. A variable that is not linked to a substitution
position and that belongs to a tree that is added by adjunction receives its value from some tree above the adjoined
tree. Here, ‘below’ and ‘above’ refer to the derivation tree, i.e., the primary edges in the e-derivation structure.

According to the e-derivation structure of (7), the only possible assignment for the argument variables is
1 — ¢, 81 — l1,p1 = g1 which leads to (9).

l; : aboire’(z), ls : chaque’(x, ha, h3), I3 : chien’(z)
Q)| lh<hyly <hslz3 < hy
arg: —

132 Proceedings of TAG+6

N----__ e-derivation structure:
S —
o Det N collectionne ------___
Ny VP | . e
A T tous les ! (L)Pierre (22)timbres ~~,
1 \% NJ N+ ' s \ o
N | A AN (0)de --==="__
| collectionne . - _-N* PP AN
Pierre 'TI‘ prﬁ 1 (O)tous les (22)pays africain
timbres \ A |
de Oyun -----
N-----------2-» N
— e L
D‘et N*---" pays africain
un

Figure 7: Syntactic analysis and e-derivation structure of (10)

3. Quantifiers embedded into NPs

One of the first questions to be considered is whether the analysis proposed above allows quantifiers embedded
into NPs to have wide scope. Consider (10) and (11).

(10) Pierre collectionne tous les timbres d’un pays africain
‘Pierre collects every stamp of an African country’

(11) Pierre connait tous les détenteurs d’un prix
‘Pierre knows every winner of a price’

Both sentences are ambiguous with respect to quantifier scope: the two meanings of (10) are that Pierre
collects either 1) all the stamps coming from African countries (wide scope of tous les timbres) or 2) the stamps
of a single specific African country (wide scope of un pays africain). The two meanings of (11) are that either
1) Pierre knows everybody who obtained some price (wide scope of tous les détenteurs) or 2) there is a specific
price such that Pierre knows everybody who obtained that price (wide scope of un prix). An adequate semantic
analysis should allow for both scope orders, if possible they should be represented in one underspecified semantic
representation.

There is a crucial difference between (10) and (11). In (10) the embedded PP is not an argument and therefore,
in the FTAG analysis, it is adjoined to the noun of the higher NP, whereas in (11) the PP d’un prix is an argument
of the noun détenteur and therefore it is added by substitution. In the following, | will consider in detail the two
syntactic and semantic analyses.

3.1. PPs as noun adjuncts

For (10), the elementary trees and the way they are put together is shown in Fig. 7 (leaving aside the decompo-
sition of pays africain). Asit s traditionally done in TAG, | suppose NA conditions for foot nodes. The elementary
trees shown in Fig. 7 allow a second analysis, namely adjoining tous les at the root of timbres and then adjoining de
at the root of tous les. This would lead to another derived and another derivation tree but the e-derivation structure
would be the same, except for the distinction between primary and secondary edges. However, the use of adequate
features can block this second derivation. This is for example done in the French TAG Grammar (Abeillé, Candito
and Kinyon, 2000). Therefore, in the following, | will only consider the analysis in Fig. 7.

The semantic analysis that | propose in the following is such that the scope of a quantifier is not restricted by
something higher in the scope order and therefore, in the case of (10), un can rise and get scope over tous les. The
semantic representations for the elementary trees in Fig. 7 are shown in Fig. 12. The ones for collectionne, Pierre,
timbres, tous les, pays africain and un follow the proposals made in Section 2.2. The semantic representation

1. Interestingly, quantifiers in adjunct PPs seem to have a stronger preference for wide scope than quantifiers in argument
PPs. I would like to pursue the issue of scope preferences in future work, but in this paper this is left aside.

Laura Kallmeyer 133

pierre’(x) I : un’(z, ’%5, hﬁ) ho h\l l3 : tous Ies’(y,ﬁg, h/)4)

l;: pays africain’(z) l4/:_t_imbre’(y) A [lz :de’(y, 2)] 11 : collectionner’(z,y)
Figure 8: Graphical representation of the scope constraints for (10)
of de is such that it takes a predicate p;, in this case timbre’, and modifies it such that timbre’ is replaced by

Auftimbre’(u) A [l2 : de’(u, z3)]]. The propositional label I is needed in order to make de’(u, 23) accessable for
quantifiers. When adding un, [is assigned to ss.

Iy : collectionner’(xy, x2)
hi<h

arg. <$17 1)7 <:I"27 22>
l3 : tous Ies’(y,h3,h4), l4 :p2(y) . Afrinain? l5 : un’(z, h5,h6), l6 :p3(z)
81 < ha,lys < hs g3 : pays-africain 83 < he, lg < hs

arg. —
arg: si,p2 g arg: sz, p3

@2 = Aulpr(u) A [lz : de’(u, 23)]]
la < hs

arg: p1, (x3,22)

pierre’(z) || g1 : timbre’
arg: — arg: —

(12)

Taking the semantic representations from (12) and the e-derivation structure from Fig. 7, the semantic assign-
ments when building a semantic representation of (10) are as follows:

For z1, 22 and x3 free individual variables that are not argument variables must be found. The value of x; has
to come from something (below the tree) substituted at position (1), therefore z; — x. The value of x5 has to come
from some tree that is (below the tree) substituted at position (22) and that is linked to collectionne. Consequently,
it has to come from timbres, de or tous les. The only possibility is o — y. For x3, the value needs to come from
one of the elementary trees added below the position (22) to the elementary tree of de, i.e. the value is taken from
pays africain or un. Consequently, z3 — z.

For p1, since it is not linked to a substitution position, one needs to find a unary predicate label or free variable
in one of the elementary representations already present when adjoining the elementary tree of de, i.e., a value
coming from timbres or collectionne. The only possibility is p1 — ¢1. The values of s, and p3 come from de or
pays africain. Consequently sy — Is and p3 — g2 Ofr p3 — g3. With so — I3, p3 — ¢ is not possible. Otherwise,
I would be in the restriction of un’ (ks > Ig > I3) and in its body (Io < hg). This is a contradiction to the
definition of well-formed semantic representations. Therefore p; — gs.

The values for s; and p, must be taken from de, timbres or collectionne. For s; we get two possibilities, I; or
I, and for py possible values are ¢; or ¢».

For pa, p2 — go is preferable because p» — ¢1 would mean that we first have to do this assignment, i.e. to
produce Iy : (g1 : timbre’)(y) and then to perform p; — ¢i, i.e., to produce I : timbre’(y) A [l2 : de’(y, 2)]
because this last makes ¢, disappear (see the definition of semantic composition in (Kallmeyer and Joshi, 2002)).
On the other hand, with p, — g2, the order in which the semantic representations are put together, does not matter.
Therefore the last assignment is preferable and | propose to adopt the rule that, in case of two possibilities where
just one corresponds to a primary edge in the e-derivation structure (in this case the one between tous les and de,
i.e., p2 = ¢o2), this last one is chosen.

For s1, s1 — I is excluded because it would lead to a contradiction: it would lead to the constraints Iy < hy
and 4 < hz. With Iy <[4 (because the proposition labeled I, is embedded in the one labeled 4, this gives Is < hy
and Iy < hgs, i.e. I3 is in the restriction and the body of tous les’. Therefore s; — ;.

The semantic representation one obtains is (13):

Iy : collectionner’(z, y), pierre’(z), I3 : tous les’(y, hs, hy),

g : (g2 : Auftimbre’(u) A [l : de’(u, 2)]])(v), Is : un’(z, hs, he), s : (g3 : pays africain”) (z)
li <hyla <hgly <hygly <hsly < hg lg < hs

arg: —

(13)

134 Proceedings of TAG+6

S

>
NJ VP

A‘ /\

! v NJ

N A e-derivation structure:
N connait connait

Pierre ;
___._.-—-—----N
N€==222777" T (1)Pierre . (22)détenteur --__

T e Det N* -
N PP | ! {

\ T~ tousles (O)tous les (22)prix

détenteurs Prep NJ ,
\ A o J
de ! (O)un ---
N---------- N

/\ ,/ ‘
Det N*-- prix

u‘n

Figure 9: Syntactic analysis of (11)

The scope constraints in (13) are depicted in Fig. 8. As one can see, there is no constraint restricting the order
of I5 and I3. The only restrictions we have are that, if tous les is in the scope of un, it must be in its body, and if un
is in the scope of tous les, it must be in its restriction. This follows from the constraints involving I, and I4.

h4—>l1 h5—)l6 he—)l4 h4_>l1 h5_)l6 h6_>l3

(14) & : {

hi =13 hy—1ly hy =5 5 _{h1—>l5 hy =1y hy =14
) 2 -

The two disambiguations corresponding to the two scope orders are shown in (14). é; corresponds to wide
scope of tous les” and §, to wide scope of un’. These are the only two disambiguations for (13).

3.2. PPs as arguments of NPs

The case of the PP being an argument of the noun, as in (11), is actually the simpler case of the two construc-
tions with PPs embedded into NPs. There is no extra elementary tree for the preposition. Instead the preposition
is treated as semantically void and it is part of the elementary tree of the noun that selects for the PP, in this case
détenteur. Furthermore, this elementary tree contains a substitution node for the embedded noun, its argument.
The syntactic analysis and the e-derivation structure for (11) is shown in Fig. 9.

The semantic representations for (11), shown in (15), are more or less the same as for (10), except for the one
for détenteur. This semantic representation gives the predicate used as argument of tous les and, at the same time,
contains the proposition that is argument of un.

Iy : connaitre’(x1, x2) ., q1 : \ufly : détenteur-de’(u, z3)]
h<h _piene’(@ || g, < h,
arg: (wr, 1), (22,22) |20~ || "arg: (25, 22)

(15)
l3 : tous Ies’(y,h3,h4), Iy :pl(y) . prix’ l5 : Un’(z,hf;,he), lﬁ :pz(z)
51 < hg, 1y < hg qzi s2 < hg, lg < hs
arg: si, p1 ag- - arg: sz, pa

For the same reasons as in (10), we get the following assignments: z; — x, z2 — y, 3 — 2, p1 — g1 and
s1 = l1. For s2, so — I is the only possibility, and for p2, p» — g= is chosen, it follows not only the primary
edge but it is even the only possibility because po» — ¢; would lead to Io < hg and I, < hs which contradicts the
separation of restriction and body of a quantifier. The semantic representation in (16) is obtained for (11).

Laura Kallmeyer 135

Iy : connaitre’(x, y), pierre’(z), I3 : tous les’(y, hs, hs),

Iy : (q1 : Aully : détenteur-de’(u, 2)]])(y) Is : un’(z, hs, he), ls : (ga : prix’)(z)
li <hg, Iy <holy Shy,ly <hgly < hg lg < hs

arg: —

(16)

(16) corresponds to the semantic representation of (10), in particular the constraints for quantifier scope are
the same. Consequently, as in the case of (10), the two scope orders of the quantifiers are both possible.

As we have seen, the approach proposed in this paper correctly allows quantifiers in embedded PPs to take
wide scope. Furthermore, for cases of scope ambiguities, it even allows to generate appropriate underspecified
representations.

4. Unbounded dependencies in embedded interrogatives

The problem this paper concentrates on are quantifiers and their analysis in TAG. However, the enriching of
the derivation tree proposed above is also useful for other problems one encounters when doing semantics with
TAG. One often mentioned problem are unbounded dependencies in embedded interrogatives as in (17).

(17) Mary wondered who Peter thought John said Bill liked

An adequate semantics for (17) should have the following structure:
(18) wonder’(mary’,who’(z, think’(peter’, say’(john’, like’ (bill’, 2))))).

The embedding of think’(...) into who’(z, . ..) is a scope relation while the other embeddings are predicate
argument relations. Both should be part of an adequate semantic representation and | expect the structure underly-
ing semantics to provide all the links necessary for scope and for the predicate argument structure. (In the case of
scope ambiguities, scope can of course be partly unspecified.)

In order to obtain the relation between think’ and who’, think must be connected either to who or to like (if
the semantic representation of like contains a part that corresponds to its ‘moved” wh-part). Fig. 10 shows the
classical TAG analysis of (17), following (Kroch, 1987). The derivation tree does not contain the necessary links.
The e-derivation structure however provides an additional link between like and say. Based on this structure it is
possible to build an appropriate semantics for such cases.

S------- e §
—_— —_—
NP VP .- WH__.----»S derivati
N\ e 1 —_— - .
v 5 NP VP e-derivation structure:
\ ' | PN like ----__
wondered ___--------+S§ ! liked
. ;g — T \ ‘\\
S NP VP (O)wonder (L)who (2)say -
NP VP v s \ |
—_—\ | - ’
Y S* Sald (O)thlnk -7
thought

Figure 10: TAG derivation and e-derivation structure for (17)

5. Related work

An approach that also defines an additional structure related to the derivation tree in order to solve the problems
one accounts with a semantics directly based on the derivation tree is (Dras, Chiang and Schuler, 2000). Dras
et al. view the derivation tree as a tree derived by a meta-level TAG and the derivation trees provided by this
second TAG are the structures they use for semantics. An obvious advantage of our approach is that it is less
complex. Starting from the derivation tree it is easy to obtain the e-derivation structure. Furthermore, the e-
derivation structure is a natural extension in the sense that it just makes things explicit that are already present in
the derivation tree.

136 Proceedings of TAG+6

Frank and van Genabith (2001) propose to define TAG semantics based on the derived tree in order to solve
the problems mentioned in this paper. However, they make use not only of the information available in the derived
tree but also of information about how the elementary trees were put together, i.e., of the derivation tree. Compared
to this, the advantage of the approach proposed here is that semantics is based only on the enriched derivation tree
and does not need to go back and to use both, the derived tree and the derivation tree.

6. Conclusion

I have shown in this paper that, in spite of some mismatches between TAG derivation trees and dependency
structures, it is possible to build a semantics in the TAG framework based on the derivation trees. The key idea is
that I am enriching the derivation tree by making links between elementary trees explicit that are already present
in the derivation and that can be read off the derivation tree. This enriched structure called e-derivation structure
is used as basis for semantics. This approach allows to account for the semantics of quantifiers even if a syntac-
tic analysis is assumed that treats quantifiers as noun adjuncts. | have shown that the semantics proposed here
correctly allows quantifiers embedded into NPs to take wide scope. Furthermore, the e-derivation structure also
allows to deal with other phenomena that are problematic for the assumption that derivation trees provide the right
dependency structure to use for semantics, such as unbounded dependencies in embedded interrogatives.

References

Abeillé, Anne. 1991. Une grammaire lexicalisée d’arbres adjoints pour le francais: application a I’analyse automatique.
Ph.D. thesis, Université Paris 7.

Abeillé, Anne, Marie-Héléne Candito and Alexandra Kinyon. 2000. The current status of FTAG. In Proceedings of TAG+5,
pages 11-18, Paris.

Bos, Johan. 1995. Predicate Logic Unplugged. In Paul Dekker and Martin Stokhof, editors, Proceedings of the 10th Amsterdam
Colloquium, pages 133-142.

Candito, Marie-Héléne and Sylvain Kahane. 1998. Can the TAG Derivation Tree represent a Semantic Graph? An An-
swer in the Light of Meaning-Text Theory. In Fourth International Workshop on Tree Adjoining Grammars and Related
Frameworks, IRCS Report 98-12, pages 25-28, University of Pennsylvania, Philadelphia.

Copestake, Ann, Dan Flickinger, Ivan A. Sag and Carl Pollard. 1999. Minimal Recursion Semantics. An Introduction.
Manuscript, Stanford University.

Dras, Mark, David Chiang and William Schuler. 2000. A Multi-Level TAG Approach to Dependency. In Proceedings of the
Workshop on Linguistic Theory and Grammar Implementation, ESSLLI 2000, pages 33-46, Birmingham, August.

Frank, Anette and Josef van Genabith. 2001. GlueTag. Linear Logic based Semantics for LTAG — and what it teaches us about
LFG and LTAG. In Miriam Butt and Fracy Holloway King, editors, Proceedings of the LFG01 Conference, Hong Kong.

Hockey, Beth Ann and Heather Mateyak. 2000. Determining Determiner Sequencing: A Syntactic Analysis for English. In
Anne Abeillé and Owen Rambow, editors, Tree Adjoining Grammars: Formalisms, Linguistic Analyses and Processing.
CSLI, pages 221-249.

Joshi, Aravind K. and Yves Schabes. 1997. Tree-Adjoning Grammars. In G. Rozenberg and A. Salomaa, editors, Handbook
of Formal Languages. Springer, Berlin, pages 69-123.

Joshi, Aravind K. and K. Vijay-Shanker. 1999. Compositional Semantics with Lexicalized Tree-Adjoining Grammar (LTAG):
How Much Underspecification is Necessary? In H. C. Blunt and E. G. C. Thijsse, editors, Proceedings ot the Third
International Workshop on Computational Semantics (IWCS-3), pages 131-145, Tilburg.

Kallmeyer, Laura and Aravind K. Joshi. 1999. Factoring Predicate Argument and Scope Semantics: Underspecified Semantics
with LTAG. In Paul Dekker, editor, 12th Amsterdam Colloquium. Proceedings, pages 169-174, Amsterdam, December.

Kallmeyer, Laura and Aravind K. Joshi. 2002. Factoring Predicate Argument and Scope Semantics: Underspecified Semantics
with LTAG. Journal of Language and Computation. To appear.

Kroch, Anthony S. 1987. Unbounded dependencies and subjacency in a Tree Adjoining Grammar. In A. Manaster-Ramer,
editor, Mathematics of Language. John Benjamins, Amsterdam, pages 143-172.

Shieber, Stuart M. and Yves Schabes. 1990. Synchronous Tree-Adjoining Grammars. In Proceedings of COLING, pages
253-258.

Vijay-Shanker, K. and Aravind K. Joshi. 1988. Feature Structures Based Tree Adjoining Grammar. In Proceedings of COL-
ING, pages 714-719, Budapest.

A Proof System for Tree Adjoining Grammars
Adi Palm

University of Passau

1. Introduction

Many TAG-based systems employ a particular tree adjoining grammar to generate the intended structures of
the set of sentences they aim to describe. However, in most cases, the underlying set of elementary trees is more
or less hand-made or maybe derived from a given tree data-base. We present a formal framework that allow to
specify tree adjoining grammars by logical formulae. Based on this formalism we can check whether a given
specification is TAG-consistent or whether a given TAG meets some particular properties. In addition, we sketch
a method that generates a TAG from a given logical specification. As formal foundation, we employ a particular
version of modal hybrid logic to specify the properties of T/D-trees. Such trees structurally combine a derived
TAG-treeT" and its associated derivation trée Finally, we sketch a labeled tableau calculus that constructs a
set of tree automata representing the elementary trees of the specified TAG and a special tree automaton for the
corresponding derivation trees.

In literature, we find some approaches specifying TAGs, or more generally, mildly context-sensitive grammar
formalisms, that gradually vary in their underlying framework. Commonly, either starts with a logical description
of recognizable sets of trees (Thatcher and Wright, 1968). However, they differ in their method of leaving the
context-free paradigm. The approach mentioned in (Morawietz amhih, 2001) and (Michaelis, &hnich and
Morawietz, 2000) uses a ‘lifting’ function that encodes a TAG into a regular tree grammar. In (Rogers, 1999) (and
related works) we find a logical description of TAGs that is based on a 3-dimensional view of trees. The important
issue of this approach is to combine the derived TAG-tree and its derivation tree to a single 3-dimensional structure.

Similarly, we also consider the derived TAG-tree and its derivation tree employ so-called T/D-trees. However
we only associate the nodes of the derived tree with the corresponding node in the derivation tree. Consequently,
all nodes of the same instance of an elementary tree refer to the same corresponding node in the derived tree.
Therefore, we can specify structural properties of the derived TAG-tree and of the derivation tree at the same time.
Using the links to the derivation tree, we can identify nodes in the TAG tree that belong to the same instance of
some elementary tree. In contrast to the other approaches mentioned above which encode the TAG-tree into other
kind of structures, we keep the original derived TAG tree as a structural unit. Consequently, we can directly access
the nodes and the structural properties of the TAG tree without employing a particular projection function or any
other special coding issues.

In essence, our formalism employs modal hybrid logic that combines the simplicity of modal logic and the
expressivity of classical logic. The use of so-called nominals in hybrid logic offer explicit references to certain tree
nodes which is (directly) possible in modal approaches. We introduce the hybrid language that specifies
properties of the combined structure of derived TAG-trees and their derivation trees. Using this language we
specify a number of TAG axioms which establish a notion of TAG-consistency. Further, we briefly illustrate a
formalism that constructs a number of tree automata representing the underlying TAG for a given TAG-consistent
HL74c formula.

2. A Hybrid Language for TAGs and their Derivations

Our formalism considers pairs of trees called T/D-trees as introduced in (Palm, 2000)Whegreesents a
derived TAG-tree and denotes the corresponding derivation tree. In general, a derived TAG tre@, V;) is
made up of &:;-tree domairnt C{1,..., k;}* for k; > 0 and a labeling functio;: ¢ — Pow(P;) decorating tree
nodes with a set of propositions . The set of propositiong; () of some node: may be viewed as the label
of n. Likewise, a derivation tre® = (d, V) is made up of &,-tree domain C {1, ..., kq}* for somek,; > 0
and a labeling functio;: d — Pow(P;). In addition, each T/D-tree includes the total linking functiort — d
that associates each node in the derived TAG Tredth the corresponding instance of its elementary tree in the
derivation treeD.

*

An extended version can be foundhtp://www.phil.uni-passau.de/linguistik/palm/papers/

(© 2002 Adi Palm. Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and Related Frameworks
(TAG+6), pp. 137-144. Univers# di Venezia.

138 Proceedings of TAG+6

S
A

B T1 RS
A B
61 /62 8]

Figure 1: Sample TAG with the initial tre@ and two auxiliary treeg; ands

S

Figure 2: Resulting T/D-tree after adjoinifty and3; in «

The correspondence between either trees works straightforwardly. By thE treerepresented the derived
TAG tree which results from an initial tree after adjoining and substituting auxiliary trees. By the derivatidn tree
we graphically represent these operations. Each children position of some mode represents a certain place
of adjunction (or substitution) in the elementary tree represented [Bor instance, in Figure 1, the elementary
tree« includes two nodes where we can adjoin another tree; we uniguely associate these nodes with the numbers
1 and 2, respectively . Now if we adjoj#y at the second node, this instancesefin the derivation tree becomes
the second chilck.2 of the noden representing the corresponding instanceOnce we adjoined the treg at
the first positiony obtains its first childh.1 representing this instance gf. Obviously, we associated each node
of the corresponding instances @f 5; and 3, in the derived TAG-tree with the nodes n.1 andn.2 in the
derivation tree, respectively. Figure 2 shows the resulting T/D-tree. Note that for our formalism we assume that
we can only adjoin at the inner nodes of an elementary tree, i.e. there is no adjunction at the root or at some leaves.
This restriction ensures that the parent of the root and the children of the foot are nodes of the tree at which the
adjunction took place.

For the formal foundation of our TAG-specification language we employ hybrid modal logic HL (Blackburn
and Tzakova, 1998), (Blackburn and Tzakova, 1999), (Blackburn, 2000a; Blackburn, 2000b). This formalism ex-
tends modal (or temporal) logic with particular propositions called nominals which enable references to particular
nodes (or terms) in a model. Further, there is an implemented tableau-based prover (Blackburn, Burchard and
Walter, 2001) which is partially based on (Tzakova, 1999). Compared with classical logic we prefer modal and
hybrid approaches since they allow more compact proofs and specifications.

In essence, we employ a modal logic on trees where the reflexive dominance relation denotes the modal
reachability relation. We enhance this language by the next opevata@ferring to the--th child of a node, by the
link operatorQ referring to the associated node in the derivation tree. For the hybrid formulae we include the jump
operator:: ¢ and nominal propositionswith i € Nom where Nom is an enumerable set of nominal symbols.
Further, the language depends on the finite sets of constant propogttioasd P, and on the set of nominal

Palm 139

symbolsNom. Altogether, we obtain the hybrid languagé s (P;, P4, Nom) which is defined as:

o = plilitp| e[Ap[Orp| Ol Qp

wherel <r <k (with & = maxz{ki, kq}), p € P, U P4 denotes a propositional constant arel\,» a nominal.
Further, we can define the operators—, < andd in the standard way. In addition, we define tlextoperator
referring to some child bypy = O190 V... V Ogp and its dual universal counterpart Byy = -O-p.

For the semantics of hybrid logic, we consider, in general, Kripke-structures which are, for the eldseof
T/D-trees. Besides the structural information a T/D-tree associates each tree node of either tree with sets of constant
propositions fromPr andPp, respectively. In addition, we require a nominal denotation funcgioom —

(t U d) evaluating the nominals. We interpret a givehrag (P, Py, Nom) formulap at some node € Ud of
a treeT'/ D for a nominal denotation functiogt Nom — ¢ U d whereg is only necessary for formulae including
nominals. For the node we assume that we know whether it is a memberafd.

T/D,nkEp iff neVilp)UVy(p),forpe PrUPp
T/D,n k= —p iff 7T/D,nlEe
T/D,nl=pAy iff T/D,nk=pand
T/D,n =1
T/D,nk=Opp iff T/D,nrE e, 1<r<kwherek = max{k, kq}
T/D,nE <p iff T/D,n.a = pforsomeac{l,... k}* wherek = max{k:, kq}
T/D,n = Qp iff T/D,7(n)E=e

A T/D-tree satisfies the formula if ¢ holds for the root off". The link operatof is self-dual, i.eQp = =Q-p.
For the nominal expressions, we define the semantics as follows:

T/D,n.gl=i iff g(n)=1
T/D,n,g=ip iff T/D,n.gk¢
andg(n’) =1

A nominal uniquely denotes a certain tree node where we do not explicitly distinguish the elem&rasaD.
The statement is true if and only if the nominal denotes the node under consideration. In contrast,jnve
refer to the node denoted hywhich does not depend on the node considered currently. We say a T/DAfee
satisfies the (nominal) formula at the noden € ¢t U d, writtenT/D,n = ¢, if there is a nominal denotation
g:Nom — (tUd) such thatl'/D,n,g | ¢ is true. Similarly,T/D satisfiesp, writtenT'/D = ¢ if there is a
nominal denotatioy such thafl’/ D, root;, g = » whereroot; denotes the root of the derived TAG trée Hence
T/D [¢ A Oy states thatr must apply to all nodes of the derived TAG tr&&,D | Q states thap applies
to the root of the derivation tree affd/ D = Q(p A Oyp) states thap applies to all nodes of the derivation tree.
Finally, aHL 14 formulay is satisfiable if and only if there is'/B/ D — tree and a nominal denotatignsuch that
o satisfiesI'/ D by g.

Note that employing nominal propositions increases the expressivity of the former language. For instance, we
can define the until-operator “untf is truev must apply” or the unique existence operatarp, which are not
expressible in ordinary modal logic (Blackburn and Tzakova, 1999).

until(p,) = O(pAi) ADO(CT —)
O1p O(iNp) ND(p — 1)

In the first case we search a descendant node that satisdied mark this node by the nominalThen each
descendant node that dominatds an intermediate node that must satigfy Similarly, we specify the unique
existence operator. Again we search a descendant node that satesfiemploy the nominalin order to identify
this node. Now all descendants that mgethust also meet In general, by introducing nominal propositions, we
can extend the expressivity of the underlying formalism. As shown in (Blackburn and Seligman, 1995; Blackburn
and Seligman, 1997) hybrid logic is stronger than propositional modal logic. For instance, we can formulate the

140 Proceedings of TAG+6

\/\g

N mi1 = Mo

No

Figure 3: T/D-treen; andn, are internal nodes of the same elementary represented landms.

until operator, or by A O0—i we can demand that the underlying modal reachability relation is irreflexive. Either of
these properties fails to be expressible by means of propositional modal logic. On the other hand, we can specify
the standard translation from hybrid logic to classical first-order logic. Therefore hybrid logic cannot be stronger
than first-order logic. Moreover, as shown in (Schlingloff, 1992; Palm, 1997) the expressive power of the first-order
logic for trees and the temporal logic for trees is identical. Since we can formulate the until-operator by means
of hybrid logic, we obviously reach the expressivity of the temporal logic and the first logic on trees. However,
the more crucial aspect of our formalism is the link oper&towhich allows to identify particular sets of tree

nodes in the derived tree by referring to the same node in the derivation tree. Consetillentdydescribes first-

order definable sets of derivation trees; the expressivity for the derived tree obviously depends on the properties of
linking functionr. Next we discuss some restrictions-oteading to tree adjoining grammars.

3. TAG Axioms for HL 745

Obviously, by the languadél -4 we can describe derived TAG trees and their corresponding derivation trees
in an appropriate manner. However, so far it is unclear, what the necessary propertiédotrae are in order to
describe valid TAG-trees and their derivations. Likewise, we want to know whether aldiver, formulay is
TAG-satisfiable, i.e. whether the setBf D satisfyingy represents a certain TAG. The answer to either question
is the set of TAG axioms for the languabg 4. Hence, a T/D-tree would be TAG generated if and only if it
meets these axioms, andth 4 -formula ¢ is TAG-satisfiable if and only if it is consistent with these axioms,

i.e. p and the axioms are satisfiable.

Before we turn to the axioms in detail, we examine the construction and the structural properties of a T/D-tree
by a given TAG derivation. For simplification purposes we put some restriction on the kind of TAGs considered
here. At first, we restrict our formalism to the adjunction operation and ignore substitution. Nevertheless it is
possible to simulate a substitution by an adjunction. Further, we assume that nodes, where adjunction is possible,
are marked by the special auxiliary propositadj and, correspondingly, all non-adjunction nodes mustddjl
Moreover, an adjunction node must be an inner node of an elementary tree, i.e. it cannot be the root or some leaf.
As a consequence, we obtain only TAG trees where an adjoined tree is completely surrounded by the elementary
tree it was adjoined to. This leads to the following lemma:

Lemma 3.1
Let T/D = {((t,v), (d, Vq),T) be a TAG-generated T/D-tree and n1,n2 € t, my,me € d withm; = 7(n1),
me = 7(n2) and ng = ny.r for some 1 < r < k;. Then exactly one of the following cases must be true:

1. m1 = mo
2. m1.8 = mo, forsomel < s < ky

3. m1 = ma.s, forsomel < s < ky

This lemma considers the properties of a pair of immediately dominating mqdmsdn, in the derived TAG
tree. In the first case, both nodes belong to the same instance of an elementary tree. Therefore, they are linked to
the same node in the derivation tree, as illustrated in Figure 3. The secone,dagbe root of an adjoined tree.
By the assumption we made above, the parent of a root node must be a node of the tree where the adjunction took
place. Therefore; must be linked with the parent of the derivation tree node that is linkedmwitsee Figure 4.

Palm 141

Figure 5: T/D-treen; is the foot node of the adjoined elementary tree represented, by

In the third casey, is the foot node of an adjoined tree and, by assumption, each of its children must be a node of
the tree where the adjunction took place. Consequemtjymust be a child ofn,, see Figure 5. Finally, due to
above assumptions, no other case is possible.

Now we turn to the TAG axioms dflL4¢ which ensure that a given formula describes a TAG. For the general
tree axioms we refer to the similar modal tree logic as presented for example in (Blackburn, Meyer-Viol and de
Rijke, 1996). However, the more interesting issue are the TAG axioms. They should enstitkthatormulae
only describe TAG-generated T/D-trees. For simplification, we introduce two auxiliary propogamtrandroot
that mark the corresponding nodes of an adjoined elementary tree. The TAG-axioms standing below assert the
correct distribution of the auxiliary propositionsot andfoot and the correct linking between the derived and the
derivation tree.

(D1) Tyoot:root A QO Droot (associating the root nodes)
(D2) (i Aroot A QFk A j: (root A Qk)) — j:¢ (unique root)

(D3) (i AfootA Qk A j: (footA Qk)) — j:i (unique foot)

(D4) (i AQk A j:(root A Qk)) — j: (i vV &i) - (root domination)

(D5) Oy root «— 0,.Qi A QO (link properties of the root)
(D6) foot«— Qi A ®V0O1 (link properties of the root)
(D7) —footA O,—root «— Qi A O,Qi (link properties of the inner nodes)

The first axiom asserts that in a t/d-trf€¢D the underlying initial tree of the derive tr&eis linked with the
root of the derivation tre®. Actually, itis sufficient that (D1) only links the root node of the derived toes with
root of the derivation tree. The correct linking of the remaining nodes of the initial tree follows from (D7). In order
to access the root nodes of either tree, we assume two special nominal prop@stigiend Dygot referring to
the root nodes of" and D, respectively. The next two axioms (D2) and (D3) ensure that every instance of an
elementary tree occurring ifi/ D has a unique root and a foot. We consider a root (or foot) node with the nominal
i that is linked with derivation tree with the nominal Then every root (or foot) node that is linked withmust be
identical toi. Moreover (D4) asserts that all nodes of the same instance of an elementary tree are dominated by the
root node of this instance. Finally, the axiom (D5), (D6) and (D7) ensure the local structural properties mentioned
in Lemma 3.1. By (D5), the-th child of a node meets the propositimot if and only if the successor relationship
also applies to the derivation tree nodes corresponding to them. By (D6), a node is a foot node if and only if it is
linked to the node whose parent is associated with all children of the node considered. Finally, (D7) asserts that all
pairs of immediately dominating nodes share the same instance of an elementary tree, if neither the upper one is
its foot nor the lower one is its root.

142 Proceedings of TAG+6

Obviously, due to Lemma 3.1 and the properties of a TAG derivation, every T/D-tree that is generated by
a given TAG must meet these axioms. Thus, these axioms are sound with respect to tree adjoining grammars.
However, the opposite direction is less obvious. It states that every T/D-tree satisfying these axioms must be
generated by a tree adjoining grammar. Next we describe a tree-extraction formalism that establishes this:

1. We arbitrarily select a leaf of the derivation tree with some nondreadd, further, we consider all nodes in the
derived tree that are linked with

2. By the axioms (D2) and (D3) there must be a unique root and foot and by (D4) all nodes the are linkied with
are weakly dominated by the the root. In addition, sihdeas no child, no other tree was adjoined. Therefore,
due to (D5), (D6) and (D7) all nodes that are linked witHefine a coherent tree section in the tree

3. We extract the tree section as identified previously, and we replace it by a single adjunction node that is linked
with the parent ok.

4. We removek in the derivation tree
5. We repeat the steps above until a single node in the derivation tree remains.

6. Due to (D1) the remaining structure defines the underlying initial tree of that TAG-tree. The trees we extracted
above are the corresponding elementary trees.

This formalism illustrates how to construct a TAG for any given t/d-tree satisfying the axioms (D1) to (D7) such
that the resulting TAG generates the given T/D-tree. In general, we obtain that a T/D-tree is TAG generated, if and
only if it meets these axioms at every node of the derived tree.

Moreover this formalism can be extendeuh the following way. So far we know that eveHL 4z formula
that is consistent with the TAG axioms (D1) to (D7) specifies a set of trees where each member is generated by a
certain TAG. We briefly sketch a method that constructs a corresponding TAG for a given TAG-cordlstent
formula. Therefore, we combine the above extraction formalism with an ordinary method of constructing tree
models, especially tree automata, from a given modal tree description. The desired result are two linked tree-
automaton for the derived tree and the derivation tree. Instead of linking to certain tree nodes of the derivation
tree, we employ links to the states of the corresponding tree automaton. Then we can apply a slightly modified
version of the extraction method to these tree automata. Instead of extracting trees, this modified version considers
subtree automata. The final result is a (finite) set of tree automata where each of them represents a set of initial
trees. In addition, the resulting automaton for the derivation tree expresses possible adjunction operations for these
automata.

In order to construct these automata, we can employ, for instance, well-known labeled tableau methods as
described in (Gdr, 1999), which were adopted for our purposes. The overall goal is to construct a set of simple
tree automata representing the initial trees of the TAG described and another special tree automaton representing
the corresponding derivation trees. Using labeled formulae in the tableau, we can indicate the node and the tree
the formulae considered must apply to. A crucial part of the tableau system concerns the constructioff of the
successor of some node by the formalae:

(©1) a,0::Opp
T . . .
a,0:: Q1 a,0: Q041 | a,0:: Qi
Q, 0P a.s,orip | o
a, o.r: Qi a.s,07:91 | o, 0.r:: V041

«a,0::—~foot | o, o.r::r00t | o, 0:: foot
a, 0.r:: root

wherea=c'.s. The premise of this rule considers the nedef the derived tree that is associated with the nede

of the derivation tree and,. must hold aiz. Obviously this rule states again the situation described in Lemma
3.1. In the first case (see Figure 6), the new successornodm®longs to the same elementary tree as its parent,
so both are associated with the same nade the derivation tree. For the second case (see Figure 7), this rule
generates a root node of an adjoined tree, so the new suceess®associated witkv.s, i.e. the corresponding
successor. Note that we also constructdfsiccessor ofv. Finally, in the third case (see Figure 8)denotes a
foot node, so the successor must be associated with the parentof

Palm 143

Figure 6: tableau rule fap,.: inner nodes

Figure 7: tableau rule fap,.: root node

Figure 8: tableau rule fap,.¢: foot node

144 Proceedings of TAG+6

Most other rules of this labeled tableau calculus are more or less straightforward or result from the require-
ments of the TAG axioms. To obtain tree automata from the tableau, we define classes of equivalent labels including
the same set of formulae:

a,o=d o iff {p|a,op}={p|d,o":p}

Obviously, the number of such equivalence classes is finite, since the number of occurring subformulae is finite
as well. Every class defines some state of a tree automaton, and the immediate dominance relation leads to the
state transition relation. Accordingly, we can extract the tree automaton for each elementarfyytisslecting the

states including the label. Then a gap in the immediate dominance relation indicates an adjunction node which
must be handled correspondingly. Eventually, we also obtain a tree automaton for the derivation tree.

4, Conclusions

Specifying sets of trees beyond context-free grammars requires additional structural information. For the
TAG-approach presented here, we combined the derived tree and the derivation tree leading to so-called T/D-trees.
While the derived tree actually is the object of consideration, the derivation tree serves as a kind of storage for the
required additional information. The linking function from the derived tree to the derivation tree combines the TAG
tree nodes sharing the same instance of an elementary tree. Therefore we can access the underlying elementary
trees and, consequently, we can decide whether a tree is TAG-generated.

For the formal description we employed hybrid logic which provides sufficient expressivity to specify TAG
axioms and further constraints on TAGs. On the other hand, the modal foundation of hybrid logic, offers simple
formulations that are easier to handle than classical logic. The result is a simple proof system for TAGs, which
can be used to verify certain formal properties for a given TAG or, as we have sketched briefly, to construct a TAG
from a given formal specification

An open question, so far, is the expressive power of our formalism. Obviously, it is possible to specify sets of
T/D-trees that fall out of the scope of TAGS. For instance, itis possible specify complete binary trees. Nevertheless,
such a specification would violate the TAG axioms.

References

Blackburn, P. 2000a. Internalizing Labelled Deductidournal of Logic and Computatioii0(1):137-168.

Blackburn, P. 2000b. Representation, Reasoning, and Relational Structures: a Hybrid Logic Mahdgitdournal of the
IGPL, 8(3):339-365.

Blackburn, P., A. Burchard and S. Walter. 2001. Hydra: a tableaux-based prover for basic hybrid logic. In C. Areces and
M. de Rijke, editorsProceedings of Methods for Modalitiesmsterdam, The Netherlands, November.

Blackburn, P., W. Meyer-Viol and M. de Rijke. 1996. A Proof System for Finite Trees. In H. Kleiméng, editorComputer
Science LogicLNCS, vol. 1092. Springer Verlag, pages 86—105.

Blackburn, P. and J. Seligman. 1995. Hybrid Languagiegic Journal of Logic, Language and Informatiot(1):251-272.

Blackburn, P. and J. Seligman. 1997. What are Hybrid Languages. In M. Kracht, H. Wansing and M. Zakharysheyv, editors,
Advances in Modal Logic '98CSLI Publications, Stanford University.

Blackburn, P. and M. Tzakova. 1998. Hybrid Completenésgjic Journal of the IGPL6(4):625—-650.

Blackburn, P. and M. Tzakova. 1999. Hybrid Languages and Temporal Libgigc Journal of the IGPL7(1):27-54.

Goré, R. 1999. Tableau Methods for Modal and Temporal Logic. In M. D’Augustino, D. Gabbayahleland J. Posegga,
editors,Handbook of Tableau Methodsluwer, Dordrecht, pages 297—-396.

Michaelis, J., U. Mdnnich and F. Morawietz. 2000. Derivational Minimalism in Two Regular and Logical Stepg3robeed-
ings of TAG+5, Parispages 163-170.

Morawietz, F. and U. Mnnich. 2001. A Model-Theoretic Description of Tree Adjoining GrammarsFdmal Grammar
Conference/MOL Conference, HelsinElectronical Notes in Theoretical Computer Science, vol. 53. Elsevier Science.

Palm, A. 1997 Transforming Tree Constraints into Rules of Grammd#$SKI, volume 173. St. Augustin: infix-Verlag.

Palm, A. 2000. Structure Sharing in Tree-Adjoining Grammar®rbteedings of TAG+5

Rogers, J. 1999. Generalized Tree-Adjoining GrammarsPrbteedings of 6th Meeting on Mathemathics of Language
(MOLS).

Schlingloff, B.-H. 1992. Expressive Completeness of Temporal Logic for Tréesrnal of Applied Non-Classical Logics
2:157-180.

Thatcher, J.W. and J.B. Wright. 1968. Generalized Finite Automata Theory with an Application to Decision Porblems of
Second-Order LogicMathematical System Theo3,57-81.

Tzakova, M. 1999. Tableaux calculi for hybrid logics. In N. Murray, edi@onference on Tableaux Calculi and Related
Methods (TABLEAUX), Saratoga Springs, UENAI, vol. 1617. Springer Verlag, pages 278—-292.

Tree-Adjoining Grammars
as Abstract Categorial Grammars

Philippe de Groote

LORIA UMR 1i® 7503 — INRIA

Campus Scientifique, B.P. 239

54506 Vandceuvrés$ Nancy Cedex — France
e-mail: Philippe.de.Groote@Ioria.fr

1. Introduction

We recently introduced abstract categorial grammars (ACGs) (de Groote, 2001) as a new categorial formalism
based on Girard linear logic (Girard, 1987). This formalism, which derives from current type-logical grammars
(Carpenter, 1996; Moortgat, 1997; Morrill, 1994; Oehrle, 1994), offers some novel features:

e Any ACG generates two languages, an abstract language and an object language. The abstract language may
be thought as a set of abstract grammatical structures, and of the object language as the set of concrete forms
generated from these abstract structures. Consequently, one has a direct control on the parse structures of the
grammar.

e The langages generated by the ACGs are sets of likgarms. This may be seen as a generalization of both
string-langages and tree-langages.

e ACGs are based on a small set of mathematical primitives that combine via simple composition rules. Conse-
quently, the ACG framework is rather flexible.

Abstract categorial grammars are not intended as yet another grammatical formalism that would compete
with other established formalisms. It should rather be seen as the kernel of a grammatical framework — in the
spirit of (Ranta, 2002) — in which other existing grammatical models may be encoded. This paper illustrates this
fact by showing how tree-adjoining grammars (Joshi and Schabes, 1997) may be embedded in abstract categorial
grammars.

This embedding exemplifies several features of the ACG framework:

e The fact that the basic objects manipulated by an ACG\aerms allows higher-order operations to be defined.
Typically, tree-adjunction is such a higher-order operation (Abrusci, Foecaret Vauzeilles, 1999; Joshi and
Kulick, 1997; Monnich, 1997).

e The flexibility of the framework allows the embedding to be defined in two stages. A first ACG allows the tree
langage of a given TAG to be generated. The abstract language of this first ACG corresponds to the derivation
trees of the TAG. Then, a second ACG allows the corresponding string language to be extracted. The abstract
language of this second ACG corresponds to the object language of the first one.

2. Abstract Categorial Grammars

This section defines our notion of an abstract categorial grammar. We first introduce the notioearof
implicative typeshigher-order linear signaturglinear A-termsbuilt upon a higher-order linear signature, and
lexicon

Let A be a set of atomic types. The s&t(A) of linear implicative typesbuilt upon A is inductively defined
as follows:

1. ifa € A, thena € T (A);
2. ifa, € T(A), then(a — 8) € T (A).
A higher-order linear signatureonsists of a triple&c = (A, C, 7), where:

1. Ais afinite set of atomic types;

(© 2002 Philippe de Grootdroceedings of the Sixth International Workshop on Tree Adjoining Grammar and Related Frame-
works (TAG+6) pp. 145-150. Universd di Venezia.

146 Proceedings of TAG+6

2. C'is afinite set of constants;
3. 7: C — Z(A)is afunction that assigns to each constan®'ia linear implicative type in7 (A).

Let X be a infinite countable set dfvariables. The sek(X) of linear A\-termsbuilt upon a higher-order linear
signatureX = (A, C, 7) is inductively defined as follows:

1. ifc € C, thenc € A(%);

2. ifz € X, thenz € A(Y);

3. ifz € X, ¢t € A(X), andz occurs free irt exactly once, theh\z.t) € A(X);

4. if t,u € A(X), and the sets of free variablestodindu are disjoint, ther{t u) € A(X).

A(X) is provided with the usual notion of capture avoiding substitutiertonversion, angs-reduction (Baren-

dregt, 1984).
Given a higher-order linear signature = (A, C, 1), each linear\-term in A(X) may be assigned a linear

implicative type in (A). This type assignment obeys an inference system whose judgements are sequents of the

following form:
F'eys t:a

where:

1. Tis a finite set of\-variable typing declarations of the form ¢ 5’ (with 2 € X andg € .7 (A)), such that any
A-variable is declared at most once;

2. te A(X);
3. ae J(A).
The axioms and inference rules are the following:

+yx c:7(c) (cons)

r:ary x:a (var)

rx:avrg t:p
Ty (Az.t): (a—)
Frst:(a—of) Arsu:a

DA w5 (tu):

(abs)

(app)

Given two higher-order linear signaturBs = (A, Cy, 1) andXs = (Ay, Cy, 72), alexicon? : ¥; — %o
is a realization of; into X5, i.e., an interpretation of the atomic typesXf as types built uponi, together with
an interpretation of the constants ¥f as linear\-terms built upon®,. These two interpretations must be such
that their homomorphic extensions commute with the typing relations. More formédlyican.# from X, to X5

is defined to be a pai” = (F, G) such that:
1. F: Ay — J(Ay) is afunction that interprets the atomic typesfas linear implicative types built upaf,;

2. G: C; — A(X.) is a function that interprets the constant$hfas lineari-terms built upori;

3. the interpretation functions are compatible with the typing relaiien,for anyc € C1, the following typing

judgement is derivable: R
s, G(C) : F(Tl(c))a

whereF' is the unique homomorphic extensionfof

We are now in a position of defining the notion of abstract categorial grammaabstnact categorial gram-
maris a quadruple/ = (¥, 3., %, s) where:

Ph. de Groote 147

1. 3; andX; are two higher-order linear signatures; they are callecdbstract vovabularnand theobject vovab-
ulary, respectively ;

2. Z: %, — X is alexicon from the abstract vovabulary to the object vovabulary;
3. sis an atomic type of the abstract vocabulary; it is calleddiséinguished typef the grammar.
Theabstract languaggenerated by (A(¥)) is defined as follows:
A(9) ={t € A(¥1)]| vy, t: sis derivablé

In words, the abstract language generate@liythe set of closed linearterms, built upon the abstract vocabulary
31, whose type is the distinguished type On the other hand, thebject languagegenerated by (O(9)) is
defined to be the image of the abstract language by the term homomorphism induced by the4&xicon

O@)={teAXy)|Tuec A¥Y). t = L (u)}
3. Representing Tree-Adjoining Grammars

In this section, we explain how to construct an abstract categorial grammar that generates the same tree langage
as a given tree-adjoining grammar.

LetG = (¥, N, I, A, S) be atree-adjoining grammar, wheteN, I, A, andS are the set of terminal symbols,
the set of non-terminal symbols, the set of initial trees, the set of auxiliary tree, and the distinguished non-terminal
symbol, respectively. We associatetean ACG¥ ¢ = (X, 2§, 2% s%) as follows.

The set of atomic types d§’ is made of two copies of the set of non-terminal symbols. Given N, we
write g anda 4 for the two corresponding atomic types. Then, we associate a constant

CT 1714 0 Yma o P1g o fng oas

to each initial treél” whose root node is labelled hy, whose substitution nodes are labeleddyy. . ., 3,, and
whose interior nodes are labeled by . . . , v,,,. Similarly, we associate a constant

e i71g4 0 Ymag O B1g =0 Png 04 04

to each auxiliary tre@&” whose root node is labelled lay whose substitution nodes are labeled®by. . ., 3,,, and
whose interior nodes are labeledy, . . ., v,,,. Finally, we also associate to each non-terminal symnbel NV,
a constanf,, of typea 4. This concludes the specification of the abstract vocabulary.

The object vocabulary§ allows labelled trees to be represented. Its set of atomic types contains only one
element ;7 (for tre€). Then, its set of constants consists in:

1. constants of type corresponding to the terminal symbols@f
2. for each non-terminal symbal, constants

Q;:T—0--+T—OT
——
7 times
for 1 < i < k, wherek is the maximal branching of the interior nodes labelled witthat occur in the initial
and auxiliary trees ofy.

Clearly, the terms of type that can be built by means of the above set of constants correspond to trees whose
frontier nodes are terminal symbols and whose interior nodes are labelled with non-terminal symbols.

It remains to define the lexica®“. The rough idea is to represent the initial trees as trees (i.e., terms of type
7) and the auxiliary trees as functions over trees (i.e., terms oftyper). Consequently, for each € N, we let
L% ag) = 7 and L% (a4) = 7 —o 7. Accordingly, the susbstitution nodes will be represented as first-order
variables of type- , and the adjunction nodes as second-opdeariables of type- —o 7. The object representation
of the elementary trees is then straightforward. Consider, for instance, the following initial tree and auxiliary tree:

148 Proceedings of TAG+6

VP

S N AN

VP \ \
SN |
\% NP|
|

loved
According to our construction, the two abstract constants corresponding to these trees have the following types:

Cloved :S4 —oVPy oV, —o NPg —o NPg —o SS and Chas :VP4 oV ,4 —oVPy4 ©oVPy
Then, the realization of these two constants is as follows:

LY (Cloved) = AEANG.AH. Az \y. F (S, 2 (G (VPy (H (V1 loved)) y)))
LG (Chas) = AF.AG.AH.\z.F (VP (G (V1 hag) (H x))

In order to derive actual trees, the second-order variables should eventually disappear. The abstract Epnstants
have been introduced to this end. Consequently they are realized by the identity functigii%i(é.,) = \z. z.

Finally, the distinguished type ¢#“ is defined to beSs. This completes the definition of the AC&“
associated to a TAG'. Then, the following proposition may be easily established.

PROPOSITION LetG be a TAG. The tree-language generateddis isomorphic to the object language of the
ACG % associated t@>. O

4. Example

Consider the TAG with the following initial tree and auxiliary tree:

N
) b/S*\d

It generates a non context-free language whose intersection with the regular langbiag&e* is ab™cd™e™.
According to the construction of Section 3, this TAG may be represented by the ACG(Y,, 35, .Z, S), where:

21 = < {Ssa SA}a {Ciacavl}y
{ei— (84 — Ss),
Ca > (Sa —0 (Sa —0 (Sa —0 54))),
I'— Sa})

¥y =({r},{a,b,c,d,e, S, S3},
{a,b,c,d,e — T,
Sy (1 —oT1),
Sz (T —o (T —o (T —7)))})

£ =({Sg+—m,
Sp— (1 —o71)},
{ei = Af. f(Sie),
Co = Af g Ah Az, f(Ssa(g(Ssb(hz)d))e),
I—dx.xz})

Ph. de Groote 149

5. Extracting the string languages

There is a canonical way of representing strings as lingarms. It consists of encoding a string of symbols
as a composition of functions. Consider an arbitrary atomic typend define the typestring to be (o —o o).
Then, a string such agbbac’ may be represented by the linesterm:

Az.a(b(b(a(cx)))),

where the atomic strings”, ‘', and ‘¢’ are declared to be constants of tyfzge—o o). In this setting, the empty
word is represented by the identity function:

VAN
€ = \r.x

and concatenation is defined to be functional composition:

a+6 = A 3 Ao (Bx),

which is indeed an associative operator that admits the identity function as a unit.

This allows a second AC®&'", to be defined. Its abstract vocabulary is the object vocabillfirgf €. Its
object vocabulary allows string of terminal symbols to be represented. Its lexicon interprets each constant of type
T as an atomic string, and each constanhs a concatenation operator. This second AZG,, extracts the yields
of the trees. Then, by composiagf’ with 4'“ one obtains an ACG which generates the same string-language as
G.

Let us continue the example of Section 4. The second AZG= (X1, ¥5,.¢",S"), is defined as follows:

=%,

5 =({o}.{a,b,c,d, e},
{abc.d, e (0 0)})
L= ({7 (0 <o)},

{a— Az.az,

b+— Ax.bx,

c— A\x.crx,

d— \r.dx,

e— A\r.ex,

S1— Af. Az, fx,

S = Af.Ag. M. f (g (hz))})

6. Expressing Adjoining constraints

Adjunction, which is enabled by second-order variables at the object level, is explicitly controlled at the ab-
stract level by means of types. This typing discipline may be easily refined in order to express adjoining constraints
such as selective, null, or obligatory adjunction.

Consider again the TAG given in Section 4. By adding the following null adjunction constraints on its auxiliary
tree:

SNA

RN

b S\a d
one obtains a grammar that generates exactly the non context-free landwége™e™. These constraints may

be expressed in a simple and natural way. It suffices to exclude the constrained nodes from the arguments of the
A-term corresponding to the auxiliary tree. This gives the following modified ACG:

21 = < {Ss,SA},{Ci,Ca,I},
{ci — (Sa — Ss),
co — (Sa—854),
I— Sa})

150 Proceedings of TAG+6

Yo =({7},{a,b,c,d,e, 51, S5},
{a,b,c,d,e — T,
S+ (1 —o71),
Sz (T —o (T —o (T —7)))})

$=<{Ssl—>77
Sa— (r—o71)},

fei = AL f (S10),
co— M. x.Ssa(f(Ssbxd))e,
I— dx.xz})

The other kinds of adjunction constraints may be expressed in a similar way.

References

Abrusci, M., C. Fouquér and J. Vauzeilles. 1999. Tree-adjoining grammars in a fragment of the Lambek caloinputa-
tional Linguistics 25(2):209-236.

Barendregt, H.P. 1984 he lambda calculus, its syntax and semantiesised edition. North-Holland.

Carpenter, B. 1996Type-Logical Semantic€ambridge, Massachussetts and London England: MIT Press.

de Groote, Ph. 2001. Towards Abstract Categorial Grammar#ssociation for Computational Linguistics, 39th Annual
Meeting and 10th Conference of the European Chapter, Proceedings of the Confpayes 148—155.

Girard, J.-Y. 1987. Linear LogicTheoretical Computer Sciencg0:1-102.

Joshi, A. K. and S. Kulick. 1997. Partial Proof Trees as Building Blocks for a Categorial Grarhimguistic & Philosophy
20:637-667.

Joshi, A. K. and Y. Schabes. 1997. Tree-adjoining grammars. In G. Rozenberg and A. SalomaaHatittivepk of formal
languagesvolume 3. Springer, chapter 2.

Monnich, U. 1997. Adjunction as substitution. In G.-J. Kruijff, G. Morrill and D. Oehrle, edifevanal Grammay pages
169-178. FoLLlI.

Moortgat, M. 1997. Categorial Type Logic. In J. van Benthem and A. ter Meulen, editarglbook of Logic and Language
Elsevier, chapter 2.

Morrill, G. 1994. Type Logical Grammar: Categorial Logic of Sigrn3ordrecht: Kluwer Academic Publishers.

Oehrle, R. T. 1994. Term-labeled categorial type systermguistic & Philosophy17:633-678.

Ranta, A. 2002. Grammatical Framework, a type-theoretical grammar formalism. Working paper, submitted for publication.

Residuation, Structural Rules and Context Freeness

Gerhard Jager
University of Potsdam/ZAS Berlin

1. Introduction

This paper deals with the issue of the generative capacity of a certain version of type logical categorial gram-
mar. Originally categorial grammar in the modern sense was invented in three varieties in the late fifties and early
sixties. Bar-Hillel (1953) developed applicative categorial grammar, a bidirectional version of older type theoretic
systems tracing back to the work of Polish logicians in the early twentieth century. Few years later, Lambek (1958)
proposed his calculus of syntactic types that is known as the (associative) “Lambek calculus” nowadays (abbrevi-
ated as “£”). A short time later he published a non-associative version of this calculus in (Lambek, 1961), which is
known as the “Non-associative Lambek calculus” NL. These two systems are the first instances of “Type Logical
Grammars”, i.e. the deductive machinery of the grammar formalism is a substructural type logical calculus.

The issue of the position of these grammar formalisms within the Chomsky hierarchy has intrigued mathe-
matical linguists from the beginning. It was settled first for applicative categorial grammar by Bar-Hillel, Gaifman
and Shamir (1960). They establish the weak equivalence of this version of categorial grammars with the context
free languages.

For the type logical categorial grammars, this problem was settled fairly late. Buszkowski (1986) established
the the product free fragment of the non-associative Lambek calculus defines exactly the context free languages,
and Kandulski (1988) showed that this result carries over to full NL. Finally, (Pentus, 1993) gives a proof that the
associative Lambek calculus £ is weakly equivalent to the context free grammars as well.

It was already conjectured in (Chomsky, 1957) that context free grammars are not expressive enough to give
an adequate description of the grammar of natural languages. This was formally proved in (Shieber, 1985). So
it seems that none of the tree basic varieties of categorial grammar provides an adequate grammar formalism for
linguistics. This shortcoming motivated to move to multimodal systems, i.e. type logical grammars that employ
several families of connectives and certain interactions between them. This idea was first explored in (Moortgat,
1988) and (Morrill, 1990), and systematized in (Moortgat, 1996). There it is assumed that it is sufficient to use a
finite ensemble of residuation connectives plus some interaction postulates between them to come to terms with
the empirical facts of natural language. This idea is confirmed but trivialized by (Carpenter, 1999), where it is
proved that multimodal type logical grammars are equivalent in generative power to Turing machines.

Considering Carpenter’s proof, it seems intuitively obvious that the unrestricted use of interaction postulates
is responsible for this increase in generative capacity, while the notion of multimodality as such has no such effect.
This is partially confirmed by Jdger (2001). This article gives a proof that enriching the associative Lambek calcu-
lus with pairs of unary residuation connectives without interaction postulates does not increase generative power;
the resulting system still describes exactly the context free languages. This is established by a straightforward
extension of Pentus’ construction.

For a non-associative base logic, several important results in this connection have been obtained by Maciej
Kandulski (see (Kandulski, 1995; Kandulski, 2002)). He generalizes his result from (Kandulski, 1988) to the
commutative version of the non-associative Lambek calculus, and to multimodal logics comprising an arbitrary
number of different families of residuation connectives of any arity, but without structural rules.

Kandulski’s results are all based on an axiomatization of the type logics underlying the grammars in question
and a process of proof normalization within this axiomatic calculus. The present paper presents alternative proofs
of these theorems that are based on the Gentzen style sequent presentation of the logics involved. This new
proof strategy leads to generalizations of Kandulski’s results in two respects: Any combination of residuated
connectives with any of the structural rules Permutation, Contraction and Expansion lead to type logical grammars
that recognized only context free languages, and this also holds if we admit non-atomic designated types.

The structure of the paper is as follows. We first focus on the simplest multimodal extension of the non-
associative Lambek calculus, namely the calculus NLS from (Moortgat, 1996). In section 2 we introduce the
necessary technical notions, and section 3 presents the proof that grammars based on NL< recognized exactly the
context free languages. In section 4 we generalize these results to residuation modalities of arbitrary arity, and to

(© 2002 Gerhard Jdger. Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and Related Frameworks
(TAG+6), pp. 151-158. Universita di Venezia.

152 Proceedings of TAG+6

calculi using the structural rules Permutation, Contraction or Expansion. Section 5 summarizes the findings and
points to desiderata for further research.

2. Technical Preliminaries

2.1. NL

The non-associative Lambek calculus NL is the weakest substructural logic. Its logical vocabulary consists of
one binary product e and its left and right residuation, the two directed implications \ and /. More formally, the
types of NL are defined recursively over some finite alphabet of atomic types A as

F =: A|F\F|F e F|F|F

The calculus itself can be defined as a set of arrows, i.e. objects of the form A — B, where A and B are types
of NL. In its axiomatic presentation, the calculus comprises the identity axiom and the Cut rule. We use the upper
case Latin letter A, B, C, ... as meta-variables over types.

——id
A— A
A—- B B—>C

A—-C
The behavior of the logical connectives is governed by the residuation laws

Cut

B— A\Ciff Ae B— Ciff A— C/B

Lambek also gives a Gentzen style sequent presentation of NL. A sequent consists of an antecedent and a
succedent, where the antecedent is a binary tree over types and the succedent a single type. We write trees as terms
formed from types and the binary operation o. Formally, the set of NL-trees is thus given by

T=:2F|(ToT)

The upper case Latin letters X, Y, Z, ... are meta-variables over trees of types. X[Y] is a tree X containing a
sub-tree Y, and X[Z] is the result of replacing the sub-tree Y in X by Z.

X=A Y[A] = B

id Cut
A=A Y[X]=> B
X[AoB]l=C X=>A Y=B
——— o[R
X[AeB]=C XoY =>AeB
X=>A4 Y[B]=C XoA=B

Y[B/Ao X]=C X = A/B
X=A Y[B]=C AoX =B
Y[X 0o A\B] = C X = A\B

Figure 1: Sequent presentation of the non-associative Lambek calculus NL

We write “NL = X = A” iff the sequent X = A is derivable in the sequent calculus. The axiomatic and the
sequent presentation of NL are equivalent in the sense that every derivable arrow is also a derivable sequent, and
replacing all occurrences of o in a derivable sequent by the product e yields a derivable arrow.

It is easy to see that all rules in the sequent calculus except Cut have the subformula property. Lambek proved
Cut elimination for the sequent calculus, which establishes decidability.

Jager 153

2.2. NLO

(Moortgat, 1996) extends the format of type logics in two ways. He considers calculi that comprise more than
one family of residuated operators, and he generalizes Lambek’s binary operators to the n-ary case. In the present
paper, we will be mainly concerned with one of the simplest version of such a multimodal system, namely the
combination of one binary product and its accompanying implications with one unary product and its residuated
counterpart. The resulting logic is dubbed NL <.

The logical vocabulary of NL< extends the vocabulary of NL with two unary connectives, <& and O+. So the
set of NL<-types is over the atoms A is given by

F = A|F\F|F o F|F|F|OF|O*F
They form a pair of residuated operators, i.e. their logical behavior is governed by the residuation law
A—- OBIiff0*A - B

The axiomatic presentation of NL<consists just of the axioms and rules of NL plus the above residuation law.

(Moortgat, 1996) also gives a sequent presentation of NL<. Now the trees that occur in the antecedent of a
sequent is composed from types by two operators, a binary one (o), and a unary one ({-)), corresponding to the two
products e and <. So we have

T == F(T o T)KT)

Moortgat’s sequent calculus for NL< is obtained by extending the sequent calculus for NL with the following
four rules, i.e. a rule of use and a rule of proof for both ¢and O+,

X=A o X[(A) = B
(X) = 0A X[CA]=> B

X[A]= B - (X)y=A 0
X[(O*4)] = B X =04

Figure 2: Sequent rules for the unary modalities in NLO

As in NL, all sequent rules of NL< have the subformula property. By proving Cut elimination for NL<O,
(Moortgat, 1996) thus establishes decidability, and he also proves the equivalence of the axiomatic with the sequent
presentation.

2.3. Logic and grammars

A type logic like NL< is the deductive backbone of a type logical grammar. The grammar itself consists just
of the lexicon, i.e. an assignment of types to lexical items, and a collection of designated types (which is sometimes
tacitly assumed to be the singleton set {s}, but | assume a more general notion of grammar here).

Definition 1 (NL<O-grammar) An NL<O-grammar over an alphabet X is a pair (£, D), where £, the lexicon, is a
finite relation between $t and the set of NL O-types F, and the set of designated types D is a finite subset of F.

(The definitions for “NL-grammar”, “L-grammar” etc. are identical.) A string from X+ is recognized by an
NL<-grammar G if it is a concatenation of lexical items, and replacing each of these items by one of their lexical
types leads to the yield of some binary tree of types from which a designated category is derivable. Formally this
reads as follows:

Definition 2 (Recognition) Let G = (£, D) be an NLS-Grammar over 3. A string w € X1 is recognized by G
iff

® W =11 "-VUp,

e thereare Ay,..., A, € Fsuchthatforall1 <i<mn:(v;, 4;) € L,

154 Proceedings of TAG+6

e thereisatree X andatype S € Dsuchthat NLOF X = S, and A, ... A, is the yield of X.

The notion of recognition for other categorial calculi is similar—the only difference being the underlying
calculus and thus the derivability relation in the last clause.

3. Generative Capacity

In this section | will present and discuss the main result of this paper, the weak generative equivalence between
context free grammars and NL<O-grammars. The inclusion of the context free languages in the class of NLO-
recognizable languages is easy to show; the proof immediately follows from Kandulski’s (1988) analogous proof
for NL (which is itself a straightforward adaption of the corresponding proof for applicative categorial grammars
from (Bar-Hillel, Gaifman and Shamir, 1960)).

Lemma 1 Every context free language L is recognized by some NL<-grammar.

Proof: Kandulski (1988) proves that the class of NL-grammars recognizes exactly the context free languages.
Thus there is an NL-Grammar G = (L, D) that recognizes L. From the facts that all sequent rules of cut-free
NL< have the subformula property and that all sequent rules of NL are also rules of NL< it follows that NL< is
a conservative extension of NL. In other words, if an NLO-sequent X = A is derivable in NL< and does not
contain occurrences of &, 04, and (-), it is also NL-derivable. The structural connective (-) only cooccurs with
the modalities <& or O* in derivable sequents. (This can easily be shown by induction over sequent derivations.)
So if a derivable NLC-sequent does neither contain < nor O4, it is also NL-derivable. To decide whether a string
is recognized by G or not it is sufficient to restrict attention to sequents that only involve types from £ or D. For
this fragment, the derivability relations defined by NL and NL< coincide. Therefore G still recognizes L if it is
conceived as an NL<-grammar. 4

To prove that a given variety of type logical grammar recognizes only context free languages, it is sufficient to
show that the relevant fragment of the underlying logic can be axiomatized by using only finitely many axioms and
the Cut rule. (This strategy has in fact been pursued in all such proofs from the literature that were mentioned in the
introduction.) Pentus (1993) proof for the context freeness of L is an especially simple and elegant implementation
of this idea (even though the proof for the correctness of his construction is quite complex). Consider an £.-grammar
G = (£, D). It comprises finitely many types (either as lexical or as designated types), and hence there is some
upper limit n for the complexity of types in G, where the complexity of a type is identified with the number of
connectives occurring in it. The first important insight of his proof is that to one does not need the entire calculus £
but just those fragment of it that only uses types with a complexity < n to determine which language G recognizes.
Let us call this fragment of £ £.(n). The central lemma of the proof establishes that £(n) can be axiomatized by
the set of its sequents that have at most two antecedent types, and the Cut rule. Since there are only finitely many
types occurring in £(n), this set of axiom is finite.

The same construction can be applied to NL< as well. The adequacy of the construction is in fact much easier
to prove here then for £. We first show that every NLO-sequent can be represented as the result of Cut in such a
way that the premises of this Cut rule do not involve types that are more complex than the most complex type in
the original sequent. Furthermore, any position in the original sequent can be chosen as the target position for the
Cut application.

Lemma 2 Let X[Y] = A be atheorem of NL<. Then there is a type B such that

1. NLOFY = B

2. NLO+ X[B] = A

3. There is a type occurring in X[Y] = A which contains at least as many connectives as B.

Proof: We prove the lemma by induction over sequent derivations. For the base case id the lemma is obviously
true. So let us suppose the lemma holds for the premises of a sequent rule. We have to demonstrate that it holds
for the conclusion as well. If NLO F X[Y] = A and B has the required properties, we call B a witness for Y
(with respect to the sequent X[Y] = A).

Suppose that X[Y] = A is a premise of a sequent rule and X'[Y"'] = B is the conclusion, where Y is the
substructure corresponding to Y. Then for any type C, if Y = C, then+ Y’ = C. (Either Y and Y are

Jager 155

identical, or Y is the result of applying a rule of use to Y', which is derivability preserving.) Furthermore, if
F X[D] = A for some type D, then - X'[D] = B as well. (Either X[D] and X'[D] are simply identical, or
X' is the result of applying a rule of use to X with Y as an inactive part. In the latter case, it does not matter for
derivability if we replace Y with D.) Finally (Moortgat, 1996) proves that the sequent calculus of NL< enjoys
the subformula property. Thus if B is a witness for Y in the premise, it is also a witness for Y in the conclusion
(because the most complex type from the premise occurs in the conclusion as subtype). So to complete the
induction step, we only have to consider cases where a substructure in the conclusion does not correspond to any
substructure in any of the premises of a sequent rule. This applies to all types that are created via a left introduction
rule. It is obvious though that each type is a witness for itself, so the induction step holds for these cases as
well. So the only cases that remain to be considered are the left hand sides of the conclusions in eR and OR. In
either case, the type on the right hand side is a witness for the left hand side as a whole. This completes the proof. -

From this it follows immediately that a Pentus style axiomatization is possible for NL< as well.

Lemma3 Let NLO(n) = {4 = BINLO F A = B&maz(#A,#B) < n} U {{(4A) = B|NLO + (4) =
B&max(#A,#B) <n}U{AoB = CINLO + Ao B = C&maz(#A,#B,#C) < n}, where #A is the
number of connectives occurring in A. Furthermore, let X = A be an NL<-derivable sequent such that no type
in it contains more than n connectives. Then X = A is derivable from NL<(n) and Cut.

Proof: We prove the lemma by induction over the number of structural operators (i.e. o and {-)) in X. If
X is a single type, the lemma is obviously true. So let us assume that X = Y[Z], where Z = B; o B, or
Z = (B). According to lemma 2, there is a witness C for Z such thatt- Z = C, Y[C] = A, and #C < n. Then
7Z = C € NL<(n) by definition and Z = C' is derivable from NL<(n) and Cut by induction hypothesis. Thus
X = Aisderivable from NL<O(n) and Cut as well. —|

This leads directly to the inclusion of the class of NL<O-recognizable languages in the class of context free
languages.

Lemma4 Every NL<-recognizable language is context free.

Proof: Let an NL<O-grammar Gy = (£, D) (with £ being the lexicon and D the set of designated types) be
given. We construct an equivalent CFG G, in the following way: The terminal elements of G, are the lexical items
of G'1. The non-terminals are all NL<O-types A with #£A < n, where n is the maximal number of connectives in a
single type occurring in G;. Besides we have a fresh non-terminal .S which is the start symbol. Productions are

e {A— B|B = AeNLO(n)}U

e {A— B|(B) = AeNLO(n)}U

e {A—+B,C|BoC = Ae NLO(n)}U
o {A—v|(v,A4) € L}U

o {S— AlA €D}

If vy ... v, is recognized by G, then there is a NL<-derivable sequent X = B such that B is a designated
category, the yield of X is Ay ... A,,, and (v;, 4;) € £ for 1 < i < m. By the construction of G5, S -6, B-
Due to lemma 3 and the construction of G's, thus S =7, A; ... A,, and by the construction of G, this leads to
S =&, V1---Up. SOV ... vy, isrecognized by Go.

NO suppose vy ... vy, is recognized by G,. This means that S —¢, v1 ...v,. By the construction of Go,
there must be a B € D and A4, ... A, with (v;, 4;) € L such that B =7, A;...A,. Hence there must be a
derivation from B to some structure X such that A, ... A, is the yield of X. All rules involved in this derivation

originate from NL<(n), and since all rules in NLO(n) are NLO-derivable, H X = B. Hence vy ...v, iS
recognized by G;. 4

The Lemmas 1 and 4 jointly give the main result of this section:
Theorem 1 NL<-grammars recognize exactly the context free languages.
Proof: Immediate. B

156 Proceedings of TAG+6

4. Generalizations

The concept of residuated logical connectives can readily be generalized to n-ary operations for arbitrary n.
Such this systems have been considered at various places in the context of categorial grammar, including (Moortgat,
1996) and (Kandulski, 2002). A multimodal logic of pure residuation (“LPR” henceforth) is characterized by a
family of modes M and a function § that assigns each mode an arity, i.e. a natural number. If f € M is a
mode of arity §(f) = m, it defines m + 1 m-ary connectives: an m-ary product operator f,, and m implications
{f4 |1 <i < m}. Asfor NL and NL©, there is an axiomatic formulation for any LPR having the identity axiom
as only axiom, the Cut rule and a collection of residuation laws. The laws for the binary and unary operators given
above are generalized to the general case in the following way:

VfVZ < (5(f) : f.(Al,- --,A(;(f)) — B IffA, — fL(Al, --,Ai—laBaAi—i-la- .. ,A(;(f)),'

The sequent calculus for a given LPR over the set of modes M is also a straightforward extrapolation from
NL<. Antecedents of sequents are now terms built from types by means of structural operators. There is one
structural operator f, for every f € M with arity §(f).

. X=>A Y[A] = B

id Cut
A=A Y[X] =B

VZS(S(f)XZ?Al X[fo(Al,---,Ag(f))]iB

foR
X([fe(A1,---,A5p)] = B

fO(Xla"'aX6(f)) = fO(Ala"'aAﬁ(f))

Vi<6(f),i#7:Xi=> A Y[B]=C
Y[fO(Xla' e aX'i—laf—>(A13' e aAi—laBaAi-i-l e 'aAé(f))aXi-i-la" aXé(f))] =0

f-L

fo(Ala'"7Ai—17X7Ai+17""A‘S(f)) = B
X = f—>(A17'"aAi—laBaAH-l?'“’A‘s(f))

f-R
Figure 3: Sequent rules for LPR

The equivalence of the axiomatic with the sequent presentation, as well as Cut elimination for all instances of
LPR can be proven by arguments that are entirely parallel to the corresponding proofs for NL.
The results from the previous section on NL< carry over to all instances of LPR without further ado.

Lemmab Let X[Y] = A be a theorem of LPR. Then there is a type B such that
1. LPRFY = B
2. LPRF X[B] = 4

3. There is a type occurring in X[Y] = A which contains at least as many connectives as B.

Proof: Parallel to the proof of lemma 2. 4

So there is a finite axiomatization of any fragment of an LPR that has an upper limit for the complexity of
the types involved. The notions of an LPR-grammar and of the language recognized by such a grammar can be
adapted from the corresponding notions related to NL< in an obvious way. Finite axiomatizability thus amounts
to the fact that every LPR-grammar is equivalent to some context free grammar. On the other hand, any NL-
grammar is an LPR-grammar, and since any context free language is recognized by some NL-grammar, we obtain
the following generalization of theorem 1:

Theorem 2 LPR-grammars recognize exactly the class of context free languages.

Proof: Analogous to the corresponding proof for NL<. -

Jager 157

Up to now we only considered calculi of pure residuation, i.e. calculi that do without any structural rules. One
might wonder what impact the presence of structural rules has on the generative capacity. We will consider the
structural rules Associativity (A), Permutation (P), Contraction (C), Expansion (E) and Weakening (W) in the
sequel, as applying to some distinguished binary mode f. For simplicity, we write o instead of f, below. The
sequent versions of these rules are given in figure 4. (The double line in A indicates that these are actually two
rules, left associativity and right associativity.)

X[YO(ZOW)]=>AA X[YOZ]=>AP

X[(YoZ)oW]= A X[ZoY]=> A
X[YoY]=>AC X[Y]= A
XY= A X[YoY]= A
XY= A
X[YoZ]l=> A

Figure 4: Structural Rules

Would the proof for lemma 5 still go through if we add some of these rules to the calculus? Certainly not for
A. If the induction hypothesis would hold for the sequent on top, this would not guarantee that there is a witness
forY o Z, and likewise for the opposite direction. Likewise, the induction step would not work for W, because
the induction hypothesis—the lemma holds for the premise sequent—does not guarantee that there is a witness for
Z. It doesn’t work for C' either because we cannot be sure whether the witness for the two occurrences of Y in
the premise are identical. If they aren’t, contraction cannot be applied anymore after replacing the two Y's by their
witnesses. However, P and E are well-behaved.

Lemma6 Let C be some multimodal calculus that comprises the sequent rules for LPR and a subset of the
structural rules {P, E} for each binary mode of C. Let X[Y] = A be a theorem of C. Then there is a type B
such that

1. C+Y =B
2. CHX[B]= A
3. There is a type occurring in X[Y] = A which contains at least as many connectives as B.

Proof: By induction over sequent derivations. For the logical rules, the induction step was established above.
As for P, the witness of any substructure of X in the conclusion is identical to the corresponding witness in
the premise, and likewise for substructures of Y and Z. As for E, the witness for a substructure of X in the
conclusion is inherited from the premise. Suppose Y has a substructure Z, and we want to know whether there is
a witness for the occurrence of Z in the left occurrence of Y in the conclusion. By hypothesis, we know that for
some type B with a complexity that is not more complex than the most complex type in the premise sequent, it
holds that C + X[Y'[B]] = A4, and C - B = Z. By applying E, we obtain C - X[Y[B] o Y[B]] = A, and by
Cutweget C+ X[Y[B]]oY[Z] = A. -

Thus we have

Theorem 3 A type logical grammar that is based on a calculus which extends a version of LPR with P or E for
some of its binary modes recognizes only context free languages.

Proof: Immediate. =

Let me conclude this section with some remarks on the relation of my results to (Kandulski, 1995) and (Kan-
dulski, 2002). The central theorem of the latter work is almost identical to my theorem 2 (and my theorem 1 is
just a corollary of this). Kandulski gives an axiomatization for LPRusing Cut as the only rule, and he shows that
derivations in this axiomatic calculus can be normalized in such a way that only finitely instances of the axioms are
relevant for a given LPR-grammar. There is a minor difference between his results and mine: Kandulski requires

158 Proceedings of TAG+6

that the set of designated types of a type logical grammar is a singleton containing only one atomic type. The
restriction to atomic types is in fact essential for his proof to go through. The same holds ceteris paribus for the
context freeness proof for NL in (Kandulski, 1988). In this respect the results from the present paper are somewhat
more general. Furthermore, (Kandulski, 1995) presents a proof that grammars based on NL+P only recognize
context free languages. Again, the proof makes essential use of the restriction to atomic designated types.

Even though the results obtained in the present paper have an considerable overlap with Kandulski’s prior
work, the proof strategy used here is novel, and arguably simpler. It is also easier to generalize, as the application
to Expansion illustrates.

5. Conclusion

In this paper a new strategy for proving the context freeness of a class of type logical grammars was proposed.
The basic idea for the construction of context free grammars from type logical grammars is adapted from (Pentus,
1993). The proof of the correctness of the construction is different (and much simpler) though; it is based on
a property of sequent derivations that can be seen as a variant of Roorda’s (1991) interpolation lemma. It was
shown that this property is shared by all multimodal logics of pure residuation, i.e. any pure or mixed calculi using
only families of residuated operators of arbitrary arity. Prominent instances of this family of logics are NL and
NL<. It was furthermore proved that this property of sequent calculi is preserved by adding the structural rules
of Permutation or Expansion. Any categorial grammar based on one of these logics recognizes a context free
language. Conversely, by a slight variation of Cohen’s (1967) argument for £ it can be shown that any context free
language is recognized by some LPR comprising at least one binary product, but no structural rules.

Further work is required to gain a deeper understanding on the impact of structural rules on generative ca-
pacity. The proof strategy that was proposed in this paper can be used as a recipe to establish context freeness
for extensions of LPR with certain structural postulates, including interaction postulates involving several modes.
However, it is not always applicable, as the example of the associative Lambek calculus demonstrates. So it would
be desirable to identify sufficient conditions when structural rules preserve context freeness.

References

Bar-Hillel, Yehoshua. 1953. A quasi-arithmetical notation for syntactic description. Language, 29:47-58.

Bar-Hillel, Yehoshua, C. Gaifman and E. Shamir. 1960. On Categorial and Phrase Structure Grammars. Bulletin of the
Research Council of Israel, F(9):1-16.

Buszkowski, Wojciech. 1986. Generative Capacity of Nonassociative Lambek Calculus. Bulletin of the Polish Academy of
Sciences: Mathematics, 34:507-518.

Carpenter, Bob. 1999. The Turing-completeness of multimodal categorial grammars. Papers presented to Johan van Benthem
in honor of his 50th birthday. European Summer School in Logic, Language and Information, Utrecht.

Chomsky, Noam. 1957. Syntactic Structures. The Hague: Mouton.

Cohen, Joel M. 1967. The equivalence of two concepts of Categorial Grammar. Information and Control, 10:475-484.

Jéger, Gerhard. 2001. On the Generative Capacity of Multimodal Categorial Grammars. to appear in Journal of Language and
Computation.

Kandulski, Maciej. 1988. The equivalence of nonassociative Lambek categorial grammars and context-free grammars.
Zeitschrift fir Mathematische Logik und Grundlagen der Mathematik, 34:41-52.

Kandulski, Maciej. 1995. On commutative and nonassociative syntactic calculi and categorial grammars. Mathematical Logic
Quarterly, 41:217-135.

Kandulski, Maciej. 2002. On Generalized Ajdukiewicz and Lambek Calculi and Grammars. manuscript, Poznan University.

Lambek, Joachim. 1958. The Mathematics of Sentence Structure. American Mathematical Monthly, 65:154-170.

Lambek, Joachim. 1961. On the Calculus of Syntactic Types. In Roman Jakobson, editor, Structure of Language and Its
Mathematical Aspects. Providence, RI.

Moortgat, Michael. 1988. Categorial Investigations. Logical and Linguistic Aspects of the Lambek Calculus. Dordrecht: Foris.

Moortgat, Michael. 1996. Multimodal linguistic inference. Journal of Logic, Language and Information, 5(3/4):349-385.

Morrill, Glyn. 1990. Intensionality and Boundedness. Linguistics and Philosophy, 13:699-726.

Pentus, Martin. 1993. Lambek grammars are context-free. In Proceedings of the 8th Annual IEEE Symposium on Logic in
Computer Science. Montreal.

Roorda, Dirk. 1991. Resource logics: Proof-theoretical investigations. Ph.D. thesis, University of Amsterdam.

Shieber, Stuart. 1985. Evidence against the non-context-freeness of natural language. Linguistics and Philosophy, 8:333-343.

A Note on the Complexity of Associative-Commutative Lam-
bek Calculus

Christophe Costa Floréncio
Utrecht University

1. Introduction

In this paper the NP-completeness of the system LP (associative-commutative Lambek calculus) will be
shown. The complexity of LP has been known for some time, it is a corollary of a result for multiplicative in-
tuitionistic linear logic (MILL)?* from (Kanovich, 1991) and (Kanovich, 1992).

We show that this result can be strengthened: LP remains NP-complete under certain restrictions. The proof
does not depend on results from the area of linear logic, it is based on a simple linear-time reduction from the
minimum node-cover problem to recognizing sentences in LP.

2. Definitions

First some definitions are in order:

Definition 1 The degree of a type is defined as

degree(A) = 0ifAePr
degree(B\A) = 1+ degree(A) + degree(B)
degree(A/B) = 1+ degree(A) + degree(B)

In other words, the degree of a type can be determined by counting the number of operators it contains.
Definition 2 The Order of a type is defined as

order(A) = 0ifAePr
order(B\A) = max(1+ order(A)+ order(B))
order(A/B) = max(1+ order(A) + order(B))

Definition 3 A domain subtype is a subtype that is in domain position, i.e. for the type ((A4/B)/C') the domain
subtypes are B and C.
For the type (C'\(B\ A)) the domain subtypes are C' and B.

A range subtype is a subtype that is in range position, i.e. for the type ((4/B)/C) the range subtypes are
(A/B) and A.
For the type (C'\(B\A)) the range subtypes are (B\ A) and A.

In an applicaton A/B,B + A or B, B\A - A the type B is an argument and A/B and B\ A are known as
functors.

Definition 4 LetG = (V, E) be an undirected graph, where V' is a set of nodes and E is a set of edges, represented
as tuples of nodes. A node-cover of G is a subset V' C V such that if (u,v) € E, thenu € V' orv € V'. That s,
each node ‘covers’ its incident edges, and a node cover for G is a set of nodes that covers all the edges in E. The
size of a node-cover is the number of nodes in it.

The node-cover problem is the problem of finding a node-cover of minimum size (called an optimal node-
cover) in a given graph.

The node-cover problem can be restated as a decision problem: does a node-cover of given size k exist for
some given graph?

Proposition 5 The decision problem related to the node-cover problem is NP-complete, The node-cover problem
is NP-hard.

This problem has been called one of the “six basic NP-complete problems’ in (Garey and Johnson, 1979).

1. Thesystems LPand MILL are identical up to derivation from the empty sequent, i.e. the only difference is that - n/n is
not derivable in LP.

The system MILL is closely related to MILL1, another system that has interesting linguistic applications, see (Moot and
Piazza, 2001).

© 2002 C. Costa Floréncio. Proceedings of the Sixth I nternational Workshop on Tree Adjoining Grammar and Related Frame-
works (TAG+6), pp. 159-162. Universita di Venezia.

160 Proceedings of TAG+6

3. Complexity of LP

Theorem 6 Deciding membership for the unidirectional product-free fragment of LP, with all types restricted to
a maximum degree of 2 and a maximum order of 1, is NP-complete in |X|.

Pr oof : It is well known that LP is in NP.

What remains to be shown is existence of a p-time reduction from an NP-complete problem. Let G = (E, V)
be an undirected graph, ne = |E|. Let C = C(G) be a minimum node cover of G, and min(G) = |C(G)|. The
graph G can be reduced to a grammar Gr = gram(G) as follows:

1. Assignstos.

2. Let f be the function that maps node V,, to type v,,. For every edge E, € E, where E, = (V,,V.), let
vy = f(Vy),v. = f(V.). Assign types v, \vy, vy\(s\s) and v;\v., v.\(s\s) to symbol v,.

3. Foreverynode V,, € V, assign f(V,,) = v, to node.

The intuition behind this reduction is that node stands for any node in G, and e, for the connection of edge
E,, to any of the two nodes it is incident on.

Note that this reduction always yields a unidirectional product-free grammar, with all types restricted to a
maximum degree of 2 and a maximum order of 1. Also note that this reduction sets |X| to the number of edges
plus two.

We will now show that accepting a sentence s of the form snode...node v;... v, as being in
N—_—————
i times
L(gram(G)) while rejecting s node ...node vy ... v, will indicate that there is a node cover of size i for G.
N—_—————

i—1 times
Simply iterating from i = 1 to ¢ = ne will lead to acceptance when i = min(G).
Parsing such a sentence will yield a solution: one can collect the assignments to the symbol node used in the
derivation to obtain a minimum node cover.
Let T be some set of types (taken from the assignments to node in gram(G)) assigned to the substring
node...node of s. Let U be some set of types assigned to the substring v ...V, under the same restrictions.

i times

1. Assume thati < min(G). Since by the form of s |T'| < i, |T'| < min(G), so for every minimum node cover C,
thereisa V,, € C such that f(V,,) & T'. Since for every edge (V,,V.) € E, there is some v,, in s that has been
assigned either the type v, \v, or v, \(s\s), v, = f(Vy) or v, = f(V2).

Since for every edge (V,,V.) € E, f(V,) € C or f(V,) € C, there is some v,, in s that has been assigned
vp\vp OF v, \(s\s), v, € T.

Since I, pT, T" t/ p T, T’ (where pT is a primitive type), in order to derive (just) s, all the types in T" have to
occur as argument to an application in the derivation. Given the form of gram(G) this is possible just if the
functor is a type assigned to Vi <n<ne. ThUS 81<jcmin(q) € L(gram(G)).

2. Assume i = min(G). Then there is a T such that |T'| = i. Let T'c be {f(V,,)|V,, € C}, for some C. Given s
and assignments of types such that for each 1 < p < ne, v,\(s\s) occurs at most once ...

Since LP is associative and commutative any rearrangment is allowed during a derivation. This property can
be used to ‘sort’ the assignments to the symbols node and v, in the following way: each occurrence of node
(assigned type v, € T'c) is followed by all v,,’s that are assigned type v, \v,, followed by a single v,, assigned
v\ (s\s). The substring thus obtained is associated with a sequent that derives (s\s). The whole of s minus s,
can be arranged into a number of these substrings, and since A\ A, A\ A F_p A\ A, the associated sequent will
derive s\s. Since s is only assigned s in gram(G), we finally get the derivation s, s\s I s.

This shows that the reduction given is indeed a reduction from an NP-complete problem. O
Example: Reducing G = ({(1,2),(1,3),(3,4),(2,4)}, {1, 2,3,4}) will yield

C. Costa Floréncio 161

S — S
Vi vlivl,vlkgsisg,vgivg,vgigsisg
Vo = U1\V1,V1\(S\S),V3\V3,V S\s
By s ug\ug, o\ (s\s) viun, o\ (5\s)
Vi > 02\v2,v2\(5\$), vs\vs, va\(5\9)
node — wy,vs,v3,04

The corresponding minimal node cover is {1,4} or {2, 3}.
As a final remark, note that there exists an alternative reduction gram’(G):

1. Assignstos.

2. Forevery edge E, € E, where E, = (V,,V.), letv, = f(V}),v. = f(V>). Assign types v, \v, and v.\v. to
symbol e,.

3. Foreverynode V,, € V, assign v, \(s\s) to ¢ and f(V},) = v, to node.

Example: Applying this procedure to the same graph yields:

S = s
Vi — v \’Ul, ’UQ\’UQ
Vo = vr\vi,vs\us
gram'(G) : Vs +— wvz\vs,vs\vs
Vg +— 1)2\1)2, ’1)4\1)4
node +— wy,v2,v3,v4
c = 0i\(s\s),02\(5\8),v3\(s\5), va\(5\)
Accepting a sentence of the forms node ...node v;... v,.C...c asbeinginL(gram(G)) will indicate
—_——— ——
i times i times

that there is a node cover of size i for G. Again, iterating from ¢ = 1 to i = ne will lead to acceptance when
i = min(G).

4. Example Derivations

Given graph G = ({(1,2),(1,3),(3,4),(2,4)},{1,2,3,4}), the grammar gram(G)(G) and sentence
‘s node node v1 v2 v3 v4’ (i = 4)we getthe solutions shown in Figures 1 and 2.

nodet v, VviFvi\vy \E]
node o v1 k- vy V2 F v\ (s\s) \E] node vy V3 F vg\vs \E]
Sk s (nodeovl) o V2 F s\s node o v3 F vy V4 vg\(s\s)
so ((nodeovl)oVv2) ks (\E] (nodeo v3) o V4 s\s

(so ((node o v1) o v2)) o ((node o v3) o v4) + s (\E]
(s ((node o v1) o v2)) o (node o (V3o v4)) I s
(so (nodeo (vloVv2)))o (nodeo (V3o v4)) ks [ass]
((se node) o (vlov2)) o (nodeo (v3ov4)) F s [ass]
(sonode) o ((vlov2)o (nodeo (v3ov4)))F s [as]
(sonode) o (((vlov2)onode)o (v3ov4)) ks [ass]
(s011006) o ((node o (Vo v2)) o (V3o vd)) F s Lo

\E]

[ass]

~— [— | —

)
)
)
)

Figure 1: A derivationfor ‘s node node v1 v2 v3 v4’corresponding to the minimum node cover {vy,v4}.

162 Proceedings of TAG+6

node F vy V1F vs\vg 0]
node o v1 - vs V4 vg\(s\s) \E] node - vs V2 F vs\vg \E]
sk s (nodeo vl) o va I s\s node o v2 k- vg v3F vs\(s\s)
so ((nodeovl)ovd) ks [\Z] (node o v2) o V3 s\s

(so ((nodeo vl) o v4)) o ((node o v2) o v3) + s (\Z]

(so ((node o v1) o v4)) o (node o (V2o v3)) s

(so (node o (v1ov4))) o (nodeo (v2ov3)) + s

((so node) o (vlov4)) o (nodeo (V2o v3)) + s

(sonode) o ((v1ov4)o (nodeo (V2o V3))) ks

(so node) o (((vlov4)onode)o (V2o Vv3)) F s

(sonode) o ((node o (V1o vd))o (v2oVv3))F s

(s o node) o (node o ((vlovd)o (v2ov3)))F s
) o
) o

\E]

g RN N Naavd

)
)
)
)

[ass]
b

mm)
m

]
5]

mim]

(sonode) o (nodeo (vlo (V4o (V2o V3)))) ks
(sonode) o (nodeo (vlo ((V2oVv3)ovd))) ks ?

[as
[c
[as
[as
[e

Figure 2: A derivationfor ‘s node node v1 v2 v3 v4’corresponding to the minimum node cover {vs, v3}.

References

Garey, Michael R. and David S. Johnson, editors. 1979. Computers and Intractability. A Guide to the Theory of NP-
completeness. Freeman, New York.

Kanovich, Max I. 1991. The multiplicative fragment of linear logic is NP-complete. ITLI Prepublication Series X-91-13,
University of Amsterdam.

Kanovich, Max I. 1992. Horn programming in linear logic is NP-complete. In Proceedings, Seventh Annual |EEE Symposium
on Logic in Computer Science, pages 200-210. IEEE Computer Society Press, 22-25 June.

Moot, Richard and Mario Piazza. 2001. Linguistic applications of first order multiplicative linear logic. Journal of Logic,
Language and Information, 10(2):211-232.

Turning Elementary Treesinto Feature Structures

Alexandra Kinyon

University of Pennsylvania

Ingtitute for Research in Cognitive Science
Suite 400A, 3401 Walnut Street
Philadelphia, PA 19104-6228
kinyon@linc.cis.upenn.edu

http: //imww.cis.upenn.edu/~kinyon

1. Introduction

The richness of the TAG formalism allows one to encode a wide variety of linguistic information in the
topology of an elementary tree (ex: argument vs adjunct distinction, information about “belonging” to a given
subcategorization class, constraints on word order, realization of one or more syntactic phenomena such as passive,
wh extraction etc...). Given a number of “linguistic” information and constraints applying to lexical items, a
grammar developer will encode this information into one or several elementary trees. However, proceeding in the
opposite direction is far less obvious : given an elementary tree, which crucial pieces of linguistic information are
provided by this tree, and how can these pieces be clearly isolated and represented ?

In this paper we try to answer that question. More precisely, we investigate the different possibilities for
extracting from each elementary tree of a TAG a feature structure which captures and clearly separates each piece
of essential linguistic information conveyed by that elementary tree. *

We examine existing implementations of wide-coverage TAG grammars. Current existing wide-coverage
TAG grammars are either semi-automatically generated from an abstract level of syntactic representation such as
MetaRules or a MetaGrammar, or are “plain” grammars that do not resort to such an intermediate step of abstract
syntactic generalization 2. Therefore, after explaining in the first part of this paper why featurizing a TAG is
useful, we then discuss the featurization of these three types of TAGs: We examine the “featurization” of a TAG
semi-automatically generated with a MetaGrammar, the featurization of a TAG generated with MetaRules, and
finally, several options for featurizing a plain TAG (hand-crafted, or automatically acquired from a treebank). We
argue that automatic featurization is desirable, and show that such an automation is achievable thanks to existing
implementations, either via a MetaGrammar approach or via a MetaRules approach, even in order to featurize
plain grammars.

2. Why featurizea TAG ?

By featurizing a elementary tree, we mean capturing its main linguistic characteristics and representing them in
a feature structure. Of course, several kinds of information may be envisioned, depending on the application. Still,
a general need for featurization appears for tasks as diverse as improving Supertagging accuracy, Text Generation,
Corpus annotation and search, and extraction of framework independent linguistic information.

2.1. Improving Supertagging accur acy

Supertagging consists in assigning one or several elementary tree(s) to each lexical item in a text (Srinivas,
1997). Good SuperTagging accuracy is obtained with medium-size grammars®. However, as the size of a TAG
increases from a few hundred trees for hand-crafted grammars to a few thousand trees for automatically gener-
ated grammars, the accuracy of Supertagging deteriorates (just as for traditional POS tagging, the POS accuracy

1. Since we are concerned with linguistic information, we leave aside approaches which focus on capturing common mathe-
matical or topological properties of elementary trees such as those discussed in (Kallmeyer, 1999) (logical formula) or (Halber,
2001) (linear types).

2. A*“plain” TAG can be either hand-crafted (e.g. (XTAG Research Group, 2001)) or acquired automatically from a TreeBank
(e.g. (Chiang, 2000)).

3. For example (Chen, Bangalore and Vijay-Shanker, 1999) report up 98.4% accuracy with an average of 4.8 supertags per
word, using the hand-crafted Xtag grammar for English, comprising approx. 600 trees.

© 2002 Alexandra Kinyon. Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and Related Frame-
works (TAG+6), pp. 163-168. Universita di Venezia.

164 Proceedings of TAG+6

deteriorates with a large POS tagset). To remedy this problem, F. Toussenel and A. Nasr, following a proposal
from (Chen, 2001), are associating a “feature vector” to each supertag i.e. a set of of features which capture the
salient characteristics of a SuperTag. The idea is then to train a supertagger on each element of the vector in order
to reduce sparse data problems. (Chen, 2001) proposes features such as Part of speech, Subcategorization....By-
passive, Wh movement, Topicalized, but does not detail how to obtain these features from elementary trees 4. As
we discuss below, this kind of features can be organized and extracted from Supertags in a systematic way.

2.2. Text generation

Another application for featurization is text generation. For example, (Bangalore and Rambow, 2000) discuss
featurization for text generation as a way to improve error analysis and allow for better stochastic Supertag
assignments models. For lack of space we refer to their paper page 39 for a list of features they use. > Also
for text generation, (Danlos, 2000) uses the G-TAG formalism, and the notion of T-features which can take the
value + or - to identify non-canonical syntactic constructions (i.e. to refer to elementary trees). For instance, if
one considers the transitive family, the binary T-features T-passive, T-without-arg-2 are used to distinguish the
salient features of four distinct elementary trees in that family. A given feature structure will then yield a node in
a derivation tree. From that derivation tree, a sentence exhibiting the correct syntactic phenomena will be generated

We do not discuss into details the other numerous potential applications of featurizing a TAG, but still men-
tion the use of featurization for sentence planning and query-answer applications (Stone and Doran, 1997), for
easy search of annotated corpora (the idea being that it is easier, esp. for non TAG experts, to search a feature
such as relativized object=+ in a corpus where each word is annotated with a feature structure representing its
main syntactic characteristic, rather than making queries on the shape of Supertags identifying relativized-objects)
(Kinyon, 2000). Finally, featurizing a TAG is a way to achieve framework independence. This can be used to share
resources between lexicons, to compile TAGs into different frameworks, and more generally to define a notion of
syntactic interlingua.

However, to achieve such a goal, one must agree among all the featurizations proposed, on what kind of
linguistic featurization is desirable and/or achievable.

4. For a complete list of features proposed see his PhD dissertation pp246-247. Another discussion related to training
probabilistic models taking into account syntactic transformations, independently of TAGs, may be found in (Eisner, 2001)

5. Since they deal with both probabilistic supertagging, and text generation, we have made the arbitrary choice of classifying
their work in this section instead of the previous one.

Alexandra Kinyon 165

oq
8 Dimension 1: nOvnlfan2)

Dimension 2 ! no redistribution

subj inominal-canonical
obj: nominal-canonical
a-obj: nominal-canonical

Dimension 3 :

donne & N2
(1. donne une pomme a M. /
I gives an apple to M}

o _ —_
g Dimension 1: nOvnl(an2)

Dimension 2 ! no redistribution

Nod ¥ PP NLL‘ Dimension 3 ;

subj rnominal-canonical
obj : nominal-canonical
a-obj : nominal-canonical

donne & N2l

{I. donne & M. une pomme /
T gives to M an apple)
[= 4}

Dimension 1: n0vnlfan2)
Dimension 2 : 30bj-empty

1 n - Dimension 3 :| subj :nominal-canonical
NO r N1 obj : nominal.canonical

donne

{I. donne une pommes
I gives an apple)

N Dimension 1: n0vnlfan2)

A\ . . : . .

NI® , Dimension 2 : no redistribution
ﬁi\ I Dim ensjon 3 @

Comp y Nod pp

subj :mmominal-inverted
abj ! relativized-object
a-0bj : nominal-canonical

que donne Pi'ep N2d

&
fLa pommme que donine J. o M./
The apple which gives J to M.)

Bs

N Dimension 1: nOvnlfan2)

h‘-‘
N 1& ' -
,4]\ Dimension 3 i| subj inominal-canonical

Comp NobV PP obj : relativized -object
| a-obj: nominal-canonical

que doane prep N2:db
I

Dimension 2 ! no redistribution

Lo pommme que J donne 4 M./
The apple which [givers to M)

Figure 1: Featurization of elementary trees with a MetaGrammar for French: each elementary tree is associated to
a feature structure which contains the main syntactic characteristics of the tree (i.e. the final classes of the hierarchy
which allowed the generation of that tree).

3. Featurizing with a M etaGrammar

(Candito, 1996) has originally developed in LISP a tool to semi-automatically generate a 5000-tree wide
coverage TAG for French (Abeille, Candito and Kinyon, 1999) as well as a large grammar for Italian (Candito,
1999). The idea is to use an additional layer of linguistic description called the MetaGrammar (MG), which
imposes a general organization for syntactic information in a three-dimensional hierarchy :

e Dimension 1: initial subcategorization

166 Proceedings of TAG+6

e Dimension 2: valency alternations and redistribution of functions
e Dimension 3: surface realization of arguments.

Each terminal class in dimension 1 describes a possible initial subcategorization (i.e. a tree family). Each
terminal class in dimension 2 describes a list of ordered redistributions of functions (e.g. it allows to add an
argument for causatives). Each terminal class in dimension 3 represents the surface realization of a surface function
(ex : pronominalized, wh-extracted etc.). Each class in the hierarchy corresponds to the partial description of a tree
(Rogers and Vijay-Shanker, 1994). An elementary tree is generated by inheriting from exactly one terminal class
from dimension 1, one terminal class from dimension 2, and n terminal classes from dimension 3 (where n is the
number of arguments of the elementary tree being generated). Since the hierarchy summarizes the main linguistic
pieces of information that will be used to generate a given elementary tree, when using such a MetaGrammar to
generate a TAG, it is possible to keep track of which terminal classes each elementary tree inherits from. Therefore,
such a TAG can easily be “featurized” as can be seen on figure 1. This implementation was not included in
Candito’s tool, but (Crabbe and Gaiffe, 2002) recently reimplemented a MetaGrammar generator in Java, which
incorporates such a featurization facility. In addition, (Crabbe and Gaiffe, 2002)’s tool offers flexibility in the sense
that one or more features may be associated to each class in the hierarchy, and that the feature(s) associated to a
given class may be the name of that class, but may also be any other feature deemed appropriate. This flexibility
has obvious advantages, but it may also prove to be an inconvenient in the sense that there is no constraints based
on linguistic principles. For example, their implementation does not enforce a three-dimensional hierarchy. It is
up to the MetaGrammar writer to make sure that the hierarchy is linguistically adequate. Nonetheless, it is a very
useful tool to automatically featurize a TAG.

4, Featurizing with MetaRules

The idea of MetaRules is presented in (Becker, 2000). A MetaRule takes as input an elementary tree and
outputs a new, and generally more complex, elementary tree. Therefore, in order to create a TAG, one can start
from one canonical elementary tree for each subcategorization frame and a finite number of MetaRules which
model syntactic transformations (e.g. passive, wh-questions etc) and automatically generate a full-size grammar.
6 Within the Xtag project (Prolo, 2002) was the first one to implement a large TAG grammar for English based on
MetaRules and to tackle with the numerous practical implementation issues left unsolved. 7 This grammar consists
of 1008 elementary trees and was generated from 57 canonical trees and 21 MetaRules within the Xtag project.
It is quite straightforward, when the grammar is generated with MetaRules, to keep track of which MetaRules
were applied to generate a given elementary tree. The main characteristic of an elementary tree can therefore
be represented in a feature structure with one feature taking as value a subcategorization frame, and 21 binary
features (one for each metarule) having the value + if the metarule was applied to generate that tree, and the feature
- if it was not. Figure 2 illustrates such a featurization. So this is a second possibility to achieve the automatic
featurization of a TAG.

5. Featurizing a plain grammar

To featurize a plain grammar, hand-crafted or automatically acquired, one can start from a finite set of features
that are judged linguistically interesting (e.g. such as those suggested by (Chen, 2001). One can then perform the
tedious task of manually examining each elementary tree in the TAG to assign a value to each of those features
for each of these trees (possibly with the help of some degree of automation e.g. macros, pearl scripts etc...).
However, ensuring constitency with such a hand-featurization does not seem realistic : ideally we would want a
given feature structure to correspond to a unique elementary tree. At the very least, we would want a consistent
featurization of all the trees. For example, having a subcategory feature for the trees in some family but not for
all families would be problematic. Similarly, having a relativized feature for only some of the trees exhibiting a
relativized argument would be equally unsatisfactory. This type of inconsistency could easily arise though esp.

6. Since we examine the one practical existing implementation of MetaRules, we do not take position on the theoretical
status of syntactic transformations nor on the best way to ensure the finiteness of the generation process (i.e. via finite closure
or ordering of the rules etc.) We refer to (Becker, 2000), or (Evans, Gazdar and Weir, 2000) for a slightly passionate discussion
on this issue.

7. Unfortunately, apart from (Prolo, 2002), no detailed description of this implementation has been published to this day.

Alexandra Kinyon 167

Sna

T

NPyp=q |

NP, [Family = transitive
| Passive= +
Passive-from-PP= -
DropBy=+
Gerund= -
| WhSubject= +
WhSentSubj= -
Vo WhNPObj= -
WhSmalINPObj= -
WhApObj= -
WhAdvObj= -
WhPPObj= -
RelAdjNoW= -
RelAdjW= -
RelSubjNoW= -
RelSubjNoWForPassive= -
RelSubjw= -
RelObjNoW= -
RelObjw= -
RelPPObj= -
PROSubject= -
| Imperative= -

Figure 2: Featurization with MetaRules: elementary tree for What was eaten and its associated feature structure
(i.e. MetaRules applied to generate the tree are marked +)

when the plain grammar is augmented : when new trees are added to the grammar, manual featurization obliges
one to go over the feature structure associated to each new tree in the grammar. Therefore, automatic featurization
is higly desirable even in the case of a hand-crafted TAG : given a TAG, a program needs to systematically extract
the salient linguistic information from each elementary tree. Note that this amounts to extracting a higher level
of syntactic information from the grammar (i.e. a set of MetaRules or the hierarchy nodes of a MetaGrammar).
The question remains as to whether it is preferable to extract a MetaGrammar (yielding non binary features) or
MetaRules (yielding, at least with the existing implementation, binary features).

It is generally believed that the MetaGrammar approach is preferable because it allows real featurization,
instead of just a feature vector. This is highly debatable and may be simply due to the fact that the linguistic basis
of the MetaGrammar approach have been more cleanly defined i.e. the MG incorporate the notion of syntactic
function, and the distinction between subcategorization, valency alternations and realization of arguments.

For Metarules, the notion of initial subcategorization is de-facto captured since a meta-rule grammar is initially
generated from a set of elementary trees. In addition to that, it seems highly desirable and feasible to incorporate
the notions of syntactic function, valency distribution and realization of arguments into the notion of metarules.

168 Proceedings of TAG+6

This amounts to formulating metarules in terms of syntactic functions and separating two types of MetaRules :
e Alternation metarules (ordered)
e Realization metarules (unordered)

Moreover, in practice, Metarules are more compact than MetaGrammars for developing real grammars (but
this point is beyond the scope of this work). The bottom line is that MetaRules and MetaGrammars are not
necessarily as different as they are thought to be, and that automatically extracting an abstract level of syntactic
representation from a plain TAG vyields in fact a hybrid representation that is between the notion of MG and that of
MetaRules.

6. Conclusion

We have (briefly) discussed diverse applications for which extracting the salient linguistic characteristics of a
TAG via featurization is interesting. We have shown that existing TAG implementations based on MetaGrammar
and MetaRules allow automatic featurization. We have argued that automatic featurization is preferable even in
the case of plain grammars, whether hand-crafted or automatically acquired; and that a MetaGrammar approach is
not necessarily preferable to a MetaRule approach. We also would have liked to present the partial implementation
which we have done on the PennTreebank to acquire a hybrid level of syntactic representation, mixing MetaGram-
mar and MetaRules characteristics but we will have to wait for a more suitable presentation format.8 From this
abstract level of syntactic representation, one can generate a TAG, but also potentially grammars in another format
(such as LFG, HPSG, dependency grammars etc...). Hence, an abstract level of syntactic representation (MG,
MetaRules or Hybrid) can be an interesting syntactic interlingua candidate for compiling one grammar framework
into another.

6.1. Acknowlegements

We thank B. Crabbe, C. Prolo, F. Toussenel for their helpful comments on earlier drafts of this paper.

References

Abeille, A., M.H. Candito and A. Kinyon. 1999. FTAG: current status and parsing scheme. In VEXTAL-99, Venice.

Bangalore, S and O. Rambow. 2000. Using TAGs, a Tree Model, and a Language Model for Generation. In TAG+5, Paris.

Becker, T. 2000. Patterns in metarules for TAG. In Abeille Rambow, editor, Tree Adjoining Grammars, CSLI.

Candito, M.H. 1996. A principle-based hierarchical representation of LTAGs. In COLING-96, Copenhagen.

Candito, M.H. 1999. Representation modulaire et parametrable de grammaires electroniques lexicalisees. Ph.D. thesis, Univ.
Paris 7.

Chen, J. 2001. Towards Efficient Statistical Parsing using Lexicalized Grammatical Information. Ph.D. thesis, Univ. of
Delaware.

Chen, J., S. Bangalore and K. Vijay-Shanker. 1999. New Models for Improving Supertag Disambiguation. In EACL99, Bergen.

Chiang, D. 2000. Statistical parsing with an automatically-extracted TAG. In ACL-00, Hong-Kong.

Crabbe, B. and B. Gaiffe. 2002. A new Metagrammar Compiler. In Proc. TAG+6, Venice.

Danlos, L. 2000. G-TAG: A lexicalized formalism for text generation. In Abeille Rambow, editor, Tree Adjoining Grammars,
CSLI.

Eisner, J. 2001. Smoothing a Probabilistic Lexicon via Syntactic Transformations. Ph.D. thesis, Univ. of Pennsylvania.

Evans, R., G. Gazdar and D. Weir. 2000. Lexical rules are just lexical rules. In Abeille Rambow, editor, Tree Adjoining
Grammars, CSLI.

Halber, A. 2001. Strategie d’analyse pour la comprehension de la parole: une approche TAG. Ph.D. thesis, ENST-Paris.

Kallmeyer, L. 1999. Tree Description Grammars and Underspecified Representations. Ph.D. thesis, Univ. of Tubingen.

Kinyon, A. 2000. Hypertags. In COLING-00, Sarrebrucken.

Kinyon, A. and C. Prolo. 2002. ldentifying verb arguments and their syntactic function in the Penn Treebank. In LREC 02,
Las Palmas.

Prolo, C. 2002. Generating the Xtag English grammar using metarules. In Proc. TAG+6, Venice.

Rogers, J. and K. Vijay-Shanker. 1994. Obtaining trees from their description: an application to TAGS. In Computational
Intelligence 10:4.

Srinivas, B. 1997. Complexity of lexical descriptions and its relevance for partial parsing. Ph.D. thesis, Univ. of Pennsylvania.

Stone, M. and C. Doran. 1997. Sentence Planning as description using TAG. In ACL97, Madrid.

XTAG Research Group. 2001. A Lexicalized Tree Adjoining Grammar for English. Technical Report IRCS-01-03, IRCS,
University of Pennsylvania.

8. Meanwhile, we refer the reader to (Kinyon and Prolo, 2002) for an incomplete overview of how tree families are extracted
from the PennTreebank with an interlingua appraoch.

On the Affinity of TAG with Projective, Bilexical Dependency
Grammar

Tom B.Y. Lai'? Changning Huanband Robert W.P. Luk
City University of Hong Konl Tsinghua Universit}; Microsoft Research Beijirtg Polytechnic University of

Hong Kond

1. Introduction

This paper describes a projective, bilexical dependency grammar, and discusses its affinity with TAG. Com-
mon features of the two formalisms include a tree-like surface syntactic structure and readiness for a lexicalised
treatment. TAG surface structures built from elementary and auxiliary trees by means of substitution and adjunc-
tion can correspond to trees consisting entirely of lexical nodes and dependency arcs. Lexical anchors in TAG,
a well-motivated notion, can also be accommodated in the dependency grammar formalism, provided it is recog-
nized that the dependent, as well as the governor, can have a vote about the formation of a dependency relation. It
is noted, however, that mirroring obligatory adjuncts in TAG in dependency grammar can be problematic.

2. Dependency Analysis
2.1. Projective Dependency Structures

Though not supported by all schools of dependency grammar @resii959), some followers of dependency
grammar assume that there is a projective surface or back-bone dependency structure. The theoretical foundation of
this tradition can be traced to Gaifman (1965) and Hays (1964), and is summed up in the following well-formedness
conditions for dependency structures in Robinson (1970):

e one and only one element is independent;
o all others depend directly on some element;
¢ no elements depend directly on more than one other;

if A depends directly on B and some element C intervenes between them (in linear order of string), then C
depends directly on A or on B or some other intervening element.

These conditions say, in effect, that conforming dependency structures are representable by trees without
crossing branches. Of courses, as in other grammar formalisms that pre-suppose a context-free syntactic structure
back-bone, additional linguistic constraints can be incorporated in the formalism by means of various mechanisms,
e.g. feature unification.

2.2. Dependency Structures without Phrasal Nodes

In the dependency grammar formalism (Lai and Huang, 1998; Lai and Huang, 2000) discussed in this paper,
dependency structures are trees consisting entirelgxidal nodes. For example, the dependetreg for (1a),
taken from Abeilé (1993), is (1b):

(1) a. Jeandort beaucoup
Jean sleeps much

‘Jean sleeps a lot.

b. dort
I

| subj adjunct |

Jean beaucoup

When a coarser degree of granularity is warranted by the situation, the actual lexical items in the tree nodes
can be replaced by their syntactic categories.

(© 2002 Tom B.Y. Lai.Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and Related Frameworks
(TAG+6), pp. 169-174. Universi di Venezia.

170 Proceedings of TAG+6

2.3. Statistical Dependency Analysis

In the computational linguistics community, dependency structures are often parsed, exploiting their affinity
with phrase-structure structures, with the help techniques used with context-free grammars (Hellwig, 1986). On
the other hand, Collins (1996) uses ‘bilexical’ co-ocurrence probabilities (of governors and their head daughters)
to estimate the likelihood of phrase-structures in the syntactic analysis of sentences. In a recent effort on Chinese
(Lai et al, 2001), bilexical probabilities have been used directly to derive, without direct reference to context-free
grammar and phrasal structures, dependency structures using a CYK-like algorithm (Eisner, 1996; Eisner, 2000).

The probabilistic model in Lai and Huang (2000) uses conditional probabilities defined in terms of dependen-
cies. Factors considered include both dominance and ‘function’, as well as other contextual factors like relative
proximity to the governor. No phrase structures are generated and the dependency structures consist of only bi-
nary bilexical relations. A CYK-like algorithm is used to construct optimal non-constituent structures that ‘span’
chunks of contiguous words until the ‘span’ covers the whole input.

In the experiment reported, a training set of about 40 M of text was taken from a two-gigabyte Chinese
newspaper corpus. A lexicon of about 60,000 entries was generated. The performance of the statistical dependency
parser was gauged against the annotations in training corpus. For the more stringent criterion of getting both the
dominance relation and the functional label correct at the same time, closed and open test averages were 94.7%
(95.6% correct in the training corpus) and 74.2% (94.9% correct in the training corpus).

3. Dependency and Lexicalized TAG

The formal properties of this dependency grammar formalism can be compared with those of lexicalised TAG
as described in (Abe#, 1993; Abeile and Rambow, 2000).

3.1. Initial Trees and Substitution

TAG trees are derived by applying the operations of substitution and adjunctioitiab trees andauxiliary
trees respectively. Initial trees like (2) account for the complements in the projection of a subcategorizing word
(e.g.dort ‘sleeps’).
) v
|

| |
N Vv

—_> |
dort

In this example, the arrow attached to the node N indicates that a similar initial tree for a noun (an N-tree) can
replace the node by the substitution operation. To avoid confusion, we avoid the use of the word ‘hedalt but
can be safely called the ‘anchor’ of the tree, which forms a part of its lexical property.

In the dependency grammar formalism, a verb tlket will subcategorize for each of its complement depen-
dents.

(3) dort

|
| subj
|

Jean

A word subcategorizes for each of its complement dependents separately. Positional constraints can be added to
handle multiple complements.

3.2. Auxiliary Trees and Adjunction

In TAG, adjuncts are accounted for by auxiliary trees and the operation of adjunction. For example, the word
beaucoupa lot’ is the anchor of the auxiliary tree (4):

Lai, Huang, and Luk 171

(4) v

I I
V* Adv

beaucoup

This auxiliary tree is a lexical property of the ancliimaucoup It can be used to replace a V-tree (a sub-tree) in
a syntactic structure. The replaced V-tree is then, used to replace, in turn, the V* node in the auxiliary tree. The
beaucoupuxiliary tree is ‘adjoined’ to a tree representing the sentdea@ dortto obtainJean dort beaucoup
In TAG, an adjunct is on the same level as or higher than the head word of the phrasdénivieesyntactic
tree as in (5a) or (5b).

a \%
(5) |
\% Adv
I I
dort beaucoup
b VP
I
VP Adv
I I
\% beaucoup
I
dort
C.
dort
I
I
beaucoup

TAG is probably correct in letting adverbs (elgpaucoupdecide that they are to be adjoined to verbs.

In the dependency grammar formalism, a verb (€l@rt) governs an adverb (e.¢peaucoup. (See (5c¢) and
the dependency structure fdgan dort beaucouin (1b).) However, there is nothing to prevent a dependent adjunct
from determing (as in TAG) what it should be adjoined to.

Where only initial trees and substitutions are involved, it is obvious that TAG derived trees can be pruned into
dependency structures. (Dependency relation labels like ‘subject’ can obtained from lexical information or from
the configuration of the tree.) Conversely, dependency structures can also be fleshed out to form TAG derived trees
(with minimal structure). Adjunction makes the situation somewhat more complicated as the adjunct has to be
placed higher up than the ‘head’ word in the TAG derived tree. This is possible because the substitution-adjunction
distinction is obtainable from dependency relation labels (e.g. ‘adjunct’). in the dependency structure.

Similar grammatical information can be stored in the lexicon in either formalism. Additional mechanisms,
e.g. feature unificaiton, can also be added on top of the tree backbone in both formalisms.

4. Some Complications

The adjuncts (daughters in dependency grammars) that we have lookedptianal
However, with the presence afljunction constraint®r top andbottom featuresn TAG, adjuncts can either
be optional or obligatory.

172 Proceedings of TAG+6

4.1. Auxiliary Adjunction

One kind of obligatory adjuncts discussed in Akedind Rambow (2000) are auxiliaries ltkasandis in has
seenandis seen

a S
(6) |
| |
NP VP: OA((6b), (6c))
> |
\Y
|
seen
b VP
|
I |
Aux VP*
|
has
c VP
|
I |
Aux VP*
|
is

The initial tree (6a) associated witslkeen(a past participle form) has a VP node with tit@igatory adjunction
constraintO A(6b, 6¢) indicating that an adjunction operation must be applied to it using the auxiliary trees (6b)
or (6c).

In a dependency grammar, the first decision to be made is whether the governor should be the asigiple
or the auxiliaryhas (or is). One can very well follow TAG and say that the participle is the governor and the
auxiliary is an adjunct daughter. A mechanism can be added to stipulate that, given that the governing verb is in
participle form, the adjunct auxiliary is obligatory.

An ‘obligatory’ adjunct may sound weird to those who are accustomed to associating the term ‘adjunct’ with
optional dependents, but it should be noted that formally, or mathematically, there is nothing to censor this usage.
Anyway, there is obviously a sense in which an auxiliary is not subcategorized for like the ‘complement’ arguments
of a predicate.

In Chinese, adverbial particles like (perfective marker) are often said to be words rather than morphological
affixes. Given this practice, considering these words to be adjuncts as in TAG is not an unreasonable way to account
for their occurrence with the governor predicate. It should perhaps be noted, though, that this will also mean that

an adjunct can come between the governor predicate and subcategorized complements as in:
7y na le dian gian
take PERF some money

‘taken/took some money’

4.2. Modals and Raising Predicates

In Abeille and Rambow (2000), modals, likan and other raising predicates, likéficult andpossible are
also considered to be obligatory adjuncts.

Lai, Huang, and Luk 173

In TAG, even though modals are adjuncts, they occupy a higher position than the verb predicates in the derived
trees.

(8) ¥
| |
NP VP
J(l)hn --------------!-_
|V | VP
cl\n |V
S\I/vim

In dependency grammar, however, the modal will have to be a daughter of the predicate verb.

With other raising predicates, there may be a difficulty. For example, plaliffiqult under (o) readin the
dependency structure fdifficult to readwill be a remarkable commitment.

It must be said that this is not a problem with TAG. Raising predicate are higher up in derived syntactic tree
anyway. This is a problem with dependency grammar only.

5. Concluding Remarks

The formal properties of TAG are well understood (Joshi, Vijay-Shanker and Weir, 1991), and the close
relation between TAG and dependency grammar have been known (Rambow and Joshi, [ha®# paper, in
particular, we have noted that the basic TAG mechanisms of substitution and adjunction go well with a projective
bilexical dependency grammar approach in general. We have however also noted that coping with the TAG notion
of obligatory adjuncts, e.g. as applied to modals and other raising predicates, can be problematic.

To a certain extent, the above observations support the idea of trying to abstract away from particular grammar
formalisms when marking the surface syntactic structures of a corpus, for example, as suggested by the annotators
of the Chinese PennTreeBank (>&tal., 2000). It must, however, also be noted that trying to mirror TAG derived
trees may be complicated sometimes.

References

Abeillé, Anne. 1993Les nouvelles syntaxeBaris: Armand Colin.

Abeille, Anne and Owen Rambow. 2000. Tree Adjoining Grammar: An Overview. In Anne Alzili Owen Rambow,
editors, Tree Adjoining Grammars: Formalisms, Linguistic Analysis and Proces§i&d | Publications, Stanford, pages
1-68.

Collins, Michael. 1996. A New Statistical Parser Based on Bigram Lexical Dependenci®sodeedings of 34th Annual
Meeting of ACL (ACL'96)Santa Cruz.

Eisner, Jason. 1996. Three New Probabilistic Models for Dependency Parsing: An Exploratfrocéedings of the 16th
International Conference on Computational Linguistics (COLING;p@pes 340-345, Copenhagen, August.

Eisner, Jason. 2000. Bilexical Grammars and Their Cubic-time Parsing Algorithms. In Bunt and Nijholt, édlt@sces in
Probabilistic and Other Parsing Technologid¢duwer Academic Publishers, Dordrecht, pages 29-62.

Gaifman, Haim. 1965. Dependency Systems and Phrase-Structure Sylstimmeation and Contrgl8:304—337.

Hays, David. 1964. Dependency Theory: A Formalism and Some Observatmmguage 40:511-525.

Hellwig, Peter. 1986. Dependency Unification GrammarPtaceedings of the 11th International Conference on Computa-
tional Linguistics (COLING'86)pages 195-199.

Joshi, Aravind, J. Vijay-Shanker and David J. Weir. 1991. The Convergence of Mildly Context-Sensitive Grammar For-
malisms. In P. Sells, Shieber S. and T. Warsaw, editemsndational Issues in Natural Language ProcessMdT Press,
Cambridge, Mass., pages 31-81.

Lai, Tom B.Y. and Changning Huang. 1998. An Approach to Dependency Grammar for Chinese. In Yang GuStdiies,
in Chinese Linguisticd_inguistic Society of Hong Kong, Hong Kong, pages 143-163.

Lai, Tom B.Y. and Changning Huang. 2000. Dependency-based Syntactic Analysis of Chinese and Anotation of Parsed Corpus.
In Proceedings of ACL'20Q(hages 255-262, Hong Kong, October.

1. Thanks to an anonymous reviewer for pointing out and providing this reference.

174 Proceedings of TAG+6

Lai, Tom B.Y., C.N. Huang, Ming Zhou, J.B. Miao and Tony K.C. Siu. 2001. Span-based Statistical Dependency Parsing of
Chinese. IrProceedings of NLPRS'200fages 667—684, Tokyo, November.

Rambow, Owen and Aravind Joshi. 1997. A Formal Look at Dependency Grammars and Phrase-Structure Grammars, with
Special Consideration of Word-Order Phenomena. In Leo Wanner, eoent Trends in Meaning-Text Theadghn
Benjamins, Amsterdam and Philadelphia, pages 167-190.

Robinson, Jane. 1970. Dependency Structures and Transformation Rangslage 46:259-285.

Tesnere, Lucien. 1959Elements de syntaxe structuralearis: Klincksieck.

Xia, Fei, Martha Palmer, Nianwen Xue, Mary Ellen Okurowski, John Kovarik, Fu-Dong Chiou, Shizhe Huang, Tony Kroch
and Mitch Marcus. 2000. Developing Guidelines and Ensuring Consistency for Chinese Text AnnotdatiREQr2000
Athens.

The Theory of Cﬁntrol Applied to the Prague Dependency
Treebank (PDT)

Jarmila Panevova, Veronika Reznickova, and Zdenka UreSova

Charles University, Prague, Czech Republic {panevova,rez,uresova}@ufal.mff.cuni.cz

1. Introduction

One of the most difficult issues within corpora annotation on an underlying syntactic level is the restoration
of nodes omitted in the surface shape of the sentence, but present on the “underlying” or “deep” syntactic level.
In the present paper we concentrate on such type of nodes which are omitted due to the phenomenon usually
called grammatical “control” with regard to their respective anaphoric relations. In particular, we extend the
notion of control to nominalization and demonstrate how this relation is captured in the Prague Dependency
Treebank.

The theory of control is present within Chomsky’s framework of Government and Binding (using the terms
verb of control, controller and controllee, cf. Chomsky, 1980), but also within many other formal frameworks,
e.g. GPSG (Sag and Pollard, 1991) or categorial grammar (Bach, 1979). We analyse this phenomenon within
the framework of the dependency grammar, theoretically based on the Functional Generative Description (FGD,
cf. Sgall, Hajicova and Panevova, 1986).

In FGD, on the “underlying” or “tectogrammatical” level, control is a relation of an obligatory or an
optional referential dependency between a controller (antecedent) and a controllee (empty subject of the
nonfinite complement (= controlled clause)). The controller is one of the participants in the valency frame of
the governing verb (Actor (ACT), Addressee (ADDR), or Patient (PAT)). The controlled clause functions also
as a filler of a dependency slot in the valency frame of the governing verb, being labeled as Patient or Actor.
The empty subject of the controlled clause may have the function of different dependency relations to its head
word (the infinitive): Actor, or, with passivization of the controlled clause, Addressee or Patient (cf. Koktova,
1992).

2. Capturing of “control” phenomenain the PDT

In the present section we focus on the capturing of the phenomenon of control in the Prague Dependency
Treebank (PDT), a three-layer annotated corpus of Czech, basically conceived of in accordance with the
theoretical assumptions of the FGD (for more information about PDT cf. Haji¢: Tectogrammatical
Representation: Towards a Machine Transfer in Machine Translation, this volume).

2.1. Restoration of deletionsand capturing of coreferential relationsin the PDT

One of the basic principles of annotation of the PDT at the tectogrammatical level concerns also restoration
of deletions: in the cases of deletion in the surface sentence, nodes are introduced into the tectogrammatical tree
to 'recover' a deleted word. It includes also a restoration of deleted participants of valency frames of verbs.
When the nodes deleted in constructions of control are restored, annotators should indicate coreferential
relations between the arguments in positions of the controller and the controllee. For labeling these coreferential
relations the following attributes (grammatemes) of the general scheme are relevant:

COREF(erence) - the value of this attribute is the lexical value of the antecedent of the given anaphoric
node (this node itself may be present on the surface, or deleted)

ANTEC(edent) — the value of this attribute corresponds to the functor of the antecedent with grammatical
coreference

CORNUM - refers to the antecedent of the given nodel:.I

The Controllee gets the special lemma Cor.

Let us present here some illustrative examples of rather complicated sentences from our annotated corpus
that exhibit relations between the arguments in positions of the controller and the controllee.

* Supported by the Ministry of Education of the CR Project LNOOA0063.

1. For the difference between the textual and the grammatical coreference see Haji¢ova, Panevova and Sgall, 2000.

2 Technically, the CORNUM is the only attribute that has to be marked, since the attributes COREF and ANTEC can be
then easily extracted from the referred-to node. For the reason of perspicuity we refer to all the three attributes separately.

© 2002 Jarmila Panevové, Veronika Reznikové, and Zdeiika Ure$ova. Proceedings of the Sixth International Workshop on
Tree Adjoining Grammar and Related Frameworks (TAG+6), pp. 175-180. Universita di Venezia.

176 Proceedings of TAG+6

(1) Poukazuje na poslance, ktefi jsou v zajmu dosazeni kompromisu schopni piekrocit unosnou mez.
'He refers to deputies who are able in the interest of the compromise to cross the bearable limit.'

poukazovat
PRED
refer

on poslanec

ACT PAT
he deputy
yt
RSTI
be
ktery dosazeni schopny
ACT AIM PAT
who in the interest of able
ANTEC: PAT
COREF: poslanec
Gen kompromis prekrogit.CPL
ACT PAT PAT
compromise cross
Cor mez
ACT PAT
limit

ANTEC: ACT
COREF: ktery

unosny

RSTR
bearable

(2) Musim se stavit v Cistirng, abych se zbavil toho kabatu, ktery jsem slibil odnést.
'l must stop at the cleaners to get rid of the coat (which) I promised to take away.'

stavit_se
PRED
stop

\

ja Cistirna / zbavit_se
ACT LOC AIM
| cleaners get rid of

ja kabat
ACT PAT
| coat
slibit.
RSTI}
promise
ja Gen odnést
ACT ADDR PAT
| take away
ktery Cor
PAT ACT

which
ANTEC: PAT ANTEC: ACT
COREF: kabat COREF: ja

Panevova, Reznickova, and UreSova

2.2. Survey of viewson “control” phenomena with verbsin the FGD

2.2.1. Classification of verbsof control with controlled infinitive clauses

Koktova and Panevova classify the verbs of control according to the type of its valency frame and to the
functions of the controlled infinitive clause and the controller in the valency frame of the verb of control (see
Koktova, 1992, and Panevova 1986, 1996). According to this classification the following basic groups of verbs
of control should be recognized (we leave out here some groups with really rare types of verbs of control, e.g.
verbs with the so-called Slavonic Accusative with Infinitive, e.g. Videl Karla prichazet (1it. He saw Charles to-
come)):

1. The controlled infinitive clause functions as Patient: three groups of verbs of control in Czech can be
distinguished, namely verbs in the valency frame of which the Controller is:

1) ACT (e.g. Jan se boji ziistat doma sam (John is afraid to stay at home alone))

i) ADDR (e.g. Redaktor doporucil autorovi provést nekolik zmen v textu (An editor recommended the
author to make several changes in the text))

iii) ACT or ADDR (the verb slibit (promise) with the Controller functioning as ACT: e.g. Jan slibil matce
vratit se domii pred piilnoci (John promised his mother to return at home before midnight); the same verb with
the Controller functioning as ADDR e.g. Rodice slibili détem uzit si prazdniny ve stanu u rybnika (lit.: The
parents promised (their) children to enjoy the holidays in a tent by a lake))

2. The controlled infinitive clause functions as Actor: especially the “predicate” of control (expressed by a
copula with an evaluative or modal adjective) is taken into account (e.g. Je snadné cist tu knihu (It is easy to
read the book))

3. The controlled infinitive clause can have also another function, as cases based on the operation of raising
(e.g. Viktor se zda byt chytry (Viktor seems to be clever)) and the function of attribute (e.g. Viktor nesmi propast
Sanci vyhrat (Viktor may not miss the occasion to win)).

2.2.2. Extension of verbs of control also to the so-called “analytical predicates’

The most typical verbs of control (belonging to the group (1)(i)) are modal verbs (e.g. moci (can), smet
(may), chtit (want), muset (must), mit (have to)) and so-called “phase verbs” (e.g. zacit (begin), ziistat (stay),
prestat (stop)). While describing the phenomenon of control, it seems to be necessary to extend the
understanding of the notion of modal verb also to another synonymous expressions of these verbs. Thus the
function of modal verbs is undertaken not only by “modal verbs in the wider sense” (umét (be able), dovést
(know how to do sth), dokdazat (manage), zdrdhat se (hesitate), odmitat (refuse) etc.) but also by “analytical
predicates” with modal meaning (the verb mit (have) plus a noun, e.g. mit schopnost (lit. have an ability), dar
(lit. have a gift / talent), potrebu (have an urge to do sth), prilezitost (have an opportunity), Sanci (have a
chance); the verb byt (be) plus a modal adjective, e.g. byt schopen (be able), ochoten (be willing), povinen (be
obliged)).

Also some verbs from other semantic groups of verbs of control can be expressed by some type of
“analytical predicate”. For example verbs expressing intent, e.g. hodlat (intend), snazit se (try), can be
paraphrased by predicates mit v umyslu (imysl), zamér (lit. have an intention), mit v planu (plan) (lit. have a
plan), mit tendenci (lit. have a tendency) etc.; byt pripraven (be ready), odhodlan (be determined) etc. (they
belong also to the group (1)(i)). Verbs expressing the meaning “umoznit nékomu udélat néco** (make it possible
for somebody to do something) can be paraphrased by analytical predicates ddt nekomu Sanci (prileZitost) udélat
néco (lit. give somebody a chance (an opportunity) to do sth) (these verbs belong to the group (1)(ii)).

2.2.3. Verbs of control with controlled nominalizations

Panevova (1996) deals not only with controlled infinitive verb structures but also with some types of
nominalizations where an omission of an argument is also based on the “control” properties of the head
(governing) word and must be interpreted as coreferentiality. The group of verbs that offer the possibility for
controlled nominalization includes for example verbs from the semantic group of causing a change of a physical
and/or mental state, e.g. prisoudit (adjudge), osoCit (accuse), podezirat (suspect): Pani podezird komornou z
kradeze sttibrnych pfibort (The lady suspects the chamber-maid of the theft of silver covers)).

177

178 Proceedings of TAG+6

2.3. Nominalizationsin constructions of control

The restoration of deletions in PDT includes not only the restoration of all obligatory participants and
obligatory free modifications of verbs deleted at the surface shape of the sentence, but also the restoration of
obligatory members of valency frames of postverbal nouns and adjectives formed by the process of
nominalization.

2.3.1. From verbsto nouns

By nominalizations we understand:

a) Nouns derived from verbs by productive means (e.g. rozhodnuti (decision making), obzZalovani
(accusing) or nouns derived from verbs by non-productive means or by the zero suffix (e.g. rada (advise), slib
(promise))

b) Nouns derived from the predicative adjective (e.g. on je schopen udélat (he is able to do sth) — jeho
schopnost napsat knihu (his ability to write a book), on je povinen udélat (he is obliged / required to do sth) —
Jjeho povinnost vydat majetek (his duty / obligation to release possession)

c) Deverbative adjectives, it seems that only predicative deverbative adjectives can occur with control (e.g.
divka je schopna studovat (the girl is able to study)— divka schopna studovat (a girl able to study) , osoba je
povinna platit dané (the person is obliged to pay taxes) — osoba povinna platit dané (a person obliged to pay
taxes)

d) Nouns which were a part of an analytical predicate (e.g. Petr ma Sanci vyhrat (Peter has a chance to
win) — Petrova Sance vyhrdt (Peter’s chance to win), Petr ma pravo odvolat se (Peter has a right to appeal) —
Petrovo pravo odvolat se (Peter’s right to appeal).

Some of the nouns derived from this type of analytical predicates, especially from those with the meaning
of intent, do not express grammatical coreference, e.g. ndpad vydat knihu (an idea to publish a book) (cf. also
Panevova, 1996).

2.3.2. Types of nominalized constructions of control

Considering the possibility of a nominalization of both the governing as well as the dependent verb, we
deal with four types of constructions of control:

1. The infinitive clause depends on a finite verb (e.g. radil nechodit (he advised not to go), slibil napsat (he
promised to write),

2. The infinitive clause depends on a nominalization of a finite verb (e.g. rada nechodit (an advice not to
come), slib napsat (a promise to write)),

3. The nominalization of the embedded verb depends on a finite verb (e.g. obvinil nekoho z vyvolani
problému (he charged a person with a raising of a problem), vyzadoval odpusténi dani (he claimed exemption
of the taxes)),

4. The nominalization of the embedded verb depends on a nominalization of a finite verb (e.g. obvineni
z vyvolani problému (an accusation of a raising of a problem), snaha o podplaceni (an attempt for corruption)).

However, it is necessary to say that not all groups of verbs of control mentioned in section 2.2.1. allow for
its nominalization or for a nominalization of its controlled infinitive clause:

- Verbs of control from the groups (1)(i), (ii) and (iii) may occur in all four types of constructions of control
(e.g. verbs slibit (promise), vyzadovat (require, claim), snazit se (try): slibit napsat (to promise to write), slib
napsat (a promise to write), slibit napsani (to promise writing), slib napsani (a promise of writing)

- Verbs of control from the group (2) allow only for the nominalization of the dependent verb (Je snadné
cist tu knihu (It is easy to read the book) - Cetba této knihy je snadnd (The reading of this book is easy)

- Verbs from the group (3) do not allow nominalization in constructions of control.

Verbs mentioned in section 2.2.3. may occur only in construction types (3) and (4) (e.g. verbs podezirat
(suspect), obvinit (accuse): podezirat z kradeze (to suspect of theft), podezrieni z kradeze (a suspicion of thefi),
but *podezirat krast (to suspect to steal), *podezrieni krast (a suspicion to steal)).

Panevova, Reznickova, and UreSova 179

Let us present here some illustrative examples of nominalized constructions of control from our annotated
corpus:

(3) Ctihodny Malu-malu, biskup Surabaysky: Obdivuju schopnost Vasich lidi odpoustét.
'The venerable Malu-malu, the bishop of Surabaya: I admire the ability of your people to forgive.'

&Emp;
PRED
&Comma; obdivovat.PROC
APPS PAT
admire

Malu_malu biskup ja schopnost

ACT ACT ACT PAT

Malu_malu bishop | ability

ctihodny surabaysky Clovék odpoustét.PROC
RSTR RSTR ACT PAT

venerable Surabay man forgive

|

vy &Gen; &Gen; &Cor;

APP PAT ADDR ACT

you
ANTEC: ACT
COREF: ¢lovék

(4) Byvaly starosta od minulého tydne celi obvinéni z kradeze notebooku.
'"The former mayor has been facing up to suspicion of theft of the notebook since the last week.'

starosta tyden obvinéni

ACT TSIN PAT N\

mayor week suspicion

byvaly minuly &Gen on kradez
RSTR RSTR ACT ADDR PAT
former last he theft

J

COREF: starosta X

Cor notebook
ACT PAT

notebook
ANTEC: ADDR

COREF: on

180 Proceedings of TAG+6

2.3.3. Coreferential relationsin nominalized constructions

Nominalized constructions retain the same coreferential relations between the Controller and the Controllee
which were realized in constructions with the corresponding verbs of control. Thus, e.g. the nominalized
constructions of verbs from the group (1)(iii) mentioned in section 2.2.1. offer the possibility for the Controller
to be an Actor or an Addressee. These features are illustrated in the following examples:

1. Constructions in which the Actor of the governing postverbal noun and the Actor of the dependent noun
(derived from the predicate expressed by a copula with an adjective) are identical:

(5) jeho slib poslusnosti
derived from the construction s/ibil, Ze bude poslusny (he promised to be obedient)
'his promise of obedience'

The controllee in the valency frame of the dependent noun (i.e. poslusnost (obedience)) gets the lemma Cor
and the functor ACT. Its attributes for coreferential relations are filled in by the following values: COREF: on
(he), ANTEC: ACT.

2. Constructions in which the Actor of the dependent noun (derived from the predicate expressed by a
copula with an adjective) is identical to the ADDR of the governing postverbal noun:

(6) slib beztrestnosti
derived from the construction slibili mu, zZe bude beztrestny (they promised him to be exempt from
punishment)
'a promise of impunity'

The Controllee in the valency frame of the dependent noun (i.e. beztrestnost (impunity)) gets the lemma
Cor and the functor ACT. Its attributes for coreferential relations are filled in by the following values: COREF:
on (he), ANTEC: ADDR.

3. Conclusion

In the present paper we sum up how the “control” phenomenon is treated in the framework of the FGD and
demonstrate how annotators capture the control properties in the PDT. We also presented the extension of the
notion of verbs of control to the so-called “analytical predicates”, but especially to the nominalized
constructions of control. We showed that the nominalized constructions retain the same coreferential relations
between the Controller and the Controllee as those realized in constructions with the respective verbs of control.

References

Bach, Emmon. 1979. Control in Montague grammar. Linguistic Inquiry 10: 515-531.

Chomsky, Noam. 1980. On Binding. Linguistic Inquiry 11: 1-46.

Hajic, Jan. 2002. Tectogrammatical Representation: Towards a Machine Transfer in Machine Translation. In: Proceedings of
TAGH+6, 2002, Venice, Italy, this volume.

Hajicova, Eva, Jarmila Panevova, and Petr Sgall. 2000. Coreference in Annotating a Large Corpus. In: Proceedings of LREC
2000, 1: 497-500, Athens, Greece.

Koktova, Eva. 1992. On New Constraints on Anaphora and Control. Theoretical Linguistics 18: 102-178.

Panevova, Jarmila. 1986. The Czech Infinitive in the Function of Objective and the Rules of Coreference. In: Language and
Discourse: Test and Protest (Festschrift for P. Sgall, ed. by J. Mey), Amsterdam — Philadelphia: John Benjamins, 123-
142.

Panevova, Jarmila. 1996. More Remarks on Control. In: Prague Linguistic Circle Papers, 2 (eds. E. Hajicova, O. Leska, P.
Sgall, Z. Skoumalova). J. Benjamins Publ. House: Amsterdam - Philadelphia, 101-120.

Sag, Ivan, and Carl Pollard. 1991. An Integrated Theory of Complement Control. Language 67: 63-113.

Sgall, Petr, Eva Haji¢ova and Jarmila Panevova. 1986. The Meaning of the Sentence in Its Semantic and Pragmatic Aspects.
Dordrecht: Reidel and Prague: Academia.

Systematic Grammar Development in the XTAG Project

CarlosA. Prolo
University of Pennsylvania

1. Introduction

The XTAG Project(Joshi,2001)is an ongoingprojectat the University of Pennsylaniasinceabout1988,
aiming at the developmentof naturallanguageresourcedasedon Tree Adjoining GrammargTAGs) (Joshiand
Schabes1997). Perhapshe mostsuccessfuexperiencein it hasbeenthe constructionof a wide-coveragelex-
icalized TAG for English (LTAG) (Doranet al., 2000; XTAG Researchsroup, 2001), basedon ideasinitially
developedin (Krock andJoshi,1985).

As thegrammargrew larger, the procesf consistengrammardevelopmentandmaintenancéecameharder
(Vijay-ShanlerandSchabes]1992). Drivenby locality principles,eachelementarytreefor a givenlexical headis
expectedto containits projection,andslotsfor its agumentge.g.,(Frank,2001)). As consequencehe number
of requiredelementarytreesgrows hugefor a grammaiwith reasonableoverageof syntacticohenomenaUnder
the XTAG project,for engineeringeasonsthe grammarhasbeensplit up in (roughly)two maincomponents a
settreetemplatedexicalizedby a syntacticcategory, anda lexicon with eachword selectingits appropriateree
templates Although varioussyntacticcategorieshave multiple syntacticframesavailable (e.g.,prepositionanay
have differentkindsof agumentsnpounsandadjectvesmayhave argumentor not, etc.),it is theverbsthatexhibit
the mostwild variety of domainsof locality: from the 1226templatetreesin the XTAG grammay 1008 arefor
verbs,morethan82%. Thathappendecause¢he grammaitriesto capturein elementartreesthelocality for each
of thediversesyntacticstructureselatediransformationallyto eachother(the effect of long distancemovements
capturedy adjunctionof theinterveningmaterial). Exampleof requiredireetemplatesare: declaratvetransitive;
ditransitive passve with wh-subjectmoved;andintransitive with PPobjectwith the PP-objectelativized.

As early noticed by (Vijay-Shanler and Schabes1992) the information regarding syntacticstructureand
featureequationsn (feature-based) TAGsis repeatedacrosgsemplatedreesin a quite regularway, that perhaps
couldbemoreconciselycapturedhanby justhaving aplain setof elementaryrees.Besideghe obviouslinguistic
relevance asapureengineeringssue thesuccessf suchenterprisavouldresultin enormoudbenefitfor grammar
developmentandmaintenance.

Severalapproachebave beenproposedn the literaturedescribingcompactrepresentationsiethodsfor LT-
AGs, of which, perhapghe bestknown are (Vijay-Shanler and Schabes]1992),(Candito,1996; Candito,1998),
(Evans,GazdarandWeir, 1995; Evans,GazdarandWeir, 2000),(Xia et al., 1998;Xia, 2001),and(Becker, 1993;
Becker, 1994;Becler, 2000). We describdn this paperhow we combinedBecker’s metaruleswvith a hierarchyof
rule applicationto generateheverbtreetemplatef the XTAG Englishgrammayfrom asmallinitial setof trees.

2. Metarules

A subsystenfor interpretingmetarulesvasinitially introducednto the XTAG developmensystenby Tilman
Becker, from 1993to 1995, basedon his ideasin (Becker, 1993; Becker, 1994)with subsequenadditionsover
theyears,reachinga stableform asdocumentedby this author)in (XTAG ResearclGroup,1998). Althoughit
hasbeentopically usedsincethen,asanauxiliary tool to reducethe effort spentin grammardevelopmente.g.,to
generatehe treesfor an updatedanalysisof relative clausesusingthe formertreesasstartingpoint), this paper
describeshefirst effort to effectively usethemto generatehefull XTAG grammarverbtrees?

* Weareindebtedto all memberof the XTAG Groupthatparticipatedf the valuablediscussionsluringtherealizationof
thiswork, andin particularto AlexandraKinyon for hercommentson this paper

1. Foramoreaccuratedescriptionof thearchitecturesee(XTAG Researclroup,2001)or (Doranet al., 2000).

2. This effort is alreadymentionedin (Doranet al., 2000,p. 388). Therehasbeensomeconfusionon the issue,perhaps
driven by a somavhat ambiguousstatementn (Becker, 2000,p. 331): “In this paper we presenthe variouspatternswhich
areusedin theimplementatiorof metarulesvhich we addedto the XTAG system(Doranet al. 2000)”. The work of Becler
concevedanddevelopedtheideaof metarulesor TAGsandalsocreatedheoriginalimplementatiorof themetaruldanterpreter
aspartof the XTAG software. However, he only createdhe necessargxamplepatterngo supportthe conceptof metarules
while thework describedhereis thefirst to actuallyevaluatemetarulesn-the-lageaspartof the XTAG project.

© 2002 CarlosA. Prolo. Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and Related Frame-
works (TAG+6), pp. 181-186. Universita di Venezia.

182 Proceedings of TAG+6

We presentn this sectiona brief introductionto Becker’s metarules’ Considerthetreesin Figurel anchored
by verbsthat take asargumentsan NP anda PP (e.g.,put). The oneto the left corresponddgo its declaratve
structureithe otherto the wh-subjectextractedform. Despitetheir complexity, they sharemostof their structure:
theonly differencedeingthewh-site(higherNPin therighttree)andthetraceatsubjectposition. Thatobsenation
would not be very usefulif the differentialdescriptionwe have madewasidiosyncraticto this pair, which is not
thecase Clearly, mary otherpairsall overthegrammarmwill sharethe samedifferentialdescription.

Sq

Sy A
/\ NP S
NPg! VP /\

/’\ NP VP
) " /VPE\ - ‘ " /N
Ve PP € Vo NPq. VPe
NA N

| /\ ve PP

&y P NP1 NA
|
&y Py NP1

(a)declaratve (b) subjectextracted

Figurel: Somerelatedtreesfor theverbput

Figure 2.a shavs a metarulefor wh-subjectextraction, that capturesthe similarities mentionedabove. It
describeow to automaticallygeneratehetreein Figurel.b, givenasinputthetreein Figurel.a. Hereis how
it works. Firsttheinputtreehasto matchthe left-hand side of the metarule Ihs in Figure2.a, startingfrom their
roots. In the examplethe lhs tree,requiresthe candidatdreeto have its root labeledsS,.. Then,its leftmostchild
hasto bean N P, asindicatedby thenode?2 N P; in |hs: 72 indicatest is thevariable#2; N P, indicatesve need
an N P, regardlesof the subscript. Next, the Ihs treerequiresthe restof the treeto matchvariable?1. Thatis
trivial, becausesuchvariableswith justanidentificationnumberare“wild cards”"thatmatchary rangeof subtrees.
Thematcheof eachvariablein lhs, for theapplicationto theinputtreein Figurel.a,areshovnin Figure2.h.

22NP, = NP,

VP
Sq
Sr 22NP; | S, /[\
P = P Vo NP;. VP,
2NP; | 71 NP, 71
\NA n = /\
€ Ve PP
lhs rhs NA A
gy P NPy!
a) Metarulefor wh-movementof subject b) VariablesMatchingfor thetreein Figurel.a

Figure2: A metarulefor wh-movementof subjectappliedto thetreeof Figurel.a

Had the matchingprocesgailed the metarulewould not apply andno new treewould have beengenerated.
Sincein the exampleabove the matchingsucceededhe processomove to thefinal step,whichis to generatéhe
new tree. We look at the right-hand side of the metarulerhs andjust replacethe instancef the variablesthere

3. Foramorecomprehense view, including linguistic motivationsandthe sortof patterndt allows, we referthe readerto
(Becler, 2000). The actualsetof metarulesve usedcanbe obtaineduponrequesto this author

Prolo 183

SUBCATEGORIZATION GROUP | No. OFFAMS. | TOTAL No. OF TREES
Intransitve 1 12
Transitve 1 39
Adjectival complement 1 11
Ditransitive 1 46
Prepositionatomplement 4 182
Verbparticleconstructions 3 100
Light verb constructions 2 53
SententialComplemen(full verb) 3 75
SententiaSubject(full verb) 4 14
Idioms (full verb) 8 156
SmallClauses/Predicaft 20 187
Equational’be” 1 2
Ergative 1 12
Resultatves 4 101
It Clefts 3 18
Total 57 1008

Tablel: CurrentXTAG GrammarCoverage

with their matchedvalues,obtainingthe treein Figure1l.b. The sameprocesscanbe appliedfor the mary other
pairsrelatedby the samemetarule.

Variableslike 71 above, with no cateyory specification,are indeedmore powerful thanthe above example
allow usto see.For instancethey allow usto expressdominancerelations.Additionally a single metaruleappli-
cationmay resultmultiple matchingsandthereforemultiple outputtrees.

In afeature-basedrammarasthe onewe arefocusingon, to createtreestructuresvithout the properfeature
equationss of little use. On the other hand, experiencehasshavn that featureequationsare much harderto
maintaincorrectand consistentin the grammarthan the tree structures. The XTAG metarulesuse featuresin
two ways: asmatchingrequirementsandfor transformatiorpurposes Both positive and negative matchingcan
be specified(thatis, one can statethat matchwill happenonly if the input tree doesnot have a certainfeature
equation). Regardingthe transformationsfeatureequationscan be inserted,deleted,maintained,or modified,
whengeneratinghe new treefrom the matchedone. A few imperatve commandsave provedvery useful,e.g.
“replaceall NPswith index 1 by NPswith index w in all equations”.

3. A hierarchy for the application of the metarules

The set of verbaltreescan be seenas a subsetof the Cartesianproductof three dimensions: subcatgo-
rization (e.g., transitve, intransitive), redistritution (e.g., passve), andrealization(e.g., wh-subjectmovement)
— discountedpof course,combinationsblocked by linguistic constraintge.g.,therecannot be objectmovement
in intransitves). The verb treesin the XTAG Englishgrammarare organizedin familiesthat roughly reflecta
subcatgorizationframe. Hence eachfamily containstreesfor eachcombinationof redistribution andrealization
alternatvescompatiblewith the subcatgorizationframe. The base treeof afamily is the onecorrespondingdo its
declaratve usaggno redistribution, argumentsn canonicabposition). Table1 summarizeshe currentcoverageof
the XTAG Englishgrammar The groupingof the familiesis just for presentationatorvenience.

Becker(1993;1994;2000) proposeghata grammatris the closureof the setof basetreesundermetaruleap-
plication,raisinga heatediscussioron theunboundedness the processf recursve application.We understand
theissueis artificial andwe shaw in this sectionthata simpleorderingmechanismamongthe metarulessufiices?

Our strat@y for generatiorof the verbaltreesis asfollows. Thereis a uniqueorderedsetof 21 metarules
(Table2). For eachfamily, we startwith the basedeclaratve tree,applythe sequencef metarulesandtheresult
isthewholefamily of trees.Thesequencef metarulegreappliedin away we call cumulatve modeof application
representeth Figure3. The generatecgetstartwith the declaratve tree. Thefirst metaruleis appliedto the set,
generatinghew trees which arethemselesincludedin the generatedet. Thenthe secondule is applied,andso
on, until the sequencts finished.

Redistrilution rulesareappliedbeforerealizationrules. It is usualfor a metaruleto fail to applyto mary of
the alreadygeneratedrees. Partly, this is dueto the obviousfactthatnot all rulesarecompatiblewith any given

4. Noticethatin the context of TAGs, metarulesareused-off-line” to generate finite grammay a boundedorocessyhich
is radically differentfrom their usein the TransformationaGrammaitraditionor in ary other“on-the-fly” ervironment.

184 Proceedings of TAG+6

Metarule Description
passve Generatehe passve form
passive-fromPP Passve form for PPcomplements:
"The resultswereaccountedor by thetheory”
dropby Passve without by-clause
gerund Treesfor NPslikein "Johneatingcale (is unbeliezable)”
wh-subj Wh-subjecimovement
wh-sentsubj Wh-subjectmovementfor sententiabubjects
wh-npobj NP extractionfrom insideobjects
wh-smallnpobj NP extractionfrom insideobjectsfor smallclauses
wh-apobj AP complemengxtraction
wh-adwbj ADVP complementxtraction
wh-ppobj PPcomplemengxtraction
rel-adj]-W Adjunctrelatve clausewith wh-NP
rel-adj-noW Adjunctrelative clausewith (possiblyempty)complementizer,
rel-subj-wW Subjectrelative clausewith wh-NP
rel-subj-noW Subjectrelative clausewith complementizer
rel-subj-noWforpassie | Subjectrelative clausewith complementizefor passies
rel-obj-W NP Obijectrelative clausewith wh-NP
rel-obj-noW NP Objectrelative clausewith complementizer
rel-ppobj PPObjectrelative clause
imperatve Imperatve
PRO PRO Subject

Table2: Metarulesusedto generatehe verbfamiliesof the XTAG EnglishGrammar

nput. > MRO MR1 N MRn Output
Trees Trees

Figure3: Cumulative applicationof metarules

subcatgorizationframeor afteraredistributionmetarulehasbeenappliedto it. Butalso,because¢helinearorderis
asimplificationof whatin factshouldbeapartialorder, e.g. subjectrelativizationshouldnot applyto awh-subject
extractedtree. The constraintexpressedn the metarulesareresponsibldor blockingsuchapplications.

We choseone of the largestfamilies, with 52 trees,for verbslike put that take both an NP and a PP as
complementsto detailthe procesof generation.For the sale of simplicity we omit the 26 relative clausetrees.
Theremaining25trees’® aredescribedn Table3, andthegeneratiorgraphis shovn in Figure4. Numbersassigned
to thetreesin the Tableareusedto referto themin the Figure.

Figure4: Partial generatiorof the put family usingMetarules

5. Thereis onetree,for nominalizationwith determinerwe have found not worth generatingWe commenton thatahead.

Prolo

185

Number | Description Example

1 Declaratve He putthebookonthetable

2 Passve w. by Thebookwasputonthetableby him

3 Passvew.o. by Thebookwasputonthetable

4 Gerundve nominals He puttingthebook on thetablewasunexpected
5 Gerundve for passie w. by Thebookbeingputonthetableby him ...

6 Gerundve for passie w.o. by Thebookbeingputonthetable...

7 Subjectextraction Who putthebookonthetable?

8 Subj. extr. from passve w. by Whatwasputon thetableby him ?

9 Subyj. extr. from passve w.o. by Whatwasputonthetable?

NRRRRRRERR R
QOO NOUIRAWNRO

NNN NN
ORrWNE

1stobj extraction

2ndobj NP extraction

2ndobj NP extr. from passw. by

AgentNP extr. from passw. by

2ndobj NP extr. from pass.w.o. by

PPobj extr

PPobj extr. from pass.w. by

By-clauseextr. from pass.w. by

PPobj extr. from pass.w.o. by

Imperatie

Declaratve with PRO subject

Passve w. by w. PRO subject

Passve w.o. by w. PRO subject

Gerundve nominalswith PRO subject

Gerundve nominalsfor passie w. by w. PRO subject
Gerundve nominalsfor passie w.o. by w. PRO subject

Whatdid he putonthetable?

Wheredid he putthebookon ?

Wherewasthe bookputon by him ?

Who (the hell) wasthis stupidbook put on thetableby ?
Wherewasthebookputon?

Onwhichtabledid heputthebook?

Onwhich tablewasthe bookput by him ?

By whomwasthe bookputonthetable?

Onwhich tablewasthebookput ?
Putthebookonthetable!

| wantto [PRO putthebookonthetable]
Thecatwanted] PRO to be putonthetreeby J.]
Thecatwanted] PRO to be putonthetree]
Johnappraved of [PRO puttingthecatonthetree]
Thecatapprored of [PRO beingputonthetreeby J.]
Thecatappraed of [PRO beingputonthetree]

Table3: Partial view of thetreesfrom the put family

4, Evaluation and final remarks

An importantmethodologicalssueis thatthe grammarwasgeneratedowardsa pre-eistentEnglishGram-
mar. Sowe canclaim thatthe evaluationwasquite accurate Differencedetweerthe generatecnd pre-eistent
treeshadto be explainedanddiscussedvith the groupof grammardevelopers.Oftenthis led to the discovery of
errorsandbetterwaysof modelingthe grammar The purposeof this work wasto generatehe 57 verbfamilies
(1008trees)from only the corresponding7 declaratve trees(or so) plus21 metarulesa quite compactnitial set.
More importantlya compactsetthat canbe effectively usedfor grammardevelopment We turn now to a short
inventoryof problemsfoundaswell assomeinterestingobsenations:

1. Weundegenerate:

(a) Thereareabout20idiosyncratidreesnotgeneratednvolvingtreesfor “-ed” adjectives,restrictedo transitve
andergative families, and DeterminerGerundtrees,which lack a clear patternacrossthe families! These
treesshouldbe separatelyaddedto the families. Similarly, thereare 10 treesinvolving punctuationin the
sententiacomplementamilieswhich arenotworth generatingautomatically

(b) We overlookedtheit-cleft familieswith peculiartreestructuresandthe equationabe family with two trees.

(c) We do not handleyet: the passvization of the secondobject (from insidea PP)in familiesfor idiomatic
expressiong“The warningwastakenheedof”); the occurrenceof the“by phrase” beforesententiacomple-
ments(“l wastold by Mary that..”); andwh-extractionof sententialcomplementsand of exhaustve PPs.
Exceptfor thefirst caseall canbe easilyaccountedor.

2. We overgenerate:we generatel 200trees(insteadof 1008)8 However things are not so bad asthey look at
first: 206 of them arefor passvesrelatedto idioms andthey are fruit of somepragmatismin the group. It
is acknavledgedthe existenceof a certainamountof overgeneratiorin the treefamiliesdueto the separation
betweenthe lexicon andthe treetemplates.For instancejt is widely known that not all transitve verbscan
undego passvization. But thetransitive family containgpassie trees.The reconciliationcanbe madethrough

6.
7.

Of coursewe would notbevery happy with acompactepresentationresemblinga “zipped” file.
Forinstancethenominalizatiorof thetransitve verbfind selectsa prepositionatomplemenintroducedy thepreposition

of: “The finding of the treasurgby the pirates)wasnews for weeks. But the”of” insertionis not uniform acrossamilies: cf.
“the accountingor thebook”

8.

Whichmeanamorethananexcessof 192treessincethereis alsosomeundegenerationalreadymentioned.

186 Proceedings of TAG+6

featuresassignedo verbsthatallow blockingtheselectionof the particulartree. Howeverin thefamily for verb
particlewith two objects(e.g.,for “Johnopenedup Mary abankaccount”) thefour lexical entrieswerejudged
notto undego passvization andthe correspondingrees(64) wereomittedfrom the family. It is not surprising
thenthatthe metarulevergeneratehem. Still, 100 out of the 206 arefor passvesin idiom familieswhich are
currentlynot in the grammarand are definitely lexically dependent.The other42 overgenerategassiesare
in thelight verbfamilies. Therea few othercasesf overgeneratiordueto lexically dependenfudgmentsnot
worth detailing. Finally, a curiouscaseinvolved empty elementghat could be generatedat slightly different
positionsthatarenot distinguishecdat surface(e.g.,beforeor aftera particle). The choicefor having only one
alternatve in thegrammaiis of practicalnature(relatedto parsingefficiency) asopposedo linguistic.

3. Limitationsto furthercompaction:All the metarulesor wh-objectextractiondo essentiallythe same but cur-
rently they cannotbe unified. Furtherimprovementsin the metarulesystemimplementationcould solve the
problemat leastpartially, by allowing to treatsymbolsandindicesasseparateariables.A moredifficult prob-
lemis somesubtledifferencesn thefeatureequationsacrosghe grammar(e.g.,causingthe needof a separate
treefor relativization of the subjectin passve trees). By far, featureequationsconstitutethe hardestissueto
handlewith the metarules.

4. A metaruleshortcoming:currentlythey do not allow for the specificationof negative structuralconstraintgo
matching.Thereis onefeatureequationrelatedto punctuatiorthatneeded separatenetarulegnot described
above) to handle(by exhaustion)the following constraint:the equationshouldbe addedif andonly if the tree
hassomenon-emptymaterialafterthe verbwhichis nota“by-phrase”.

5. Othercases:a separatenetarulewas neededo corvert foot nodesinto substitutionnodesin sententialcom-
plementtrees. This families departsfrom the restof the grammarin that their basetreeis an auxiliary tree
to allow extractionfrom the sententiacomplement.But the correspondingelative clauseshave to have the S
complemengsa substitutionnode. This is moreanengineeringhana conceptuaproblem.

References

Abeille, Anne andOwenRambav, editors. 2000. Tree Adjoining Grammars: formalisms, linguistic analysis and processing.
Stanford,CA, USA: CSLI.

Becler, Tilman. 1993. HyTAG: A new Type of Tree Adjoining Grammars for Hybrid Syntactic Representation of Free Word
Order Lang uages. Ph.D.thesis,Universitit desSaarlandes.

Becler, Tilman. 1994. Patternsn metarulesIn Proceedings of the 3rd TAG+ Conference, Paris,France.

Becler, Tilman. 2000. Paternsn Metarulesfor TAG. In Abeille andRambav (Abeille andRambav, 2000),pages331-342.

Candito,Marie-Helene.1996. A Principle-BasedierarchicalRepresentatioof LTAGs. In Proceedings of the 16th CoLing
(COLING’96), pagesl 94—-199 CopenhagerDenmark.

Candito,Marie-Helene.1998. Building Parallel LTAG for FrenchandItalian. In Proceedings of the 36th Annual Meeting of
the ACL and 16th CoLing, page211-217 Montreal,Canada.

Doran,Christine,Beth Ann Hockey, Anoop Sarkar B. SrinivasandFei Xia. 2000. Evolution of the XTAG System.In Abeille
andRambav (Abeille andRambav, 2000),pages371-404.

Evans,Roger GeraldGazdarandDavid Weir. 1995. EncodingLexicalized Tree Adjoining Grammarswvith a Nonmonotonic
InheritanceHierarchy In Proceedings of the 33rd Annual Meeting of the ACL, pages7 7—-84,CambridgeMA, USA.
Evans,Roger GeraldGazdarandDavid Weir. 2000. 'Lexical Rules’arejustlexical rules. In Abeille andRambav (Abeille

andRambav, 2000),pagesr1-100.

Frank,Robert.2001. Phrase Structure Composition and Syntactic Dependencies. to be published.

JoshiAravind K. 2001. TheXTAG ProjectatPenn.In Proceedings of the 7th International Workshop on Parsing Technologies
(IWPT-2001), Beijing, China. Invited spealer.

Joshi,Aravind K. andYvesSchabes1997. Tree-AdjoiningGrammars.In Handbook of Formal Languages, vol. 3. Springer
Verlag,Berlin, pages69-123.

Krock, Anthory S.andAravind K. Joshi.1985. ThelinguisticrelevanceTreeAdjoining Grammar.TechnicalReportMS-CIS-
85-16,University of Pennsylania.

Vijay-Shanler, K. andYves Schabes.1992. StructureSharingin Lexicalized Tree-AdjoiningGrammars.In Proceedings of
the 14th CoLing (COLING’92), page205—-211NantesFrance.

Xia, Fei. 2001. Investigating the Relationship between Grammars and Treebanks for Natural Languages. Ph.D.thesis,
Departmenbf ComputerandinformationSciencelUniversity of Pennsylania.

Xia, Fei, MarthaPalmer K. Vijay-Shanler andJJosephRosenzweig.1998. ConsistentGrammarDevelopmentUsing Partial-
TreeDescriptionsfor Lexicalized Tree-AdjoiningGrammars.In Proceedings of the 4th International Workshop on Tree
Adjoining Grammars (TAG+4), PhiladelphiaUSA.

XTAG ResearchGroup, The. 1998. A Lexicalized Tree Adjoining Grammarfor English. TechnicalReportIRCS 98-18,
University of Pennsylania.

XTAG ResearchGroup, The. 2001. A Lexicalized Tree Adjoining Grammarfor English. TechnicalReportIRCS 01-03,
University of Pennsylania.

A Formal Proof of Strong Equivalence for a Grammar
Conversion from LTAG to HPSG-style

Naoki Yoshinaga,! Yusuke Miyao," and Jun’ichi Tsujiif*
T University of Tokyo { CREST, JST (Japan Science and Technology Corporation)

1. Introduction

This paper presents a sketch of a formal proof of strong equivalence,* where both grammars generate equiva-
lent parse results, between any LTAG (Lexicalized Tree Adjoining Grammar: Schabes, Abeille and Joshi (1988))
G and an HPSG (Head-Driven Phrase Structure Grammar: Pollard and Sag (1994))-style grammar converted from
G by a grammar conversion (Yoshinaga and Miyao, 2001). Our proof theoretically justifies some applications of
the grammar conversion that exploit the nature of strong equivalence (Yoshinaga et al., 2001b; Yoshinaga et al.,
2001a), applications which contribute much to the developments of the two formalisms.

In the past decades, LTAG and HPSG have received considerable attention as approaches to the formalization
of natural languages in the field of computational linguistics. Discussion of the correspondences between the two
formalisms has accompanied their development; that is, their linguistic relationships and differences have been in-
vestigated (Abeillé, 1993; Kasper, 1998), as has conversion between two grammars in the two formalisms (Kasper
et al., 1995; Tateisi et al., 1998; Becker and Lopez, 2000). These ongoing efforts have contributed greatly to the
development of the two formalisms.

Following this direction, in our earlier work (Yoshinaga and Miyao, 2001), we provided a method for con-
verting grammars from LTAG to HPSG-style, which is the notion that we defined according to the computational
device that underlies HPSG. We used the grammar conversion to obtain an HPSG-style grammar from LTAG (The
XTAG Research Group, 2001), and then empirically showed strong equivalence between the LTAG and the ob-
tained HPSG-style grammar for the sentences in the ATIS corpus (Marcus, Santorini and Marcinkiewicz, 1994).
We exploited the nature of strong equivalence between the LTAG and the HPSG-style grammars to provide some
applications such as sharing of existing resources between the two grammar formalisms (Yoshinaga et al., 2001b),
a comparison of performance between parsers based on the two different formalisms (Yoshinaga et al., 2001a),
and linguistic correspondence between the HPSG-style grammar and HPSG. As the most important result for the
LTAG community, through the experiments of parsing within the above sentences, we showed that the empirical
time complexity of an LTAG parser (Sarkar, 2000) is higher than that of an HPSG parser (Torisawa et al., 2000).
This result is contrary to the general expectations from the viewpoint of the theoretical bound of worst time com-
plexity, which is worth exploring further. However, the lack of the formal proof of strong equivalence restricts
scope of the applications of our grammar conversion to grammars which are empirically attested the strong equiv-
alence, and this prevents the applications from maximizing their true potential. In this paper we give a formal
proof of strong equivalence between any LTAG G and an HPSG-style grammar converted from G by our grammar
conversion in order to remove such restrictions on the applications.

2. Grammar conversion

We start by stating our definition of an HPSG-style grammar, and then briefly describe our algorithm for con-
verting grammars from LTAG to HPSG-style. We hope that the reader will refer to the cited literature (Yoshinaga
and Miyao, 2001) for a more detailed description.

We defined an HPSG-style grammar, the form of the output of our conversion, according to the computational
architecture which underlies HPSG (Pollard and Sag, 1994). An HPSG-style grammar consists of lexical entries
and ID grammar rules, each of which is described with typed feature structures (Carpenter, 1992). A lexical
entry for a word must express the characteristics of the word, such as its subcategorization frame and grammatical
category. An ID grammar rule must represent the constraints on the configuration of immediate constituency, and

* This research was funded by JSPS Research Fellowships for Young Scientists.

1. Chomsky (1963) first introduced the notion of strong equivalence between grammars, where both grammars generate
the same set of structural descriptions (e.g., parse trees). Kornai and Pullum (1990) and Miller (1999) used the notion of
isomorphism between sets of structural descriptions to provide the notion of strong equivalence across grammar formalisms,
which we have adopted in our research.

© 2002 Naoki Yoshinaga, Yusuke Miyao, and Jun’ichi Tsujii. Proceedings of the Sixth International Workshop on Tree
Adjoining Grammar and Related Frameworks (TAG+6), pp. 187-192. Universita di Venezia.

188 Proceedings of TAG+6
g xl AA
AT T A /\

Figure 1: Sketch for the division transformation (left) and the substitution transformation (right)

¢ anchor S [Sym : } sym :[1]
* foot node NP/\VP Arg 2] Arg 21D
| substitution node 4 PN /\ \
sym :[3] sym :[3]
{A{g :< N Sym : [Agn:m} Sym -[@
Arg Leaf :[3] ‘. Arg Leaf : ‘
Sym: V substitution node Dir Iet: foot node Dir : left
Sym :VP S Foot? : — Foot? : +
think : Arg: Leaf : S > NP trunk node trunk node
Dir i | :right o) .
Foot?: + | |Foot?: — Left substitution rule Left adjunction rule

Figure 2: A conversion from a canonical elementary tree to an HPSG lexical entry (left) and grammar rules: the
substitution rule (center) and adjunction rule (right)

not be a construction-specific rule specified by lexical characteristics. The formal definition of an HPSG-style
grammar converted from LTAG G is given later in Section 3.3.

Our conversion algorithm consists of two kinds of conversion; i) a conversion from LTAG into canonical
LTAG, LTAG which consists only of canonical elementary trees, and ii) a conversion from the canonical LTAG into
an HPSG-style grammar. Canonical elementary trees are tree structures satisfy the following conditions; Condition
1: Atree must have only one anchor, and Condition 2: Every branching structure in a tree must contain trunk nodes.
Trunk nodes are nodes on a trunk which is a path from an anchor to the root node. We call a subtree of depth n(> 1)
that includes no anchor a non-anchored subtree. Elementary trees which violate Condition 1 are converted into
canonical ones by dividing them into single-anchored parts (the division transformation: the left-hand side of
Figure 1). Elementary trees which violate Condition 2 are initially divided into multiple subtrees by the division
transformation, each of which has at most one anchor, and then converted into canonical ones by substituting the
deepest nodes in the non-anchored subtrees with every initial tree (the substitution transformation: the right-hand
side of Figure 1). We give the formal definition of these transformations later in Section 3.2. Conversion of a
canonical elementary tree is straightforward; that is, we traverse the trunk of a canonical elementary tree from
its anchor to root, regard the leaf nodes as the anchor’s arguments, and store the symbols of the leaf nodes and
the trunk nodes as Leaf and Sym features respectively in a stack (Arg feature in the left-hand side of Figure 2),
where Dir and Foot? features are the direction of the leaf node relative to the trunk and the type of the leaf node,
respectively. A set of pre-determined rules manipulates the stack to emulate substitution and adjunction; namely,
substitution rules (the center of Figure 2) and adjunction rules (the right-hand side of Figure 2).

3. A formal proof of strong equivalence

The whole proof consists of two pieces, each of which respectively proves that strong equivalence is guaran-
teed before and after the two conversions mentioned in the previous section.

3.1. Definitions

We first define LTAG, according to the definition of TAG given by (Vijay-Shanker, 1987). We then define a
derivation tree, which is a structural description of LTAG, and introduce the notion of strong equivalence.

We hereafter denote a tree as a set of pairs (p, X) where p € A'*, which is a free monoid of the set of natural
numbers, and X € V, which is a finite set of alphabets (Gorn, 1962). For example, a tree in the left-hand side of
Figure 2 is denoted as {(¢, S), (¢-1, NP)(e-2, VP),(e-2-1,V),(e-2-2,5),(e-2-1-1,think)}. Aninequality
p < g is satisfied if and only if there is a r € N'* such that ¢ = p - r. Another inequality p < ¢ is satisfied if and
only if p < gandp # q.

Yoshinaga, Miyao, and Tsujii 189

Definition 3.1 (Lexicalized Tree Adjoining Grammar (LTAG)) Lexicalized Tree Adjoining Grammar G2 is a
quintuplet (X, NT, S, I, A) where ¥ and NT are a finite set of terminal symbols and a finite set of nonterminal
symbols respectively, S is a distinguished nonterminal symbol called the start symbol, and I and A are a finite set
of initial trees and a finite set of auxiliary trees respectively.

Here, an elementary tree v € AU I is a tree whose leaf nodes are labeled by X € NT U S or z € X, and
whose internal nodes are labeled by X € NT U S. The symbol of one leaf node in an auxiliary tree 8 € A is
identical to that of its root node, and is specially marked for a foot node. Note that more than one leaf nodes called
anchors in an elementary tree ~y are labeled with 2 € X, and leaf nodes other than anchors and foot nodes are
marked for substitution nodes.

We denote adjunction and substitution of several trees 4, . ..,y into a tree y at k distinct addresses a, . . ., ag
by v — ~la1,7] ... [ak, ;] where k > 1, and [a;, ;] indicates substitution at a; of +; in the case where a; is a
substitution node, or indicates adjunction at a; of +/ in the case where a; is an internal node. We call this production
as a derivation for «y if all of the addresses of the substitution nodes in ~y are included in a4, ..., ax. A derivation
for v without substitution and adjunction is denoted as v’ — .

We use the above notations to define a derivation tree, which represents the history of combinations of trees
and is a structural description of LTAG.

Definition 3.2 (Derivation trees) A derivation tree T for LTAG G = (X, NT, S, I, A) is defined by a set of
derivations as follows:

Yo={y>e|1<i<m,y€AUI}|JDg

where Dg C {v; = vila1,7;,]---lak, i,] | & > 1,4 > m,v;,7v;; € AUT}. The derivation tree T must
satisfy the following condition: ~; can appear once respectively in the left-hand side and the right-hand side of
derivations except that one distinguished elementary tree g, which is the root of the derivation tree Y and v5
can appear once in the left-hand side of the derivation, because ~; can adjoin or substitute once.® Note that the
inequality ¢ > ¢; > 1 is necessary to avoid cyclic applications of substitution and adjunction among elementary
trees.

Finally, we give the definition of strong equivalence between two given grammars G and G.

Definition 3.3 (Strong equivalence) Two given grammars G; and G are strongly equivalent if and only if there
is a bijective (i.e., one-to-one and onto) function which maps a set of structural descriptions of G1, Tp(G1), to a
set of structural descriptions of G, Tp(G2).

In what follows, we assume that structural descriptions of LTAG are derivation trees in which the root node of
s is labeled by the start symbol S in the definition 3.2.

3.2. Proof of strong equivalence for the two tree transformations

In this section we give a proof that strong equivalence is guaranteed for grammars before and after the two
tree transformations. In this abstract, We omit the proof of the substitution procedure, because the substitution
transformation is exactly the same as the one that Schabes and Waters (1995, pp. 494-495) defined and proved in
their strong lexicalization procedure of CFG into Lexicalized Tree Insertion Grammar.

The division transformation is formalized in the following lemma.

Lemma 3.1 (The division transformation) LetG = (X, NT, S, I, A) be LTAG. Lety € AU I be an elementary
tree and let u be an internal node with address p of that is labeled by X and be not on the spine. We divide ~y at
u and obtain two trees v*, v* as follows. Let v* be a subtree except that a node labeled by Y ¢ NT U S is added
to its root node, and let vV be a supertree, except that the symbol of 4 is relabeled by the symbol Y ¢ NT and
by marking it for substitution as shown in Figure 1. Define G’ = (£, NT U {Y'}, S, I', A") where I' and A’ are
created as follows:

fyelthenI'=(I—{y}H)U{y*,~7?}and A’ = A

IfyeAthenI' =TU {y*}and A" = (A — {~r}) U {~+*}
Then, G’ is strongly equivalent to G; that is, there is a one-to-one onto mapping from the set of derivation trees
Tp(G") generated by G to the set of derivation trees T» (G) generated by G for the same sentence.

2. Due to limitations of space, we omit the notion of adjoining constraints and the proof including the notion in this abstract,
and then assume all internal nodes take selective adjoining constraints.
3. The condition implies that no trees can substitute or adjoin to two different nodes.

190 Proceedings of TAG+6

Proof We show that there is a one-to-one mapping from a derivation tree Yo € Th(G') to a derivation tree
YTg € TD(G).

Assume each derivation tree Y ¢ consists of elementary trees {y1,...,vn},v; € AUIforl < j < n. Then,
we can represent the derivation tree Y g by the set of derivations as shown in the definition 3.2.

Since we assume that a derivation tree is rooted by an elementary tree whose symbol of the root node is S,
every occurrence of 4” in T must always accompany with v* and vice versa. In the following procedure, we
construct a one-to-one mapping from Y4 to Y by replacing every occurrence of 4* which takes a substitution
of ¥ with in derivations in Y.

1. When~v* ¢ {v1,...,7} orv° ¢ {71,...,7}, Y includes neither ¥ nor 4*. Y therefore consists of
vi € (AUTI — {v}) C AU, there is exactly the same derivation tree Y in Tp(G).

2. When~y* € {m,-..,vn}, We can construct one derivation tree T from T, as follows.

() We first replace every occurrence of '* in the right-hand side of derivations with ~'.
(b) We next replace every derivation whose left-hand side is either v'* or 4'?.

i. When a root node with address e of v¥ takes substitution or adjunction, a pair of two derivations
whose left-hand side is " and +'" is denoted as v'* — ~“[a1,71].-.[an—1,7,_1][p, 7] and " —
Ve, Ypbht15Vhia] - - - [Br> V)], Where k > h > 1. Here we assume a; # p for 1 < i < h without loss of
generality. We replace these two derivations with the following derivation:

v = lar, 1] - - [an—1,vh_1llP, Vllp - 1+ bh+1;%’5+1] oo [P 1 bgy]

ii. If a root node with address € in ? takes neither adjunction nor substitution, we can also replace a pair of
two derivations whose left-hand side are respectively ' and 4'¥ with one derivation whose left-hand side
is v in a similar way as above.

(c) By repeating the above replacements at most the number of pairs of two derivations for v* and +?, we can
obtain a set of derivations T without v'* and «'*. The replacement in (a) is valid since v* includes both root
node and foot node of ~y, and thus ~y can substitute or adjoin every node at which v* does. In the procedure
(b), we replace exactly the same number of v'* as the procedure (a). The resulting derivations including ~'
is valid in G because ~' appear only once in the right-hand side and the left-hand side of the derivations,
respectively.

The resulting derivation tree T is the same as Y except that every occurrences of % which takes a substitution
of ¥ with ~. Since v* which takes a substitution of v? is the same as y except that one internal node is added,
this does not cause effect on the frontier string. Also, when T¢,,, Y%, are mapped to Y¢,, Y% and Y¢, and Y7 are
equivalent, Y, and Y%, are also equivalent owing to the formulation of the above mapping.

On the other side, we can also construct a one-to-one onto mapping from Y to Y by replacing every
occurrence of v in Y ¢ by v* which takes a substitution of *. Due to limitations of space, we omit the proof here.

In this way, we can construct a one-to-one onto mapping from a derivation tree T ¢ € Tp(G") to a derivation
tree Yo € Tp(G) for the same sentence. This indicates that G is strongly equivalent to G”. O

3.3. Proof of strong equivalence for the conversion from canonical LTAG to HPSG-style

In this section, we prove that strong equivalence is guaranteed for the latter part of our grammar conversion,
that is, a conversion from canonical LTAG G to an HPSG-style grammar G'. In the following proof, we first
introduce the notion of origination for every Sym and Leaf feature in HPSG lexical entries. We next define an
HPSG parse, which is a structural description of an HPSG-style grammar. We then prove the strong equivalence
by giving a one-to-one onto mapping from a derivation tree by G to an HPSG parse by G'.

Definition 3.4 (An HPSG-style grammar converted from LTAG) Given canonical LTAG G =
(X,NT,S,I,A), an HPSG-style grammar G’ converted from G is denoted by quituplet (X, NT,S, A, R)
where §; € A is a lexical entry converted from «; € A U I and R is substitution and adjunction rules. §; is
denoted as follows: §; = (so, (s1,01,d1,t1),---, (Sk, Ik, dr, tx)) Where k > 1, so is the symbol of the mother
node of the anchor inv;, and s; € ¥ U NT,l; € XU NT,d; € {right,left},t; € {4+, —} are values of Sym,
Leaf, Dir, Foot? features in the j-th element of the Arg feature in &;. When the length of the Arg feature of ¢; is 0,
d; is denoted as d; = (sq, @).

Yoshinaga, Miyao, and Tsujii 191

First, we introduce the notion of origination for the Sym and Leaf features in HPSG lexical entries in order
to define an HPSG parse, which represents the histories of rule applications to lexical entries and is a structural
description of an HPSG-style grammar. We hereafter assume that each HPSG lexical entry §; is converted from a
canonical elementary tree -y;. We define the origination of the feature in d; as {p, 7;), which indicates that the value
of the feature originates from the symbol of a node with address p in ;.

Next, we define a rule history for §;, which is a history of rule applications to a lexical entry §; in the parse
tree. We then follow the parse tree from an anchor of §; to root, and then assign each rule application as an element
of the rule history for §; if and only if the applied rule pops an element which originates from an element of the
Arg feature in §;. Assume that é; is denoted as the one given in the definition 3.4. A rule history for §; is denoted
as follows, where the origination of /; and the feature unified with I; are (a;,~;) and (b, ;;), respectively.

1. When ~; € I, no application of the adjunction rule is assigned to §; as an element of the rule history for §;. The

rule history is then denoted as §; — d;[a1,d},] - - - [ax, 0}, |.

2. When v; € A, one application of the adjunction rule is assigned to §; as an element of the rule history for 4;.
The rule history for d; is then denoted as 6; — d;[a1,4;,] ... [an—1,8;, _,1[b, 03, |[ant1, 65,] . - [ax, 6;,] where
th = +.

When the length of the Arg feature of §; is 0, a rule history for §; is denoted by 6; — e.

Definition 3.5 (HPSG parses) Given canonical LTAG G = (X, NT, S, I, A) and an HPSG-style grammar G' =
(X,NT,S,A, R) converted from G, an HPSG parse ¥ is denoted by a set of rule histories for §; € A as
follows:

U :{(5;—)6|1§ism,’)’,’€I}UAG/UBGI

where Ag: is a set of rule histories for §; converted from «y; € I, and B is a set of rule histories for §; converted
from «; € A, and elements in Ag and Bg: are denoted as the ones in the above paragraph where i > m.

Since the above HPSG parse ¥ must uniquely correspond to the parse tree, we require some conditions on
¥q. First, §; where v; € I can appear once respectively in the left-hand side and the right-hand side of rule
histories except that one distinguished lexical entry ds where 5 appears once in the left-hand side of the rule
history for §s. Second, &; where 4; € A must appear only once in the left-hand side of the rule history for 4;.
Third, 1 < 4; < 4 for the rule history for J; where v; € I. Fourth, 1 < 4; < i where j # h, and i, > 4, for
the rule history for §; where ; € A. The third and fourth conditions are necessary to avoid cyclic applications of
grammar rules to lexical entries.

Lemma3.2 LetG = (X,NT,S,I,A) and G’ be LTAG and an HPSG-style grammar converted from G, respec-
tively. Then, we can map a derivation tree T by G one-to-one onto to an HPSG parse ¥+ by G'.

Proof In the following proof, we first show a mapping from W to a set of derivations T ¢, and then show that
Y is avalid derivation by G.

Suppose an HPSG parse denoted as the one given in the definition 3.5. We can map it to a set of derivations Y -
in the following procedure. For each §; where v; € A, we eliminate [b, d;,], which corresponds to an application
of the adjunction rule, and add the element [b, §{] to the right-hand side of the rule history for §;, . Then, we obtain
a set of derivations Y¢r by replacing d;; and &;, with ;; and ~;; in the rule history for §; and by assigning it as the
derivation for -y;. This mapping is one-to-one because a pair operation of an elimination of [b, 4;,] and an addition
of [b, d;] is one-to-one mapping.

Following the definition 3.2, we show that Y- is a valid derivation tree by G. First, every substitution and
adjunction in the derivations in Tg» must be valid in G. Since the substitution and adjunction rules preserve
the order of the elements in the Arg feature of §;, substitution rules always unify the symbol of the substitution
node with the symbol of the root node of -y;, , which represents the same constraint as the one on which substitution
imposes. We can give the similar argument for an adjunction rule. The substitution and adjunction in the derivations
in Y are then valid in G. Second, all addresses in the substitution nodes of ~; must be included in its derivation.
This is apparently guaranteed by the definition of the rule history for §;. Third, v} can appear only once respectively
in the right-hand side and the left-hand side of the derivations. This is apparently guaranteed for ~; where ; € T
by the definition 3.5, and is guaranteed for ~; where ; € A because §; does not appear in the right-hand side of
rule histories, [b, §;,] appears only once in the rule history for §;, and the elimination of [b, d;,] accompanies the
addition of [b,~;] once to the right-hand side of the derivation for +;, . Fourth, the elements in the right-hand side

192 Proceedings of TAG+6

of the derivation for -; must be [a;,v;,] where i; < 4. This is apparently guaranteed for ; where ~; € I by the
definition 3.5, and is guaranteed for -; where ; € A because the addition of [b, v;] for the derivation for ~; satisfy
i, > 1 due to the definition 3.5.

The frontier string is preserved before and after this mapping from ¥ to T, because d; stores the same
LP constraints between §; and §; for ¢ # j as the constraints between +; and «y;. Then, an HPSG parse ¥ by G’
mapped one-to-one to a derivation tree Y ¢+ which is valid in G.

On the other side, we can construct a mapping from Y ¢ to an HPSG parse ¥ as the inverse procedure for
the above mapping from ¥ to Y. The obtained ¥ is a valid HPSG parse by G’ because we can give a similar
argument for the validity of the rule histories in ¥ . d

Hence, strong equivalence is guaranteed for a conversion from canonical LTAG to an HPSG-style grammar.
The two proofs given here and in the previous section prove the strong equivalence between any LTAG G and an
HPSG-style grammar converted from G by our grammar conversion.

4, Conclusion

In this research, we proved that strong equivalence is guaranteed between any LTAG grammar G and an HPSG-
style grammars converted from G by our grammar conversion. Our proof theoretically justifies some applications
of the grammar conversion that exploit the nature of strong equivalence (Yoshinaga et al., 2001b; Yoshinaga et al.,
2001a), applications which contribute much to the developments of the two formalisms.

References

Abeillé, Anne. 1993. Les nouvelles syntaxes: grammaires d’unification et analyse du frangais. Armanda Colin. in French.

Becker, Tilman and Patrice Lopez. 2000. Adapting HPSG-to-TAG compilation to wide-coverage grammars. In Proc. of
TAG+5, pages 47-54.

Carpenter, Bob. 1992. The Logic of Typed Feature Structures. Cambridge University Press.

Chomsky, Noam. 1963. Formal properties of grammar. In R. D. Luce, R. R. Bush and E. Galanter, editors, Handbook of
Mathematical Psychology, volume 1I. John Wiley and Sons, Inc., pages 323-418.

Gorn, Saul. 1962. Processors for Infinite Codes of Shannon-Fano type. In Proc. of the Symposium on Mathematical Theory of
Automata, pages 223-240.

Kasper, Robert. 1998. TAG and HPSG. Talk given in the tutorial session at TAG+4.

Kasper, Robert, Bernd Kiefer, Klaus Netter and K. Vijay-Shanker. 1995. Compilation of HPSG to TAG. In Proc. of ACL 1995,
pages 92-99.

Kornai, A. and G. K. Pullum. 1990. The X-bar Theory of Phrase Structure. Language, 66:24-50.

Marcus, Mitchell, Beatrice Santorini and Mary Ann Marcinkiewicz. 1994. Building a large annotated corpus of English: the
Penn Treebank. Computational Linguistics, 19(2):313-330.

Miller, Philip H. 1999. Strong Generative Capacity. CSLI publications.

Pollard, Carl and Ivan A. Sag. 1994. Head-Driven Phrase Structure Grammar. University of Chicago Press and CSLI
Publications.

Sarkar, Anoop. 2000. Practical Experiments in Parsing using Tree Adjoining Grammars. In Proc. of TAG+5, pages 193-198.

Schabes, Yves, Anne Abeille and Aravind K. Joshi. 1988. Parsing strategies with ‘Lexicalized” grammars: Application to Tree
Adjoining Grammars. In Proc. of COLING 1992, pages 578-583.

Schabes, Yves and Richard C. Waters. 1995. Tree Insertion Grammar: A Cubic-Time Parsable Formalism that Lexicalizes
Context-Free Grammar without Changing the Tree Produced. Computational Linguistics, 21(4):479-513.

Tateisi, Yuka, Kentaro Torisawa, Yusuke Miyao and Jun’ichi Tsujii. 1998. Translating the XTAG English Grammar to HPSG.
In Proc. of TAG+4, pages 172-175.

The XTAG Research Group. 2001. A Lexicalized Tree Adjoining Grammar for English. http://www.cis.upenn.edu/"xtag/.

Torisawa, Kentaro, Kenji Nishida, Yusuke Miyao and Jun’ichi Tsujii. 2000. An HPSG Parser with CFG Filtering. Natural
Language Engineering, 6(1):63-80.

Vijay-Shanker, K. 1987. A Study of Tree Adjoining Grammars. Ph.D. thesis, Department of Computer & Information Science,
University of Pennsylvania.

Yoshinaga, Naoki and Yusuke Miyao. 2001. Grammar conversion from LTAG to HPSG. In Proc. of the Sixth ESSLLI Student
Session, pages 309-324.

Yoshinaga, Naoki, Yusuke Miyao, Kentaro Torisawa and Jun’ichi Tsujii. 2001a. Efficient LTAG parsing using HPSG parsers.
In Proc. of Pacific Association for Computational Linguistics (PACLING 2001), pages 342-351.

Yoshinaga, Naoki, Yusuke Miyao, Kentaro Torisawa and Jun’ichi Tsujii. 2001b. Resource sharing among HPSG and LTAG
communities by a method of grammar conversion from FB-LTAG to HPSG. In Proc. of ACL/EACL 2001 Workshop on
Sharing Tools and Resources for Research and Education, pages 39-46.

Parsing M CS Languages with Thread Automata

Eric Villemonte de la Clergerie
INRIA

1. Introduction

Generalizing ideas presented for 2-stack automata in (Eric Villemonte de la Clergerie, 2001), we introduce
Thread Automata [TA], a new automata formalism that may be used to describe a wide range of parsing strate-
gies (in particular top-down prefix-valid [pv] strategies) for many Mildly-Context Sensitive [MCS] grammatical
formalisms (Weir, 1988), including CFG, TAG (Joshi, 1987), Multi-Component TAG (Weir, 1988), and Linear
Context-Free Rewriting Systems [LCFRS] (Weir, 1992).

As suggested by their name, the underlying idea of TA is that several lines of computation (threads) are
followed during parsing, only one being active at any time. Threads may start sub-threads, may terminate, and
may be suspended to give control to their parent or one of their direct descendants.

Intuitively, a thread may be used to recognize a constituent while new sub-threads are started to recognize its
sub-constituents. Because a thread may be suspended and resumed several times, we can recognize discontinuous
constituents with holes such as auxiliary trees in TAG. More generally, TA may handle complex interleaving of
discontinuous constituents as shown by Fig. 4(a) for the constituents B and C'. TA may also be used to parse a
sub-class of Range Concatenation Grammars [RCG] (Boullier, 2000b), which covers LCFRS.

Though TA exhibit strong expressive power, they still ensure good operational and complexity properties.
Indeed, we propose a simple Dynamic Programming [DP] interpretation for TA that ensures tabular parsing in
polynomial worst-case complexity for space and time w.r.t. the length of the input string.

If we focus in this paper on top-down pv parsing strategies, it is not because we believe them to be the
most important ones, but rather because we think it is important to cover the full spectrum of parsing strategies.
Moreover, a tabular parser which handles pv parsing strategies may usually be easily adapted to handle other kinds
of strategies, the converse being not true. For instance, there already exists a systematic non pv parsing algorithm
for RCG, but we are unaware of any systematic pv parsing algorithm for them.

2. Thread Automata

Formally, a Thread Automaton is a tuple (N, 3, S, F\ x, K, §,U, ©) where

e X (resp. V) denotes a finite set of terminal (resp. non-terminal) symbols, with two distinguished initial and final
non-terminals S and F;

e O is a finite set of transitions;

e « denotes a partial function from A/ to some other finite set X and is used to capture the amount of information
consulted in a thread to trigger the application of some kinds of transitions; *

e U/ is a finite set of labels used to identify threads. It is also used by the partial function ¢ to drive computations
by specifying which threads (subthreads or parent) may potentially be created or resumed at some point, ¢ being
defined from N to 22 where A = { L} UU U {u*|u € U} and L ¢ U. The two functions and § being often
consulted in conjunction, we note k6(A) = (k(A),d(A4)) and (a,d) € ké(A) if a = k(A) and d € §(A).

Athread is a pair p: A where p = uy ... u, € U* is a (possibly empty) path, and A some non-terminal symbol
from . The empty path is denoted by €. A thread store S is a finite set of threads (denoting a partial function
from U to) such that its associated path set ker(S) = {p|p:A € S} is closed by prefix (ie., pu € ker(S) = p €
ker(S)). We will often confuse a thread with its path.

A TA configuration is a tuple (I, p, S) where [denotes the current position in the input string, p the path
of the active thread, and S a thread store with p:A € S for some non-terminal A. The initial configuration is

1. This function, while not essential, is useful to reduce complexity w.r.t. grammar sizes, as illustrated for TAGs (Section 3).

© 2002 Eric Villemonte de la Clergerie. Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and
Related Frameworks (TAG+6), pp. 193-200. Universita di Venezia.

194 Proceedings of TAG+6

cinit = (0, ¢, {€:S}) and the final one cnal = (0, u, {e:S,w:F}) where u € §(S) NU and n denotes the length
of the input string. A derivation step c|— ¢’ is performed using a transition 7 € © of the following kind, where
bracketed (resp. non-bracketed) parts denote contents of non active (resp. active) threads :

SWAP B~2C' : Changes the content of the active thread, possibly scanning a terminal.

(l,p,SUDP:B) (I +|al,p,SUp:C) aq=caifa#e

=
PUSH b+ [b] C : Creates a new subthread.
(l,p,SUpP:B) |7 (l,pu, SUp:B U pu:C) (b,u) € kK6(B) A pu ¢ ker(S)
POP [B]C —— D : Terminates thread pu (if there is no existing subthread).

{l,pu, SUp:B U pu:C) (l,p,SUP:C) pu ¢ ker(S)

=
SPUSH b [C] — [b] D : Resumes the subthread pu (if already created)
{l,p,SUpP:BUpu:C) \7 (l,pu, SUp:B U pu:D) (b,u®) € KO(B)
SPOP [B]c+— D |[c] : Resumes the parent thread p of pu

{l,pu, SUp:B Upu:C) |— (I,p,SUp:D Upu:C) (¢, 1) € k6(CO)

-
Without restrictions, a thread may be suspended infinitely often. However, we will only consider h-TA,
subclasses of TA where a thread may be suspended at most A times to return to its parent, which is a sufficient
condition to ensure the termination of our tabular parsing algorithm (Section 6). Another key parameter is d < |I/|,
the maximal number of subthreads of a thread that may be simultaneously alive. These two parameters h and d are
sufficient to characterize the worst-case complexities of our tabular algorithm, namely O(n?(1++dh)) for space
and O(n2(1+h+dh)+1) for time. For instance, TA with h = 0 and d = 1 are equivalent to Push-Down Automata
and may be used to handle CFG, giving us optimal worst-case complexity O(n?) for space and O(n?) for time.

A finer complexity analysis (still to be confirmed) suggests that, modulo a generally satisfied condition on
SWAP transitions?, the worst-case complexities are actually O(n2*"+dh+=) for space and O(n3Th+dh+e) for
time where z = min(h + dh, (I — d)(h+1)) and [is the maximal number of subthreads created by a thread. When
assuming [= d, we get x = 0 and complexities O(n?+"+4") for space and O(n3*+"+4") for time.

Fig. 1 lists the transitions of a thread automaton A that may be used to recognize the COUNT-3 language
a™b"c™ with a derivation of a?b3c? illustrated by Fig. 2. The characteristics of Aare h = 2 and d = 1.

K’le /15(51) = (Ka{l})
[s1] void — s [void] kd(s2) = (void, {L})
void [sg] — [void] s3

b

(1) (9
(2) (10) S+——1o Kk6(ro) = (K,{1})
(3) (1
(4) s3—s4 kd(s1) = (void, {1°}) (1
(5) (1
(6) (1
(7) (1
(8) (1

)

0)

1) [ro]void — 7y [void] kd(r1) = (void, {1°})
2) [r1]void — ro [void] kd(re) = (void, {15})
3) [ro] ret — ret
4)
5)
6)

[s4] void — s5 [void] k4 (s5) = (void, {L})
void [s5] — [void] sg

S6—— 87 kd(s7) = (void, {1°})
[s7] ret — ret

K — [K]to k6(to) = (void, { L})
void [tg] — [void]t; kd(t1) = (void, {L})
void [t1] — [void] ret

Figure 1: TA transitions for COUNT-3 language a™b"c"

3. Parsing TAG

TAG parsing strategies may be encoded with TA in a straightforward way. The idea is to associate a thread to
each elementary tree traversal. For instance, in Fig. 3, a thread p is started at R to traverse some elementary tree

2. The condition is that no sequence of SWAP transitions can loop from a configuration (I, p, S U p:A) to a configuration
(r,p,S Up:A). That means for instance that we are not scanning regular expressions with Kleene stars using SWAP transitions.

Eric Villemonte de la Clergerie 195

14‘ 2 15| 5 16| 8

111 1 2 7
9 2 3 5 |6 8

L1 oo a | b C...l..........

‘ 1 ‘ 4 7

o W > w P P :
‘9 1 11 ‘3 4 12 ‘6 ! 13

6....._6—. ..

Figure 2: A derivation for a3b3c? starting from S

« and a subthread pu with «w = depth(v) is started at node v to handle an adjunction for non-terminal N (Adj
Call). This subthread T" selects and traverses some auxiliary tree 5 (Adj Select); is L-suspended when reaching
the foot node of /3 to traverse the subtree «, rooted at v (Foot Suspend); is resumed after the traversal of «,
(Foot Resume); and is ended to return to its parent thread at the end of the traversal of 5 (Adj Return). 3

RO(v) = (N* {u})
Adj rd(ve) = (adj, {u})
u = depth(v)

Foot kd(of) = (foot, {L})

(Adj Call) N®+—— [N9] N®

(Adj Select) N%%—*rg

(Foot Suspend) [*v]foot — Gv [foot]
(Foot Resume) adj[ef] — [adj] fe
(Adj Publish) rg®+—ret

SO e ' I—————."— (Adj Return) [Ve] Tet — ¥°
a) Traversals
(b) Transitions

Figure 3: Traversing trees using TA transitions

When traversing a tree 7 with a thread p, the maximal number d of simultaneously alive sub-threads of p
is bounded by its depth, at most one subthread being started and still alive for each node along a path of . A
thread may only be suspended once (h = 1). Hence we get complexities O(n**+24) for space and O(n°+29)
for time. These complexities are not optimal for TAG but correspond to those mentioned in (Eric Villemonte de
la Clergerie, 2001) for a very similar tabular parsing algorithm, which has proved to be efficient in practice for
linguistic grammars.

The best known worst-case complexities for TAG are O(n*) or O(n®) for space and O(n®) for time, and cor-
respond to tabular algorithms where the traversal of the subtree o, may be shared between the different traversals
of a (relying on the fact that the traversal of o, may be done independently of the adjunctions started on the path
from the root of o down to v). It is worth noting that we have very good reasons to believe that we can also achieve
the O(n%) time complexity using TA and our tabular parsing algorithm (see discussion in Section 5).

4. Parsing Multi-Component TAG

Multi-Component [MC] TAG allows the adjoining or substitution of a finite set of elementary trees on nodes
of a single elementary tree (tree-local MC-TAG) or on nodes of elementary trees of another set (set-local MC-

3. Note that without a triggering function «, the (Foot Suspend) transition would be of the form [*v] of —— ve [of],

explicitly referring to nodes of two distinct elementary trees, and leading to complexities in O(|G|?) instead of O(|G|) where
|G| denotes the size of the grammar.

196 Proceedings of TAG+6

TAG). We provide some intuitions how TA may be used to encode prefix-valid parsing strategies for both kinds of
MC-TAG, restricting ourselves to sets of auxiliary trees.*

Tree-local MC-TAG. The idea is to assign a thread p to the traversal (in any order) of a tree set > and subthreads
of p to the traversal of each tree in X.

More formally, for the traversal in any order of a tree set ¥ = {31,..., 8}, we consider extended dotted
points defined by

Sipo pe{i, i ieli=1...m}* Ao e{i®li=1...m}*

where p (resp. o) is the list of trees in > which have been started but not yet completed (resp. completed). We note
ind(po) the set of indices in {1, ... ,m} occurring in po. The rightmost index of p states which tree of X we are
currently working on.

The non-terminal set A/ of the automaton includes these extended dotted points X:po, as well as the dotted
nodes for each node v and the symbols N* and N* for each non-terminal NV of the grammar. We consider the
thread label set&/ = {1,... ,m} U {addr(r, v)|r, v node of 7} where addr(r,) denotes the address of v in 7.

We now associate to ¥ the following (non exhaustive) set of transitions, where r; denotes the root node of 3;
and N; the non-terminal label of r;:

(Call set) Nf—— [Nf] N#

(Start set with tree 3;) Nf—3: %1

(Resume set with tree 3;) Nf [B:po] — [Nf] E:p®ic i & ind(po)

(Start tree 3;) ri — [rg] °n KkO(Z:ptio) = (ri, {i})
(Suspend g; at foot) [X:p*i0]foot — X:p4io [foot]

(Suspend set at foot of 3;) [*v] foot — Gv [foot) KI(X:peio) = (foot, {L})
(Resume set after foot of (3;) adj[X:peio] — [adj] ipie o

(Resume g3; after foot) adj [of] — [adj] fe Kkd(X:pie o) = (adj, {i})
(End tree 3;) [X:pie o] Tet — X:pi® o

(Suspend set after tree ;) [Ve] ret — v*® [ret] KkI(Z:pi®o) = (ret, {L})ApFe
(End set) Y:o—ret ind(o) ={1,... ,m}
(Return from set) [Ve| ret — v*

For a node v of some elementary tree 7 with non-terminal label V, we set

Adj kO(*v) = (N {addr(r,v)} U {addr(r, p)|p # v}*)
kd(ve) = (adj, {addr(r, u)}*)
Foot k0 (of) = (foot, {L})

In terms of complexity, the number h of _L-suspensions is bounded by 2m where m denotes the maximal
number of trees per set while d is bounded by 1 max. || where || is the size of 7 (number of nodes). However,
in our complexity analysis, we use dh to bound the number of suspensions of a thread due to its subthreads. For
tree-local MC-TAG, one can check than we can replace dh by 2 max, |7| and get much better results.

Set-local MC-TAG. We consider a single thread to traverse all trees of a set > (without subthreads for trees of
37), using extended dotted nodes of the form:

Sipo p e ({°v, oV, ve, v* [vanodeof 5;}/{r1% ... ,tm*}) Ao e{r® ..., tm"}"

where p (resp. o) gives indication about each uncompleted (resp. completed) traversal of trees in . We note
ind(po) the set of indices i € {1, ... ,m} for whose a dotted node of (3; occurs in po. The rightmost dotted node
of p states which node of 3 we are currently working on.

The non-terminal set A/ of the automaton includes the extended dotted points X:po, as well as the
symbols N¢ and N* for each non-terminal N of the grammar. We consider the thread label set &/ =
{addr(3, v)|%, v node of X} where addr (X, v) denotes the unambiguous address of v in the tree set X.

4. There is no special difficulty involved with substitution trees.

Eric Villemonte de la Clergerie 197

We associate to Y. the following set of transitions, most of them being straightforward extensions of the
transitions for TAG listed in Fig. 3(b):

(Call set) N — [N Ng

(Start set with tree 3;) Nf—3: *ry

(Add new tree 3; in set) N [E:po] — [Nf] Zip®rio i & ind(po)

(Foot suspend) [X:p v o] foot — X:p ov o [foot)

(Foot Resume) adj [X:p o fi o] — [adj] Zipfig o

(Suspend set after tree ;) [Ve] ret — v*® [ret] kO(Z:pri® o) = (ret, {L}) ApFe
(End set) Y:o—ret ind(e) ={1,... ,m}

(Return from set) [ve]ret — v*

For a node v of some elementary tree 7 in set X and with non-terminal label N, we set

Adj kO(Z:ptvo) = (N {addr(X,v)} U{addr(Z, p)|p # v}?)
56(Sipvac) = (adj, faddr(S, 10)}*)
Foot KO(Z:p ofi o) = (foot, {L})

In terms of complexity, & is still bounded by 2m while d is now bounded by $m max. |7| or, better, by
1 maxy |2| if we extend the notion of size to sets. Furthermore, as done for tree-local MC-TAG, one can easily
check that we can replace dh by 2v in our complexity analysis where v = maxy |X|. If the finer complexity
analysis of Section 2 holds, we get a time complexity O(n?*+2(™+v)) to be compared with the time complexity
O(n?(m+v)) mentionned in (Boullier, 1999) for set-local MC-TAG.

5. Parsing Range Concatenation Grammars

Range Concatenation Grammars (Boullier, 2000b) are defined in terms of terminals, non-terminals, and range
variables that may be instantiated by ranges of the input string. Many sub-classes of RCG may be identified and we
characterize here a new one called ordered simple RCG [0sRCG], equivalent to simple RCG which are themselves
equivalent to Linear Context-Free Rewriting Systems (Weir, 1992). OsRCG are simple RCG where all ranges
appearing in a literal are implicitly ordered: for instance p(X; X2, X3) means that range X; immediately precedes
range X which precedes X5 (with some hole between X5 and X3). Fig. 4(a) shows an 0sRCG clause ~ with two
interleaved discontinuous sub-constituents B and C' of clause head A, and a hole H inherited by A. Fig. 5 shows
two simple 0sRCGs for the COPY language {ww|w € {a, b}*} and for the COUNT-3 language a™b™c".

[’71-,3] void — 'Yl.z% [VOId]
void [y1 4] — [void] y2.0

A—10 (7)
(8)

[v1.0] void — 1.1 [void] (9) [y2.0] void — 724
(10
(11

B+~ [B]B

B C+— [C] C) [’)/2_1] void — Y2.2

/ \C
[’}/1_2] void — Y1.3 [VOId}

|
Al
\\
\
A A A A & A (b) TA transitions

X1 X2 X3 X4 H X5 X6
(@) Interleaved constituents

) 72_2’—)1‘61]

NN N N N
O U s W N~
DO —

Figure 4: 0sRCG clause v A(X1X2X3X4,X5X6) — B(Xl,Xg, X5)C(X2,X4,X6)

It is relatively straightforward to encode with TA a top-down pv parsing strategy for osSRCG. Fig. 4(b) lists
the transitions attached to while Fig. 6 illustrates how to apply these transitions to traverse v where steps marked
by (z) use transitions defined by other clauses. Fig. 1 also gives an idea of the transitions we get (with some
simplifications) for the clauses r, s, t of the COUNT-3 language of Fig. 5(b).

In terms of complexity, the TA associated with an 0sSRCG G is characterized by h = k£ —1 the maximal number
of holes in a constituent where k denotes the maximal arity of non-terminals of G and d the maximal number of

198 Proceedings of TAG+6

S(XY) -> K(XY).
K("","") -> . S(ABC) -> K(A B, C. %r
K("a".X,"a".Y) -> K(XY). K("a".A "b".B,"c".C -> KA B,CO. %s
K("b".X,"b".Y) -> K(XY). Kttty -> %t
(a) COPY language ww (b) COUNT-3 language a™b"c"
Figure 5: Two simple 0sRCG
C thread: - - - - ./.;._;;;./../.._.._-..\.\.../.;._._..\.) T//’_-\\ - "“f//’—\\
Bthread - % - - X, P B A 2l I S T
@] 3 l’(4) (5)|¢(X ©) lI(X) (7)\ b () lI(X) (10)'
A (@) 1.0 7.1 71I2 71I3 V1.4 72|0 72I1 V2.2 ﬂ ret
A ;) . . ;
0! 0, ®| e
S
1.0 711 V1.2 Y1.3 V1.4 2.0 V2.1

ko | (B,{1}) | (C,{2}) | (void,{1}) | (void,{2}) | (void,{L}) | (void,{1}) | (void, {2})

Figure 6: Traversing

sub-constituents that are interleaved in a clause of G. ® For instance, we get h = d = 1 for the COPY language
and h = k — 1 and d = 1 for the COUNT-k language {a? ...a}}.

The worst-case time complexity for RCG provided by (Boullier, 2000b) is O(n**v) where v is the maximal
number of distinct range variables occurring in a clause. It is relatively difficult to compare with our results.
However, if we suppose true our refined complexity analysis (Section 2) and assume [= d for the maximal
number [of literals in a clause, we can take v = d(h + 1), which would give time complexities O (n!++hd+d)
for Boullier’s algorithm applied on 0sRCG and O(n3*"*"4) for our algorithm. Note it is possible to encode TAG
as 0sSRCG (Boullier, 2000a) in such away that h = 1, d = | = 2 and v = 4, which would give the same time
complexity O(nS) for both algorithms applied on TAG.

6. Dynamic Programming I nterpretation

We don’t provide in this extended abstract the full details of our tabular parsing algorithm, but only a simple
intuition. Following a methodology presented in previous papers (Villemonte de la Clergerie and Alonso Pardo,
1998; Eric Villemonte de la Clergerie, 2001), our algorithm relies on a Dynamic Programming interpretation for
TA which is based on the identification of a class of sub-derivations that may be represented by compact items and
combined together to retrieve all derivations.

As shown in Fig. 7, for TA, such an elementary sub-derivation D

== ol o

C. . [C — . .c . Cc

init dO 0 dl 21+1 d2i+1 21+2 2m—+1

retraces the history of some thread # = pu starting at cg, reaching cs,,4+1 and suspended between
Coit1|=—— c2i42 1O return to either its parent thread p (_L-suspension) or some sub-thread puv till aliveat a1

d2i+1
(v-suspension).

Using projections of configuration defined by ¢ = (I, A) and ¢* = (I, k(A)) where ¢ = (I,p,S Up:A), the
essential information of D may be captured by an item I = ¢, /C /a1 whereC = vy : Sy ... v 0 ;.. v ¢
Sy Si = Gz, and v; = v € U if cai—1|-F— c2; is @ v-suspension. For instance, the derivation of Fig 7
gives the item s/v : ab, L : ed,w : ef,v : gh/I.

5. d may be strictly smaller than the number of sub-constituents.

Eric Villemonte de la Clergerie 199

qu ...
puv .. F
o U N A [
A c E G |
D oo @ @
S D

Figure 7: From a thread to item s/v : ab, L : cd,w : ef,v : gh/I

There are 5 application rules used to combine items and transitions, one for each kind of transitions. Except for
the rules handling SWAP and PUSH transitions that only need an unique item, the other rules combine a transition
with a parent item I related to some thread p and a son item J related to some subthread pu. These two items
should fit together, in the sense that the holes of .J should fill between the w-subparts of I and that one item should
extend the other rightward. For instance, Fig. 8 shows a son item J = a/a’, L : be, '/ D which fits and extends
a parent item I = s/a,u : ab, 3/C. These two items are combinable with a SPOP transition [C]d —— E [d] to
return an extended parent item s/a, w : ab, 5,u : cd/E.

Figure 8: Combining SPOP transition [C] d — E [d] with s/a, u : ab, 3/C and a/a’, L : be, 3’/ D
to getitem s/a, u : ab, B,u : cd/E

The DP interpretation is complete and sound w.r.t. a straightforward evaluation of TA. As already mentioned,
the upper-bounds for worst-case complexities are O(n2(1+7+d)) for space and O(n2(1*+h+dh)+1) for time, with
better complexities in many cases. To provide some intuition, the space complexity is related to the maximal
number h of 1 -suspensions and dh of v suspensions to keep trace in a item, with at most two positions in the input
string per suspension and only one in many cases when the distance between the end position of a suspension and
the start position of the next one belongs to some finite set independent of n. The time complexity is related to
the number of distinct positions to consult when finding pairs of items that fit together to extend one of them. If
we examine the case of Fig. 8, we see that we must consult all positions of parent item I to build the resulting
item, check that some positions of I are also positions of the son item J, and consult the rightmost position of
J to extend I. The other positions of .J (in segments o’ and 3’) may be ignored, which gives us the expected
complexity.

7. Conclusion

We have introduced Thread Automata, a new automata formalism that may be used to describe a wide range
of parsing strategies for a wide spectrum of MCS languages. An uniform tabular algorithm based on dynamic pro-
gramming allows parsing with polynomial worst-case space and time complexities and will be soon implemented
within system DyALog.

However, we still have to investigate the full spectrum of languages that may be covered by TA and explore
how easy it is to describe parsing strategies for them. We would like also to explore the relationships of TA with
other kinds of automata, such as (restricted) 2-Stack Automata, Embedded Push-Down Automata (Vijay-Shanker,
1988), or Tree-Walking transducers (Weir, 1992).

References

Boullier, Pierre. 1999. On Multicomponent TAG Parsing. In TALN' 99, pages 321-326, Cargése, Corse, France, July.

Boullier, Pierre. 2000a. On TAG Parsing. Traitement Automatique des Langues (T.A.L.), 41(3):111-131. issued June 2001.

Boullier, Pierre. 2000b. Range Concatenation Grammars. In Proceedings of the Sixth International Workshop on Parsing
Technologies (IWPT2000), pages 53-64, Trento, Italy, February.

Joshi, Aravind K. 1987. An Introduction to Tree Adjoining Grammars. In Alexis Manaster-Ramer, editor, Mathematics of
Language. John Benjamins Publishing Co., Amsterdam/Philadelphia, pages 87-115.

200 Proceedings of TAG+6

Eric Villemonte de la Clergerie. 2001. Refining tabular parsers for TAGs. In Proceedings of NAACL' 01, June.

Vijay-Shanker, K. 1988. A Study of Tree Adjoining Grammars. Ph.D. thesis, University of Pennsylvania, January. Available
as Technical Report MS-CIS-88-03 LINC LAB 95 of the Department of Computer and Information Science, University
of Pennsylvania.

Villemonte de la Clergerie, Eric and Miguel A. Alonso Pardo. 1998. A tabular interpretation of a class of 2-Stack Automata.
In Proc. of ACL/COLING’ 98, August.

Weir, David. 1988. Characterizing Mildly Context-Sensitive Grammar Formalisms. Ph.D. thesis, University of Pennsylvania.

Weir, David. 1992. Linear context-free rewriting systems and deterministic tree-walking transducers. In Proc. of ACL’92.

Evaluation of LTAG Parsing with Supertag Compaction
Olga Shaumyan, John Carroll and David Weir

School of Cognitive and Computing Sciences
University of Sussex

Brighton, BN1 9HQ

UK
{olgas,johnca,davidw}@cogs.susx.ac.uk

1. Introduction

One of the biggest concerns that has been raised over the feasibility of using large-scale LTAGs in NLP is the
amount of redundancy within a grammar’s elementary tree set. This has led to various proposals on how best to
represent grammars in a way that makes them compact and easily maintained (Vijay-Shanker and Schabes, 1992;
Becker, 1993; Becker, 1994; Evans, Gazdar and Weir, 1995; Candito, 1996). Unfortunately, while this work can
help to make the storage of grammars more efficient, it does nothing to prevent the problem reappearing when the
grammar is processed by a parser and the complete set of trees is reproduced. In this paper we are concerned with
an approach that addresses this problem of computational redundancy in the trees, and evaluate its effectiveness.

2. LTAG parsing

LTAG parsing involves (at least) the following two steps. Each word in the input sentence is associated with
that set of (elementary) trees (also called supertags) from the grammar that it can anchor. In large-scale grammars
such as the XTAG grammar (XTAG-Group, 1999) and the LEXSY'S grammar (Carroll et al., 1998b), due to lexical
ambiguity, there are usually a great many trees that can anchor each word. Once all of these elementary trees or
supertags have been found, the parser must explore ways in which they can be composed—using substitution and
adjunction—to produce complete parses of the input string.

In various experiments using a large, automatically produced LTAG, Sarkar, Xia and Joshi (2000) measured
the time to derive a set of shared derivation forests representing all derivations for each sentence. They used a
grammar with 6,789 tree templates and 2,250 sentences of length 21 words or less, and concluded that the amount
of syntactic lexical ambiguity and the number of clauses in a sentence are more significant factors in determining
the time taken to compute a parse forest than sentence length.

To date, the most popular way of addressing the computational problem of lexical ambiguity in LTAG pars-
ing involves supertag filtering, where another step is included in the parsing processes (between the two phases
described above) which involves filtering out some of the possible supertags for words in the sentence (Joshi and
Bangalore, 1994; Bangalore, 1997a; Bangalore, 1997b; Chen, Bangalore and Vijay-Shanker, 1999). This can
dramatically reduce the time it takes to find all ways in which supertags can be combined together into complete
parses. Sarkar et al. demonstrate the potential benefit: parsing their 2,250 sentences with all supertags took 548,000
seconds, but this reduced to 21,000 seconds when the maximum number of supertags per word was limited to 60,
and to a mere 31.2 seconds when lexical ambiguity was completely eliminated.

However, a drawback of this approach is that, since supertag filtering cannot be 100% accurate, a proportion of
desirable supertags are filtered out, resulting in some parses being lost. For example in Sarkar et al.’s experiment,
a limit of 60 supertags per word resulted in over 40% of the sentences receiving no parse at all.

3. Elementary computation sharing

There is an alternative approach to the problem of lexical ambiguity in parsing that removes some of the
computational redundancy that results from lexical ambiguity®. Given some parsing algorithm, each elementary

* We are extremely grateful to Fei Xia for providing us with the grammar used in these experiments, and to Fei Xia and
Anoop Sarkar for the help and advice they have given.
1. Note that the approach described in this section could be combined with supertag filtering.

© 2002 Olga Shaumyan, John Carroll and David Weir. Proceedings of the Sixth International Workshop on Tree Adjoining
Grammar and Related Frameworks (TAG+6), pp. 201-205. Universita di Venezia.

202 Proceedings of TAG+6

tree can be viewed as invoking some fragment of computation (an elementary computation). Evans and Weir
(1998) showed that elementary computations corresponding to bottom-up parsing can be expressed as finite state
automata (FSA). All elementary computations for the supertags associated with a word can be combined into
a single FSA. By minimizing this automaton (using standard minimization algorithms) sharing of elementary
computation is achieved. The hope is that this will lead to significant reductions in parsing time.

To date, this proposal has only received limited evaluation. Carroll et al. (1998a) demonstrated that for a
large hand-crafted grammar the number of states was significantly reduced by merging and minimizing the FSA
associated with a word. For example, the numbers of states in the automaton for the word come (associated with
133 supertags) was reduced from 898 to 50, for break from 1240 to 68, and give from 2494 to 83.

This paper improves on this evaluation in two ways: firstly, the grammar used is automatically acquired, so we
are not open to the charge that it was designed to make this technique work particularly well; secondly, we measure
parse time, not just numbers of states for individual words. Even when the number of states is significantly reduced
it is not clear that parse time (as opposed to recognition time) will drop. This is because in order that parse trees
be recoverable from the parse table, a considerable amount of book-keeping is required when the table is being
completed. This increases both space and time requirements.

4. Experimental evaluation

We used a grammar that was automatically induced by Fei Xia (1999) from sections 00-24 of the Wall Street
Journal Penn Treebank 11 corpus (Marcus, Santorini and Marcinkiewicz, 1993). This is very similar to the grammar
used by Sarkar, Xia and Joshi (2000) and Sarkar (2000), though slightly larger, containing around around 7,500
elementary trees.

We implemented the algorithm described by Evans and Weir (1997) and Evans and Weir (1998), the details
of which are not repeated here. Prior to parsing, the grammar is precompiled as follows. For each word, the set of
trees that it can anchor is determined. This results in a total of 11,035 distinct tree sets. For each of these tree sets
we first build what we refer to as an unmerged FSA. This automaton contains a separate progression of transitions
for each of the trees in the set; using these automata for parsing gives a conventional LTAG parsing algorithm which
we used to give a baseline for our evaluation. To evaluate the approach of Evans and Weir we implemented a parser
that used minimized versions of the automaton with sharing of common elementary computation fragments.

There are 80,538 non-minimized automata (involving 488,421 states). Thus there is a total of 80,538 occur-
rences of one of the grammar’s elementary trees in the 11,035 tree sets. When these nonminimized automata are
minimized we have one automaton for each of the 11,035 tree sets; these automata contain a total of 153,022 states.
Thus, minimization gives an overall compaction of a factor of 3.19. In order to determine the computational benefit
of elementary computation sharing we ran both the merged and unmerged parsers on a set of 14,272 test sentences
of lengths 1-45 words taken from sections 00-24 of the Penn Treebank corpus. The results are shown in Table 12.
It is clear that numbers of items and CPU time are smaller for the merged parser, and that the savings increase with
longer sentences.

Given a tokenized sentence to be parsed, the time shown includes time to make a chart corresponding to the
sentence length, look up definitions for each word and seed the chart with them, and then fill the chart. The results
show that the parse time for the merged parser is around 0.6 that of the umerged parser, and that this ratio is fairly
consistent as the length of sentence increases. This is shown in Figure 1.

5. Discussion

We have presented an empirical evaluation of the automaton-based LTAG parsing algorithm presented by
Evans and Weir (1998). We used a grammar automatically generated from Penn Treebank trees with two parsers:
one in which elementary trees were processed individually, and one in which overlapping elementary computa-
tions were shared. The results show that merging elementary computations results in a significant, though not
spectacular, reduction in parse time, despite the increased amount of book-keeping required to make recovery of
parse trees possible. In future work we plan to determine exactly how much this book-keeping adds to parse time
by implementing a version of the merged parser in which book-keeping is omitted.

2. We ran both parsers on one 750MHz processor of a unloaded Sun Blade 1000 workstation with 1.5GB memory.

Olga Shaumyan, John Carroll and David Weir 203

One rather significant drawback of this evaluation is that the amount of lexical ambiguity in this grammar is
far less than is found in large-scale wide-coverage grammars such as the XTAG grammar (XTAG-Group, 1999).
Although the tree-bank includes examples of a wide variety of syntactic constructions, for any individual word, the
number of syntactic contexts (corresponding to alternative supertag possibilities for that word) that actually occur
in the Penn Tree Bank is generally far less than those that would be included in the lexical entry for that word in
a wide-coverage grammar. This is particularly true for words with low frequency. In future work we plan to look
into ways of obtaining more complete mapping from a lexical item to the set of supertags it can anchor.

300

Unmerged

200

Mean
time

100

Sentence length

Figure 1: Comparison of Running Times

204 Proceedings of TAG+6

References

Bangalore, Srinivas. 1997a. Complexity of Lexical Descriptions and its Relevance to Partial Parsing. Ph.D. thesis, University
of Pennsylvania, Philadelphia.

Bangalore, Srinivas. 1997b. Performance Evaluation of Supertagging for Partial Parsing. In Proceedings of the Fifth Interna-
tional Workshop on Parsing Technologies.

Becker, Tilman. 1993. HyTAG: A new type of Tree Adjoining Grammar for hybrid syntactic representation of free word order
languages. Ph.D. thesis, Universitat des Saarlandes.

Becker, Tilman. 1994. Patterns in metarules. In Proceedings of the Third International Workshop on Tree Adjoining Grammars,
pages 9-11.

Candito, Marie-Héléne. 1996. A principle-based hierarchical representation of LTAGs. In Proceedings of the 16th Interna-
tional Conference on Computational Linguistics, Copenhagen, Denmark, August.

Carroll, John, Nicolas Nicolov, Olga Shaumyan, Martine Smets and David Weir. 1998a. Grammar Compaction and Computa-
tion Sharing in Automaton-based Parsing. In Proceedings of the First Workshop on Tabulation in Parsing and Deduction,
pages 16-25.

Carroll, John, Nicolas Nicolov, Olga Shaumyan, Martine Smets and David Weir. 1998b. The LEXSY'S Project. In Proceedings
of the Fourth International Workshop on Tree Adjoining Grammars and Related Frameworks, pages 29-33.

Chen, John, Srinivas Bangalore and K. Vijay-Shanker. 1999. New Models for Improving Supertag Disambiguation. In
Proceedings of the Eighth Conference of the European Chapter of the Association for Computational Linguistics.

Evans, Roger, Gerald Gazdar and David Weir. 1995. Encoding Lexicalized Tree Adjoining Grammars with a Nonmonotonic
Inheritance Hierarchy. In Proceedings of the 33rd Meeting of the Association for Computational Linguistics, pages 77-84.

Evans, Roger and David Weir. 1997. Automaton-based Parsing For Lexicalized Grammars. In Proceedings of the Fifth
International Workshop on Parsing Technologies, pages 66—76.

Evans, Roger and David Weir. 1998. A structure-sharing parser for lexicalized grammars. In Proceedings of the 36th Meeting
of the Association for Computational Linguistics and the 17th International Conference on Computational Linguistics,
pages 372-378.

Joshi, Aravind and Srinivas Bangalore. 1994. Disambiguation of super parts of speech (or supertags): almost parsing. In
Proceedings of the 15th International Conference on Computational Linguistics, pages 154-160.

Marcus, Mitchell, Beatrice Santorini and Mary Marcinkiewicz. 1993. Building a Large Annotated Corpus of English: The
Penn Treebank. Computational Linguistics, 19(2):313-330.

Sarkar, Anoop. 2000. Practical Experiments in Parsing using Tree Adjoining Grammars. In Proceedings of the Fifth Interna-
tional Workshop on Tree Adjoining Grammars and Related Frameworks.

Sarkar, Anoop, Fei Xia and Aravind Joshi. 2000. Some Experiments on Indicators of Parsing Complexity for Lexicalized
Grammars. In Efficiency in Large-Scale Parsing Systems. Workshop held at COLING 2000.

Vijay-Shanker, K. and Yves Schabes. 1992. Structure Sharing in Lexicalized Tree-Adjoining Grammar. In Proceedings of the
14th International Conference on Computational Linguistics, pages 205-211.

Xia, Fei. 1999. Extracting Tree Adjoining Grammars from Bracketed Corpora. In Proceedings of the 5th Natural Language
Processing Pacific Rim Symposium(NLPRS-99).

XTAG-Group, The. 1999. A Lexicalized Tree Adjoining Grammar for English. Technical Report
http://www.cis.upenn.edu/~xtag/ tech-report/tech-report.html, The Institute for Research in
Cognitive Science, University of Pennsylvania.

Olga Shaumyan, John Carroll and David Weir

Sentence #items #items meantime mean time
length | unmerged merged unmerged merged
1 3 1 0.0 0.0
2 19 5 0.0 0.0
3 104 17 0.0 0.0
4 327 52 0.0 0.0
5 681 121 0.0 0.0
6 1256 235 0.0 0.0
7 2298 473 0.0 0.0
8 3923 864 0.1 0.0
9 5844 1347 0.1 0.1
10 9022 2180 0.2 0.1
11 12674 3203 0.2 0.2
12 18000 4649 0.4 0.2
13 26110 6928 0.5 0.4
14 34074 9165 0.7 0.5
15 47564 12969 1.0 0.8
16 62771 17481 1.3 1.0
17 80515 22809 1.8 1.4
18 99121 27909 2.3 1.7
19 128028 36790 33 2.5
20 163347 47322 4.1 2.9
21 193701 56268 51 5.2
22 277740 80430 51 3.1
23 274474 81562 5.0 3.1
24 354912 101143 6.8 4.1
25 427291 124919 8.5 5.3
26 532109 154792 10.9 6.7
27 683355 195608 14.5 8.9
28 731932 208338 15.9 9.3
29 855873 253130 18.8 11.6
30 873492 258383 19.7 12.3
31 | 1089989 314794 25.2 15.1
32 | 1291749 371601 30.8 18.6
33 | 1838306 556519 47.2 30.2
34 | 1917227 574944 51.1 31.6
35| 2364987 710872 62.1 38.9
36 | 2487632 651374 67.1 36.1
37 | 3381691 982343 98.6 57.4
38 | 2864371 780416 82.0 44.7
39 | 3290281 979203 93.4 57.1
40 | 3755657 1106993 109.5 65.1
41 | 4993534 1467100 164.2 96.4
42 | 4843654 1380099 154.3 90.0
43 | 7071346 1983426 238.5 132.1
44 | 7655510 2282781 266.5 155.3
45 | 7772779 2317031 274.3 174.3

205

Table 1: Mean numbers of items and parse times (CPU seconds) per sentence, for sentences of length 1-45 words.

Korean—English MT and S-TAG
Mark Dras and Chung-hye Han

Macquarie University Simon Fraser University

1. Introduction

An early motivation for Synchronous TAG (S-TAG) (Shieber and Schabes, 1990) was machine translation
(Abeillé, Schabes and Joshi, 1990). Abeillé et af note that traditionally difficult problems outlined by Dorr
(1994)y—for example, categorial, thematic, conflational, structural and lexical divergences—have been used to
argue for the necessity of an explicit semantic representation. However, many of these divergences are not prob-
lems for an S-TAG-based approach. Synchronous TAG translation models thus allow us to explore the question of
the extent to which a semantic representation is actually necessary.

S-TAG was redefined by Shieber (1994) for both theoretical and practical reasons, introducing the requirement
that the derivation trees of target and source be isomorphic. Under this definition it has been noted (Shieber, 1994;
Dras and Bleam, 2000) that there are mappings that cannot be described under $-TAG. This was the motivation for
meta-level grammars (Dras, 1999), by which two TAG grammars can be paired while retaining their criginal prop-
erties, as under standard S-TAG, allowing for a description of mappings that include unbounded non-isomorphisms
{Dras and Bleam, 2000).

This work on exploring how S-TAG (with and without meta-level grammars) can be used for MT has only
been applied to languages that are closely related—English, French, Italian and Spanish. In this paper we aim
to take a much more widely differing pair of languages, English and Korean, to investigate the extent to which
syntactic mappings are satisfactory.

English and Korean have a wide range of differences: rigid SVO word order in English vs verb-final with
free word order in Korean, the largely analytic structure of English vs the agglutinative structure of Korean with
its complex morphology, optional subject and object and the absence of number and articles in Korean, and many

_others, These all suggest that a meta-level grammar will be necessary as there are various many-to-one or many-
fo-many mappings between derivation tree nodes (i.e., there will be few cases where a single elementary tree
corresponds to another single elementary tree, which has been the case with closely related languages).

Although there is an implemented Korear/English MT system that includes a TAG Korean parser as a source
language analysis component (Han et al., 2000), this system as a whole is based on Meaning Text Theory (Mel’guk,
198R), an enriched dependercy formalism. Thus, it requires a conversion component that converts the TAG parser
output to a dependency notation. As pointed out in Palmer et al. (2002), however, this conversion process resulted
in a loss of crucial information such as predicate-argument structure encoded in TAG elementary trees, which had
negative consequences in the translation results. This then provides further motivation 1o explore the feasibility of
applying a single TAG-based formalism to modeling and implementing a Korean/English MT system.

As a first step towards exploring the extent to which an S-TAG style approach can successfully model these
widely different languages, we have taken from a parallel English-Korean Treebank twenty examples of divergent
constructions (see Appendix). Each half has roughly 50,000 word tokens and 5,000 sentences. While the anno-
tation guidelines for the Korean half was developed in Han, Han and Ko (2001) for this corpus, the English half
follows the guidelines already developed for Penn English Treebank (Bies ef al., 1995), as closely as possible.
The example pairs represent structures including copula, predicative/attributive adjective, passive, causative, inter--
rogative, relative clause, complex verb, and modal construction, among others. We find that using a TAG-based
meta-ievel grammar to model Korean/English correspondences for machine translation is quite feasible.

2. Analyses

In this section we discuss two example pairs of sentences, taken from the parallel Treebark, that illustrates
several divergences, and how an S-TAG with meta-level grammar can handle them. The trees we use for the
subgrammars for the sentences are extracted automatically from the Treebank using Lextract (Xia, Palmer and

(© 2002 Mark Dras and Chung-hye Han, Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and
Related Frameworks (TAG+6), pp. 206215, Universita di Venezia,

Dras and Han 207

Joshi, 2000).!

2.1, Korean complex NP vs, English modal

The sentence‘pair in (1) represents a modal construction. The key divergence is that the Korean uses a noun
complement structure, while the English uses a modal adjective structure:

() a2 =2 93 THERE e EE° FHT - b - R e
tank-Plu-Top that ability-Acc open-terrain-Loc fully show-Adnominal possibility be-Past-Dect
Tanks are able to fully demonstrate their potential in open terrain.

A closer but less natural translation of the Korean is The possibility that tanks fully demonstrate their potential
in open tervain exists; the noun representing possibility is modified by an adnominal clause. The corresponding
English translation contains be able to followed by an infinitival clause. The derivation trees are as in Figure 1,
and the Lextract elementary trees grouped according to the translation pairing in Figure 2.

& - 5f {8S_NPs_VI@)
I
2 (sNP_NNXA)

|
o 2F {m_ NPs _NPs_VVE@_NP*)

X2 2 (gNP_NNCE) 59 2 (sNP.NNC&) & ® 9 {(mADVEVP*)

| |
2 (m.DANG NP*) = 2] (m NNCEVP*)

able {sS NPs.JJ@.8s)

tanks - are demonstrate
{sNP_NNS@) {m_VBPE.VP*) {s5 *e VBEXNPs)
potential fully
{SNP_NNG@} (mM.RBE.VP*)
l |
their in

{m_PRPSENP*) {m_VP* INGNPs)
to terrain
{m_TOR_VP*) (ENP.NNE}

l

' open
{m JJT@NP*)

Figuré 1: Derivation trees for (1)

1. Note that the Lextract trees do not contain features, although the con'espondlng Korean XTAG (Han et al., 2000) trees do,
We will make use of the features where necessary,

Dras and Han

=4 NP s
| /\
N2] ADJP NN NP] VP
I I]
T s ADTP
! N
A J7 &l
NP I
| able
s VP
/\ /\
NP VP VIIBD VP
NPl VP are
, s
VvV /\
I .
R Nf ve
| . /\
VB NPl
I
demonstrate
VP
S
TO VP.
|
to
NP NP
| |
NNC NNS
I
= Atz e tanks
NP NP NP
| I |
NNC DA NN
I | i
92 = potential
NP
PRPS NP,
their
VP VP
PN P
ADVE VP, ACP VP,
| l
ADV RB
| I
37 fully
VP VP
NP VP VP, PP
I /\
NNC IN NP
| 1
R g]- = o~ in
NP NP
|
NN JJ NPl
] I
‘terrain open

Figure 2: Lextract elementary trees for (1)

208

Dras and Han 209

The trees are clearly far from isomorphic. The relationship between able and are is inverted between the
corresponding Korean 3! & 1 =t (be) and & (possibility), although demonstrate is the child of able ('2F #| 2F and
% respectively) in both. Most crucially, however, the infimitival fo in English, attached to demonstrate, has no
corresponding element in Korean; rather, fo and demonstrate correspond to the single 2% 2 in Korean. But,
given TAG’s approach to modification, an unbounded number of modifiers (fidly, the PP headed by in) can be
inserted between demonstrate and o, giving an unbounded non-isomorphism. In other examples we have noted
that this unbounded non-isomorphism is quite prevalent, occurring inter alia with nouns and deterrniners.

Other divergences attested in (1) are that fanks is an argument of able, but T *F & £ (fanks) is an argument
of 2t 2| X (demonstrate); and that the preposition in is represented by the suffix *1, a type of correspondence that
occurs frequently because of the analytic-agglutinative language mismatch. Using the algorithm of Dras (1599),
however, it is possible to construct a meta-level grammar to characterize appropriate paired substructures in the
trees, as in Figure 3. The basic principle is that the divergent material is captured by the multi-level tree pairs (such
ag 19-A), in particular in cases with unbounded non-isomorphisms, where the recursive material (such as 19-D
and 19-E) is factored out. The other structures that are not a cause of the isomorphism violation continue to to
be paired by single-level tree pairs (either as in 19-B, or in cases not illustrated here where there is a single node
corresponding to a lexicalized tree plus a substitution node).

19--4: -
asS NPs JJ [able] asSNPsVI[5 & “ =]

aSNP NNX[4]

f
AmNPs Nps VV.NP*[99 o1

L . W *x
asNP.* AmVBPVP* [are] osS_*e VBNPs[demcnstrate) asNBM| asNP.4, Am_ieed

asNP.*] B xype >

I
S TOVP* [to]

19--B: ¢ osNP.NNS[tanks] aSNPNNC[T * & 2] >
asNP_NN{potential] asNP.NNC[& =]
19--C: | | >
< [m_PRPS NP* [their] Bm DANNP*[2]
Am_RB_VE* [fully] AmADV.VP*[$ & %]
19--D < | l >
(Bm.*vesr), (Bm_ B+,
- 19--E:
B.VP*_INNPs[in] B NNC_VE* [™3 =] 214]

|
{Bm.*VER*),
{Am.*ve*r*) . osNP.NN[terrain}

Pm_JJT NP+ [open]
Figure 3: Meta-level grammar for (1)

The groupings that arise from the algorithm are fairly intuitive, 19-A represents the concept the ability of X
to demonstrate Y (X here being fanks and Y potential), with two consequent argument slots, and one slot where
a modifier can be adjoined marked Am.*VP** 3 19-B and 19-D are straightforward; 19-C aggregates the
nodes because in general Korean does not use determiners, so an English noun and determiner correspond to a

2. Ifa pairing of isomorphic trees was expressed by a meta-level TAG, all trees would be single-level.
3, This regular expression represents a node where any tree with a root whose label matches can adjoin; technically this is

Dras and Han 210

19--a

19--B 19--C 19--E

I
19--D

Figure 4: Meta-leve] derivation for (1)

single unit in Korean (although this is not the case here, we follow that general principle); and 19-E represents the
correspondence between the English PP in open terrain and the single Korean ™= | ©14{, Under this meta-level
grammar we have isomorphic meta-level derivation trees for English and Korean with structure as in Figure 4.

Note that, as a next step, the obvious generalisation is to have a single parametrized tree pair in cases like 19-A
and 19-E. From 19-A we will have the same structure for X are able to demonstrate Y, X are able to see ¥, and so
on, with a Korean correspondent for each choice of verb. From 19-E we will have the same structure for in open
terrain, near open terrain, and so on, with a corresponding Korean suffix for each choice of preposition. With the
suffixes in Korean XTAG represented by features, the approach would be similar to that of Abeillé, Schabes and
Joshi (1990) for cases where the French and English share a feature-related attribute like number.

For the example here it could be argued that perhaps fo ‘should’ be in the same tree as demonstrate, and that
in general there should not be separate elementary trees for function words. Frank (2001) argues for functional
elements to be part of lexical elementary trees, and this is the principle used in building the large-scale French
TAG grammar, although each has different ideas as to which trees functional elements should be included in.
However, part of the aim of translating with S-TAG is to use already existing grammars; there are not special
separate grammars for translation that have matching choices about fiinction word treatment. And it is unlikely
that all choices would match in any case, for example with determiners; which would be likely separate in English
and French, but not in Korean.*

2.2. Copula constructions

Korean does not have an explicit copula; this gives tise diverpences as in the sentence pair (2).
2 271E% o EEe CEATENSE.
light-machinegun squad-leader-Top sergeant-Cop-Decl
The light machinegun squad leader is a sergeant.

This is not problematic because of the way in which TAG conventionaily represents copular constructions,
where the predication is the root of the derivation and the copula is adjoined in. Derivation trees are as in Figure 5.

The feature of interest in this translation is the absence of Korean determiners, as mentioned in the previous
example. The combined noun-determiner in English thus corresponds to only the noun in Korean; and there can
be recursive intervening material (such as light, machinegun and squad between the and leader). Thus we again
have an unbounided non-isomorphism, and we handle it with a meta-level grammar as in Figure 6.

3. Discussion
In our analysis of twenty sentence pair types (see Appendix) chosen to illustrate particular divergences not

typically found between closely related languages, a TAG meta-level grammar is basically adequate for describing
the mapping between them, using the algorithm of Dras (1999).

because the labels are really just features (Kasper ef al., 1995; Dras, Chiang and Schuler, 2002). Thus, slightly confusingly,
there are three types of asterisk in a meta-level grammar. Firstly, there is the asterisk that is part of the name of an XTAG or
Lextract tree; this is indicated by a normal aterisk *, Secondly, there is the asierisk to indicate a regnlar expression over these
names; this is indicated by a bold asterisk *. Thirdly, there is the asterisk to indicate a footnode in a meta-level auxiliary tree;
this is indicated by a subscripted asterisk .. All three occur in, for example, the right projection of 19-E.

4. Infact, the fact that F-TAG includes funct1on words in lexical trees and the XTAG Enghsh grammar does not suggests that
2 meta-level grammar may be useful there aiso.

Dras and Han 211

Z 4F 2l v = {58 NPs _NNC@) : sergeant {(sS NPs NNE)
hl b (E:"NP..NI\TC@) '
L2 £ (m_NNC@.NP*)
leader (sNPNN@) - a({mDTENP*) is (mVBZ@VP*)
squad(m.INN@.NP*)
machinegun {m NNQNP*)
light (m.IJJ@_NP*)

|
‘the (m DT@NP*)

Figure 5: Derivation trees for (2)

aSS_NPs.NNG [sergeant] OBTA: SS_NPsNNC@[3 “F € =1 =F]
asNE.*|
asNP.*| A VBZEVP* [is] PmDTENP*[a]
' @SNP_NNE [1eader] aSNPNNC@ [# <% &]
ﬂm.NN@_NP]* [squad] ,Bm_.*_iNP*.*
05-B: :
B * Np* . *
,Bm_DT@_NlP* [the]
Bm NNE_NP* [machinegun] B NNCE@NP*[2 7 & &)
05-C: fm_JJeNe* [light] (Bm_* NP*.*),

(Bm_* NP* *)

Figure 6: Meta-level grammar for (2)

05-2
-
05-B

!
05-C

Figure 7: Meta-level derivation for (2)

Dras and Han 212

The major exception is with some adverbial modifiers that can occur both sentence-initially and adjacent to
VP without any semantic difference. Because TAG is fundamentally a constituent-based formatism, it is necessary
to have two different trees for such modifiers (e.g., soon) depending on the location of the modifier (S-rooted and
VP-rooted). Thus, in a sentence pair as in (3) in which now is VP-adjoined and = 2 (‘now’) is S-adjoined, it
is not possible to build a reasonable TAG meta-level grammar. To see this examine the derivation trees given in
Figure 8. Most nodes pair up straightforwardly (on schedule pairing with 1% = &, with the Korean containing
a suffix to parallel on); the exceptions are the nodes for now and proceeding, which would have to be grouped
together because of the different dominance relations { 1% =i & being immediately dominated by ! SH=] 2, but
there being the possibility of unbounded intervening material between proceeding and now). This grouping of
proceeding and now would be fairly unprincipled, as now is a case of recursive materiai that does not belong in an
elementary tree pair at the meta-level. That is, a meta-level grammar is still formally adequate, but linguistically
undesirable.

3 "d 2 3FEEA MY EE T2 HECT
now that attack preparations-Nom plan-as proceed-Pass-Auxconn be-Past-Decl
The attack preparations are now proceeding on schedule.

T EiE 2 (g5 NPs VVE)

#* 7 (sWPNCE} 1Y == (mNNCE.VP*) = 2 (mNNCR.S*) A& - = {mVpr VX@)
i
2 3 (mNNCE@NP*)
!
2 (m DAN@NP*)

proceeding (sS_NPs . VBG@A)

preparaticns (sNP.NNS@) on (M _VP*_INE NPg)

!
attack (m NN@NP*)
the (m.DI'I‘@.NP*) schedule {SNP_NNE) now {m_RBE VP*)

are(m VBPEVP*)

Figure 8: Derivation trees for (3)

However, no semantic difference wilf result if now were senience-intial in the English, orif =] 2 (‘now’) were
adjacent to the verb TV ¥ = 2 (‘proceed’) in the Korean. This means that even if the Treebank translation does
not allow a meta-level grammar, one is possible just by moving the modifier. From our initial exploration, then, a
meta-level grammar appears to be a promising candidate for describing English-Korean translation.

The next stage of the work is to build a prototype system and use a Lextract-like approach to extract a meta-
level grammar from the parallel Treebank. Lextract already provides us with elementary and derivation trees for
Treebank pairs; the algorithm of Dras (1999) gives a systematic method for identifying paired substructures in
derivation trees. Further, our prototype system will include a generation component (for Korean and/or English,
depending on what the target language is) that generates derivation and derived trees from a given meta-level
derivation structure.

A. Sample divergences

#simple declaratives

Dras and Han ‘ 213

4) =7y =H=NETe =5 HEE 22TAL AL
I-Nom battalion-commander-to observation stuff-Acc report-Past-Decl
I reported my observations to the battalion commander.

" #declarative with object scrambling

5y 28 22 T2 He 2T,
their size-or designation-Top [-Top don’t-know-Decl
I don’t know their sizes or designations.

#attributive adjective
6y == F=IH 3 Fy sy 227 g,
road-Gen condition-Conj enemy situation be-important-Adnominal factor-Nom be-Decl
Road conditions and the enemy situation are key factors. '
fipredicative adjective ‘

M =A% P s Jre AT =7s.
battalion political office-Gen authority-Top very extensive-Decl
The aunthority of the battalion political officer is very extensive.
#copula sentence " '
® 27M=E 2 =iz 2 E R I I I
light-machinegun squad-leader-Top sergeant-Cop-Decl
The light machinegun squad leader is a sergeant.

#Korean passive moerphology — English passive form

® == FFE2 s 2R CrErgE T,
unit designation-Top normally code-in transmit-Pass-Decl
Unit designations are normally transmitted in code.

#Korean passive morphology — English active form

(1) =8 =2 33 &7 7 AL =E TS 2 A&t
now that attack preparations-Nom'plan-as proceed-Pass-Auxconn be-Decl
The attack preparations are now proceeding on scheduile,

#Korean active form — English passive form
(A1 247 8 g 2 JdPE £ ™
80 any more that propaganda-by-Top deceived don’t
So don’t be deceived by that propaganda anymore!
#lexical causative

(12) =57 2gg CrUATIAeT.
snowstorm-Nom traffic-Acc paralysis-Cause-Past-Decl
The snowstorm paralyzed the traffic.

fistructural causative

(13) #=1 sS2F2 & dE & S R TES
compay first-sergeant-Top company members-Nom weapons-Conj ammunition-Acc have
v B
make-Decl

The company first sergeant ensures that the members of the company have the weapons and ammunition.

Dras and Han 214

#structural causative

(14 2= ==t A BT T 2e°=s Ctdg

then battalion-HQ-Nom battalion supply-section-to ammunition-Acc transport-Caus do-Past-Decl
Our battalion HQ then had the ammunition brought in by the battalion’s supply section.
#iyes-no question
(15 =<1y ZE=HET FTHAET?
platoon-leader-Gen call-sign-Nom changed-Past-Int
Has the call sign of the platoon leader been changed?

#wh-question
(16 "= gd 2Ede AY £TAE MAETEV
radio(wave) directional antenna-Top what radio-Acc use-Int
What types of radios is the inclined beam antenna used with?

#relative clause
(a7 =2 =4 THL£ e e 2=t
that radiotelephone operator-Nom use-Adnom book-Top big-Past-Decl
The book that the radiotelephone operator used was big.

#Korean morpheme — English word

(8) =23 H&E FETOCH=A Ui = 2 I = E v U=
artillery support unit-Nom battalion-To attach-Pass-when these-persons-also microwaves-net-Acc
eI,
use-Decl
When artillery support units are attached to the battalion, they would use the VHF network also.

#Korean noun and lisht verb — English verb

(19) 237 e Tt 32 =t <t o,
transmitter-and receiver-Top occasionally cleaning-Acc do-Auxconn must-Decl
One must clean the transmitters and receivers occasionally,

#Korean complex verb — English verb and adverb

20y 2 3= J{T=1 =9 e B I
that letter me-To handover-Auxconn give-Imp
FPlease give me back the letter.

#Korean complex verb — English verb and preposition
@20 e=F2 2 29 e FHA&YTI 2T 2L,
squad-leader-Top that wounded-soldier-Gen eye-Acc carefully take-in iook-Past-Decl
The squad leader carefully looked into the eyes of the wounded soldier.

#Korean complex noun phrase — English modal auxiliary verb construction
22) s =2 s9H:& HEE T EEC THT =+ A&,
tank-Plu-Top that ability-Ace open-termin-Loc fully show-Adnominal possibility be-Past-Decl
Tanks are able to fully demonstrate their potential in open terrain.

#Korean intransitive verb — English transitive

(23 T-54 =2 TFATS -
T-54 tank-Top smoke-emit-Past-Decl
The T-54 tank emitted smoke.

Dras and Han 215

References

Abeillé, Anne, Yves Schabes and Aravind K. Joshi. 1990. Using lexicalized tree adjoining grammars for machine translation.
In Proceedings of the 13th International Conference on Computational Linguistics (COLING ’90), Helsinki, Finland,
August. -

Bies, Ann, Mark Ferguson, Karen Katz and Robert MacIntyre. 1995, Bracketing Guidelines for Treebank II Style Penn
Treebank Project,

Dorr, Bonnie. 1994. Machine Translation Divergences: A Formal Description and Proposed Solution. Compurational Linguis-
tics, 20(4):597-633.

Dras, Mark, 1999. A meta-level grammar: redefining synchronous TAG for translation and paraphrase. In Proceedings of the
37th Annual Meeting of the Association for Computational Linguistics (ACL 99}, pages 80~-87.

Dras, Mark and Tonia Bleam. 2000. How Problematic are Clitics for S-TAG Translation? In Proceedings of the Fifth
International Workshop on Tree Adjoining Grammars and Related Formalisms (YAG+5), pages 241-244, Paris, France,

Dras, Mark, David Chiang and William Schuler. 2002, On Relations of Constituency and Dependency Grammars. Journal of
Language and Computation.

Frank, Robert. 2001. Phrase Structure Composition and Syntactic Dependencies. MS. Johns Hopkins University, June,

Han, Chung-hye, Benoit Lavoie, Martha Palmer, Owen Rambow, Richard Kittredge, Tanya Korelsky, Nari Kim and Myunghee
Kim. 2000. Handling Structural Divergences and Recovering Dropped Arguments in a Korean/English Machine Trans-
lation System. In John S. White, editor, Envisioning Machine Transiation in the Information Future, Lecture Notes in
Artificial Intelligence. Springer-Verlag, pages 40~53. Proceedings of the Association for Machine Translation in the
Americas, AMTA 2000.

Han, Chunghye, Na-Rae Han and Eon-Suk Ko. 2001. Bracketing Guidelines for Penn Korean Treebank. Technical Report
TRCS-01-10, Institute for Research in Cognitive Science, University of Pennsylvania.

Han, Chunghye, Juntae Yoon, Nari Kim and Martha Palmer. 2000. A Feature-Based Lexicalized Tree Adjoining Grammar for
Korean. Technical Report IRCS-00-04, Institute for Research in Cognitive Science, University of Pennsylvania.

Kasper, Robert, Bernd Kiefer, Klaus Netter and K. Vijay-Shanker. 1995. Compilation of HPSG to TAG. In Proceedings of the
33rd Annual Meeting of the Association for Computational Linguistics (ACL '95).

Mel’8uk, Igor. 1988. Dependency syntax: theory and practice . Albany: State University of NY Press,

Palmer, Martha, Chung-hye Han, Anoop Sarkar and Ann Bies. 2002. Integrating Korean analysis components in a modular
Korean/English machine translation system. MS. University of Pennsylvania and Simon Fraser University.

Shieber, Stuart M. 1994, Restricting the weak-generative capability of synchronous tree adjoining grammars. Computational
Intelligence, 10(4). .

Shieber, Stuart M, and Yves Schabes. 1990, Synchronous tree adjoining grammars. In Proceedings of the 13th International
Conference on Computational Linguistics (COLING '90), Helsinki, Finland, August.

Xia, Fei, Martha Palmer and Aravind Joshi, 2000. A Uniform Method of Grammar Extraction and Its Applications. In
Praceedings of EMNLP 2000.

Tectogrammatical Representation: Towards a Minimal
Transfer In Machine Translation

Jan Haji¢
Charles University, Prague, Czech Republic
hajic@ufal. mff.cuni.cz

1. Introduction

The Prague Dependency Treebank (PDT, as described, e.g., in (Haji€, 1998) or more recently in (Haji&, Pajas
and Vidové Hiadka, 2001)) is a project of linguistic annotation of approx. 1.5 million word corpus of natutally
occurring written Czech on three levels (*layers™) of complexity and depth: morphological, analytical, and tec-
togrammatical. The aim of the project is to have a reference corpus annotated by using the accumulated findings
of the Prague School as much as possible, while simultaneously showing (by experiments, mainly of statistical
nature) that such a framework is not only theoretically mteresting but possibly also of practical use.

In this contribution we want to show that the deepest (tectogrammatical) layer of representation of sentence
structure we use, which represents “linguistic meaning” as described in (Sgall, Haji¢ova and Panevova, 1986) and
which also records certain aspects of discourse structure, has certain properties that can be effectively used in ma-
chine translation' for languages of quite different nature at the transfer stage. We believe that such representation
not only minimizes the “distance™ between languages at this layer, but also delegates individual language phenom-
ena where they belong to - whether it is the analysis, transfer or generation processes, regardless of methods used
for performing these steps.

2. The Prague Dependency Treebank

The Prague Dependency Treebank is a manually annotated corpus of Czech. The corpus size is approx. 1.5
million words (tokens). Three main groups (“layers™) of annotation are used:

s the morphological layer, where lemmas and tags are being annotated based on their context;
¢ the analytical layer, which roughly comresponds to the surface syntax of the sentence,
e the tectogrammatical layer, or linguistic meaning of the sentence in its context.

In general, unique annotation for every sentence (and thus within the sentence as well, i.e. for every token) is used
on all three layers. Human judgment is required to interpret the text in question; in case of difficult decisions,
certain “tie-breaking” rules are in effect (of rather technical nature); no atiempt has been made to define what type
of disambiguation is “proper” or “improper” at what level.

Technically, the PDT is distributed in text form, with an SGML markup throughout. Tools are provided for
viewing, searching and editing the corpus, together with some basic Czech analysis tools (tokenization, morphol-
ogy, tagging) suitable for various experiments. The data in the PDT are organized in such a way that statistical
experiments can be easily compared between various systems - the data have been pre-divided into training and
two sets of test data.

In the present section, we describe briefly the Prague Dependency Treebank structure and its history.

2.1. Brief History of the PDT

The Prague Dependency Treebank project has started in 1996 formally as two projects, one for specification
of the annotation scheme, and another one for its immediate “validation” (i.e., the actual treebanking) in the
Institute of Formal and Applied Linguistics, Faculty of Mathematics and Physics at Charles University, Prague.
The annotation part itself has been carried out in its Linguistic Data Lab. There has been broad cooperation at

* Supported by the Ministry of Education of the CR Project LNOOA0063 and by the NSF Grant 0121285,

1. We suppose the “classic” design of an MT system, namely, Analysis - Transfer - Synthesis (Generation). Although we
believe that overall, cur representation goes further than many other syntactico-semantic representations of sentence structure,
we are far from calling it an interlingua, since it can in general have different realization in different languages for the same
sentence.

© 2002 Jan Haji€. Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and Related Frameworks
(TAG+6), pp. 216-226. Universit di Venezia.

_ Hajig - 217

I6)) Od vlady Zekdme autonomni ekologickou politiku
od vlada dekat autonomni ekologicka politika
RR--2--—----- NNFS$2-----A-- VB-P-—1P-AA- AAFS4----1A-- AAFS4----]1A-- NNFS34-----A--

‘From the-government we-are-awaiting an-autonomous environment policy’
Figure 1: Example morphological annotation: form, lemma, tag

the beginning of the project, especially with the Institute of the Czech National Corpus which {in a similar vein
to the British National Corpus) has been constituted at the time as the primary site for collection of and public
access to large amounts of Czech contemporary texts?. A preliminary version of the PDT (called “PDT 0.5) has
been released in the summer of 1998, the first version containing the full volume of morphological and analytical
annotation has been published by the LDC in the fall of 200! (Hajig ef a/., 2001). The funding for the project
which currently concentrates on the tectogrammatical layer of annotation as described below is secured through
2004.

2.2. The Morphological Layer

The annotation at the morphological layer is an unstructured classification of the individual tokens (words and
punctuation) of the utterance into morphological classes (morphological tags) and lemmas. The original word form
is preserved, too, of course; in fact, every token has gotten its unique ID within the corpus for obvious reference
reasons. Sentence boundaries are preserved and/or corrected if found wrong (as taken from the Czech National
Corpus).

There is nothing unexpected at this level of annotation, since it follows closely the design of the Brown Corpus
and of the tagged WSJ portion of the Penn Treebank. However, since it is a corpus of Czech, the tagset size used
is 4257, with about 1100 different tags actually appearing in the PDT. The data has been double-annotated fally
manually, our morphological dictionary of Czech (Haji€, 2001) has been used for generating a possible list of tags
for each token from which the annotators selected the correct interpretation.

There are 13 categories used for morphological annotation of Czech: Part of speech, Detailed part of speech,
Gender, Number, Case, Possessor’s Gender and Number, Person, Tense, Voice, Degree of Comparison, Negation
and Variant. In accordance with most annotation projects using rich morphological annotation schemes, so-called
positional tag system is used, where each position in the actual tag representation corresponds to one category (see
Fig. 1). : ‘

2.3. The Analytical Layer

At the analytical layer, two additional attributes are being annotated:
o (surface) sentence structure,
¢ analytical function.

A single-rooted dependency tree is being built for every sentence? as a result of the annotation, Every item (token)
from the morphological layer becomes (exactly) one node in the tree, and no nodes (except for the single “tech-
nical” root of the tree) are added. The order of nodes in the original sentence is being preserved in an additional
attribute, but non-projective constructions are allowed (and handled properly thanks to the original token serial
number). Analytical functions, despite being kept at nodes, are in fact names of the dependency relations between
a dependent (child) node and its govemnor (parent) node. As stated above, only one (manually assigned) analytical
annotation (dependency tree} is allowed per sentence.

According to the pure dependency tradition, there are no “constituent nodes™, as opposed e.g. to the mixed
representations in the NEGRA corpus (Skut et af., 1997) which contains the head annotation alongside the con-
stituent structure; we are convinced the constituent nodes are in general not needed for deeper analysis, even though
we found ex perimentally that for parsing, some of the annotation typically found at the constituent level might help

2. The ICNC has now over 0.5 billion words of Czech text available.
3. Sentence-break errors are manually corrected at the analytical layer as well.
4.. And no equivalent markup either.

218 Proceedings of TAG+6

#1{lemma:#tag. Zi——)
AuxS

cekama(emmaekat TTEGEVE-P—1P-AA)

Pred
dfemma:aditag:-RR~2———) pofitku(lemma:pofitika’tagNNFS4 A~}
AuxP Onj

b

viddy(lemma:viada/tagNNF82—A~) autonomni{lemma:autonomniftag:AAFS4—1A-) ekologickou{lemma:ekologicky/tag AAFS4—1A-)
Obj Afr Ar

Figure 2: Analytical annotation (sentence from Fig. 1): form, function (+ dependencies, preserved word order)

(such as subordinate clause root markup; for more details, see (Collins et al., 1999)). However, there are still many
“technical” dependencies left - we are here at the level of the surface syntax, and there is often no linguistic reason
to create a dependency between e.g. an analytical verb form, or a punctuation and everything else, etc.

Coordination and apposition is handled using such “technical” dependencies, too: the conjunction is the head
and the members are its “dependent” nodes. Common modifiers of the coordinated structure are also dependents
of the coordinating conjunction, but they are not marked as coordinated stmcture members. This additional “coor-
dinated structure member” markup (_Co, _Ap) gives an added flexibility for handling such constructions.

Ellipsis is not annotated at this level {no traces, no empty nodes ete.), but a special analytical function (ExD)
is used at nodes that are Jacking their governor, even though they (technically) do have a governor node in the
annotation®.

There are 24 analytical functions used®, such as Sb (Subject), Obj (Object, regardless of whether the direct,
indirect, etc.), Adv (Adverbial, regardless of type), Pred, Pnom (Predicate / Nominal part of a predicate for
the (verbal) root of a sentence), Atr (Attribute in noun phrases), Atv, AtvV (Verbal attribute / Complement),
AuxV (auxiliary verb - similarly for many other auxiliary-type words, such as prepositions {AuxP), subordinate
conjunctions {AuxC), etc.), Coord, Apos (coordination/apposition “head”), Par (Parenthesis head), etc.

A simple example of the analytical level annotation of the sentence from Fig. 1 is in Fig. 2.

2.4. The Tectogrammatical Layer

The tectogrammatical layer is the most elaborated, complicated but also the most theoretically based layer of
syntactico-semantic (or “deep syntactic™) representation. The tectogrammatical layer annotation scheme is divided
into four sublayers:

» dependencies and functional annotation,

e the topic/focus annotation including reordering according to the deep word order,

coreference,

the fully specified tectogrammatical annotation {including the necessary grammatical information).

It is the {recursively) closest parent that is physically present in the original sentence.
Not counting the additional coordination and special parenthetical markup which effectively triples that number.

Sn

 Haji¢ 219

As an additional data structure we use a syntactic lexicon, mainly capturing the notion of valency. The lexicon is
not needed for the interpretation of the tectogrammatical representation itself”, but it is helpful when working on
the annotation since it defines when a particular node should be created that is missing on the surface. In other
words, the notion of {valency-based) ellipsis is defined by the dictionarv. But before describing the dictionary, let
us describe the first (“core™) sublayer of annotation.

Dependencies and Fnnctors

The tectogrammatical layer goes beyond the surface structure of the sentence, replacing notions such as “sub-
ject” and “object” by notions like “actor”, “patient”, “addressee’ etc. The representation itself still relies upon the
language structure itself rather than on world knowledge. The nodes in the tectogrammatical tree are autosemantic
words only.}, Dependencies between nodes represent the relations between the (autosemantic) words in a sentence,
for the predicate as well as any other node in the sentence. The dependencies are labeled by finctors®, which de-
scribe the dependency relations. Every sentence is thus represented as a dependency tree, the nodes of which are
autosemantic words, and the (labeled) edges name the dependencies between a dependent and its governor.

Many nodes found at the morphological and analytical layers disappear!® (such as function words, prepo-
sitions, subordinate conjunctions, etc.). The information carried by the deleted nodes is not lost, of course: the
relevant attributes of the autosemantic nodes they belong to now contain enough information (at least theoretically)
to reconstruct them.

Ellipsis is being resolved at this layer. Insertion of (surface-)deleted nodes is driven by the notion of valency
{see below the section on Dictionary) and completeness (albeit not in its mathematical sense): if a word is deemed
to be used in a context in which some of its valency frames applies, then all the frame’s obligatory slots are "filled”
(using regular dependency relations between nodes) by either existing nodes or by newly created nodes, and these
nodes are annotated accordingly. Textual ellipsis (often found in coordination, direct speech etc.)!! is resolved by
creating a new node and copying all relevant information from its origin, keeping the reference as well.

Every node of the tree is furthermore annotated by such a set of grammatical features that enables to fully
capture the meaning of the sentence (and therefore, to recover - at least in theory - the original sentence or a
sentence with synonymous linguistic meaning).

The Dictionary (Syntactic, Valency Lexicon)

The tectogrammatical layer dictionary is viewed mainly as a valency dictionary of Czech. By valency (as
theoretically defined in (Panevova, 19753); for recent account of the computational side and the actval dictionary
creation, see (Skoumalova, Strafidkova-Lopatkové and Zabokrisky, 2001)) we mean the necessity and/or ability of
(autoseinantic) words to take other words as their dependents, as defined below.

_ Every dictionary entry is called a /exig, which may contain one or more alternative (valency) frames. A frame
consists of a set of (valency) slots. Each slot contains a fiunction section (the actual functor, and an indication
whether the functor is obligatory!?), and an associated form section., The form section has no direct relation to
the tectogrammatical representation, but it is an important link to the analytical layer of annotation: it contains
an {underspecified) analytical tree fragment that conforms to the analytical representation of a possible expression
of the particular slot. Often, the form section is as simple as a small (analytical) subtree with one (analytical)
dependency only, where the dependent node has a particular explicitly specified morphemic case'?; equally often,
it takes the form of a two-edge subtree with two analytical dependencies: one for a preposition (together with its
case subcategorization) as the dependent for the surface realization of the root of the lexia itself, and one for the
preposition’s dependent (which is completely underspecified). However, the form section can be a subtree of any
complexity, as it might be the case for phrasal verbs with idiomatic expressions etc.

7. Nor for further analysis (say, a logical one) based on it, nor (in the other direction) for generation (synthesis) of surface
seniences.

8. By “autosemantic”, as usual, we mean words that have lexical meaning, as opposed to just grammatical function.

9. Attwo levels of detail; here we ignore so-called syntactic grammatemes, which provide the more detailed subclassification.
10. Based on the pnnc:ple of using only autosemantic words in the representation.

11. Nominal phrases, as used in headings, sports results, artifact names etc. are not ¢onsidered 1ncomplete sentences, even
though they do not contain a predicate,

12. By “obligatory” we mean that this functor (slot) must be present at the tectogrammatical layer of annotation; this has
immediate consequences for ellipsis annotation, cf. below.

13. Czech has seven morphemic cases: nominative, genitive, dative, accusative, vocative, locative, and instrumental, usually
numbered 1 to 7. In the example in Fig. 1, the case takes the 5" position in the positional representation of the tag.

220 Proceedings of TAG+6

Moreover, the form section might be different for different expressions (surface realizations) of the lexia itself.
For example, if the lexia is a verb and its surface realization is in the passive voice, the form of the (analytical)
nodes corresponding to its (tectogrammatical) valency slots will be different than if realized in the active voice.
However, relatively simpie rules do exist to “convert” the active forms into the passive ones that work for most
verbs; therefore, for such verbs, only the canonicat (active) forms!# are associated with the corresponding valency
slots. For irregular passivization problems there is always the possibility to include the two (or more) different
realizations explicitly into the dictionary. ‘

A similar mechanism is in place for nominalizations. Verbal nouns typically share the function section of
the valency frame with their source verbs, but the form section might be a regular or an irregular transform of the
corresponding form section. Again, if the necessary transformation is regular, only the canonical form section need
to be present (or even no frame at all, if the verb-to-noun derivation is regular in the function section as well).

QOther issues are important in the design of the valency lexicon as well, such as reciprocity, information about
verbs of control (Panevovd, Reznitkova and UreSova, 2002), etc., but they are outside the scope of this rather brief
discussion.

The issue of word sense(s) is not really addressed in the valency dictionary. Two lexias might have exactly
the same set of valency frames (as defined above, i.e. including the form section(s) of the slot(s)); in such a case,
it is assumed that the two words have different lexical meaning (polysemy)!®. It is rather practical to leave this
possibility in the dictionary (however “dirty™ this solution is from the purist syntactic viewpoint), since it allows
to link the lexias by a single reference to, e.g. the Wordnet senses (Pala and Sevetek, 1999). The lexical (word
sense) disambiguation is, however, being solved outside the tectogrammatical level of annotation, even though
eventually we plan to link the two, for obvious reasons. Then it will be possible to relate the lexias for one
Ianguage to another in their respective (valency) dictionaries (at least for the majority of entires), From the point
of view of machine translation, this will serve as an additional source of syntactically-based information of form
correspondence between the two languages.

Topic, Focus and Deep Word Order

Topic and focus (Hajitova, Partee and Sgall, 1998) are marked, together with so-calied deep word order
reflected by the order of nodes in the annotation, is in general different from the surface word order, and all the
resulting trees are projective by the definition of deep word order.

By deep word order we mean such (partial) ordering of nodes at the tectogrammatical layer that puts the
“newest” information to the right, and the “oldest” information to the left, and all the rest inbetween, in the order
corresponding to the notion of “communicative dynamism”. Such an ordering is fully defined at each single-
level subtree of the tectogrammatical tree; i.e., all sister nodes fogether with their head are fully ordered lefi-to-
right. The order is relative to the immediate head only; therefore, there exists such a total ordering of the whole
tectogrammatical tree that the tree is projective. We believe that tbe deep word order is language-universal for
every utterance in the same context, unless, roughly speaking, the structural differences are “too big” (or, in other
words, the corresponding translation is “too free™).

In written Czech, the surface word order roughly corresponds to the deep word order {with the notable system-
atic exception of adjectival attributes to nouns, and some others), whereas the grammar of English syntax dictates
in most cases a fixed order, and therefore the deep word order will be more often different (even though not always;
even English has its means to shuffie words around to make the surface word order closer to the deep one, such as
extraposition).

Coreference

Grammatical and some textual coreference is resolved and marked. This is subject to future work, despite
some ongoing test annotation. Grammatical coreference {such as the antecedent of “which”, “whom”, etc., control
etc.) is simpler and therefore we believe it will be done more easily and sooner that its textual counterpart. (For
more on control in PDT, see (Panevova, Reznitkov4 and Uredova, 2002) in this volume.)

14, By “form” we mean the analytical trec frapment as defined above.
15. On the other hand, it is clear that two lexias that do not share the same set of frames must have different lexical meaning
as well, unless truly synonymous at a higher level of analysis.

Hajié 221

Transfer

- tectogrammatical representation -

‘gg‘? - surface syntax representation - Q

5 %

od A
%

- morphological representation -

source language target language

Figure 3: Transfer-based MT scheme with three levels of analysis and generation

3. Machine Translation and the Tectogrammatical Layer

The usual scenario of machine translation is Analysis - Transfer - Synthesis (Generation). It is commonly
accepted wisdom that the deeper the analysis, the smaller the transfer and vice versa. It is equally clear that
the deeper the analysis (and smaller and simpler the transfer), the longer the path from the source to the target
languages, and therefore the more errors are likely to creep in. We in principle agree with this, since only careful
experiments and variety of evaluations must be run to prove or disprove this; We would like to argue at this
point, however, that {(even though we have not done such convincing experiments vet), intuitively, there must be an
advantage if the transfer end points are defined at a locally clean information saddle point with as least “dirt” from
the other language as possible. There has been a number of attempts to use syntactic structure of a sentence to do
MT; recently, the most succesful one is statistically based (Yamada and Knight, 2001). We propose here, however,
to go to a “deeper” level of analysis.

3.1. The Overall Design

Fig. 3 shows the overall scheme of a transfer-based approach to machine translation. This triangle-based
scheme!'® is currently considered the common scheme of all machine transtation systems, whether they are of
commercial nature {such as (Flanagan and McClure, 2002)) or of research nature ((Brown ef al., 1993), (Knight,
1999)) and regardless of their prevailing methodology (with the exception of very few interlingua-based systems
(Cavalli-Sforza et al., 2000)).

As Fig. 3 suggests, we propose three essential analysis steps and three generation steps:

¢ Morphological processing;
e Amalytical (surface syntax) processing;
e Tectogrammatical processing (underlying syntax);

and, of course, transfer at the top of the processing “triangle™!”,

An output from one step is the input to the following step; thus we have here four representations of the data
along the "up-leading” as well as the "down-leading” paths (from bottom to top):

e The surface form of the text (i.e., the actual input and output of the whole system).

e Unstructured morphological representation (cf. Sect. 2.2), i.e., an ordered list of lemmas and morphological
tags. The order corresponds to the original word order of the sentence.

16. We should rather call it a “trapezoid” scheme, since the top is always cut off in it.

17. Word sense disambiguation (WSD) is not considered a separate step in this scenario, but of course it is taken care of at the
tectogrammatical representation level, unless it is already solved while parsing to the tectogrammatical level (based on different
valency frames of the words in question).

222 Proceedings of TAG+6

o Structured analytical representation (cf. Sect. 2.3), in the form of a dependency tree that contains all tokens from
the morphological layer. Let’s summarize that every token is annotated by the lemma and tag coming from the
morphological layer, and by a pointer to its govemning node and an analytical function naming the dependency
relation. The lefi-to-right order of the nodes of the tree is still coming from the surface sentence word order,
therefore causing non-projective trees at times,

e Structured tectogrammatical representation (for more details and the four sublayers of annotation, cf. Sect. 2.4)
which does not contain the word form, lemma, morphological tag, analytical function, nor the surface depen-
dency links. Instead, the tectogrammatical dependency, lexia®® and the functor is used as the basic information
here, supplemented by grammatemes that contain information about number, tense, degree of comparison only
where it cannot be recovered from the lexia and function itself. In the full tectogrammatical representation,
coreference and deep word order together with topic/focus is annotated as well.

Let us now illustrate how the correspondence among quite distant languages (English, Czech and Arabic) becomes
more and more apparent (and straightforward) as we move up the translation “triangle”. We will use the sentence
The only remaining baker bakes the most famous rolls north of Long River, which translates to Czech as Jediny
zhyvajici pekaf pede nejznaméisi rohliky na sever od Dlouhé Feky and to Arabic as (transcribed) ‘al-xabbaaz ’al-
‘axiir ‘al-baaqii yasnacu ‘ashhar ‘al-kruasaanaat ilaa shimaal min Long River.

3.2. Surface Form and Merphological Layer Correspondence

Even though the example sentence is quite straightforward to translate (certainly more easily than many sen-
tences in the WSIJ), it is clear that there are several unpleasant (non-)correspondences at the surface form, and
similarly at the morphological level: articles have no correspondence in the Czech sentence, whereas in the Ara-
bic counterpart, articles are in fact part of the Arabic words. Similarly, the supetlative is expressed in Czech by
circumfixing, whereas in English it is represented by several words and in Arabic there is a specific single word
(‘ashhar). The Arabic word order is different, too: the word for “baker” (‘al-xabbaaz) precedes its attributes in the
Arabic translation, but follows them in both Czech and English. Therefore methods based on very shaliow analysis
(i.e., morphological at most) will have trouble (at least) with different word counts, different word order, and, as
usual, lexical choice (cf. further below).

3.3, Analytical Layer Correspondence

Fig. 4 shows the corresponding trees. The correspondence of the dependencies is more visible, but since the
number of nodes is the same as on the morphological layer, the problems mentioned above did not disappear; on
the contrary, the surface structure of the Arabic superiative construction (‘ashhgr ‘al-kruasaanaat) cven reverses
the associated dependency relation {compared to both Czech and English, cf. the most famous roils). Since the
original word order is preserved in the analytical dependency tree, the shape of the tree does not correspond even
for simple nominal phrases'®. Overall, even though many dependencies do correspond to each other, there are still
many dependencies that either do not correspond to anything in the other language, or are reversed.

3.4. Tectogrammatical Correspondence

Even though there is some similarity between languages at the surface dependency syntax level, the tectogram-
matical structure displays often striking similarity, both in the structure and in the functor correspondence (Fig. 5),
even though we say again that it is not meant to be an [artificial] interlingua®’.

Analytical Verb Forms

Verbs tend to use various auxiliaries to express person, tense, sometimes number and other morphological
properties, We believe, however, that once the person, tense, number etc. is determined (disambiguated), then

18. Recall that “lexia” is the lexical unit reference at the tectogrammatical level, and thus it plays here a role similar to the

“lemma™ at the morphological and analytical layers.

19. Although the direction of dependencies does (remaining depends on baker, similarly in Arabic ‘al-baagii depends on

‘al-xabbaaz and in Czech zbyvafici depends on peka#).

éﬂ. For example, compare the difference in the structure for “ like swimming™ in English and “Ich schwimme gern” in
erman.

| Haji \ 223

yagnacu
Pred

fls north hliiky na ‘al-xabbaaz ‘ashhar ilaa
!Sb Chj Adv Obj AuxP Sb \) Obj\)AuxF‘
The only remaining the jffamous Jediny zbyvajici nejznaméjsl sever 'al-'axiir ‘al-baagii ’al-kruasaanaat shimaal
Afr AuxZ Atr Alr | Atr AuxP Atr Atr Alr Adv Atr Alr Alr Adv
most River S. min
Adv Ady AuxP AuxP
Long eky River
Alr Atr Atr
Clouhg Long
Alr Alr

Figure 4: Analytical layer correspondence: The only remaining baker bakes the most famous rolls north of Long
River in English, Czech and Arabic

© SENT

to_bake
PRED

baker i} notth pekaf housky sever N SHML
ACT PA\LOC ACT \J F‘.‘\T\J LoC ACT PAT Loc

only reraining famous/ River jediny zbyvajici nejznam&j3l feka AXR BQY SHHR [River
RSTR RSTR RSTR/ DIR1 RSTR RSTR RSTS/ DIR1 RSTR RSTR RSTR [DIR1

4

Long Dlouka Long
DPHR DPHR DPHR

PRED

Figure 5: Tectogrammatical layer correspondence: The only remaining baker bakes the most famous rolls north of
Long River, again in English, Czech and Arabic; for transparency reasons, only the lexia and functor are shown,
and not grammatemes such as number.

224) & _ Proceédings of TAG+6

there is no need to have separate nodes for each of the auxiliaries, The auxiliaries are completely determined by the
language in question; therefore, we must be able to handle the insertion of appropriate auxiliaries at the generation
stage, which is by its nature already monolingual. In the context of machine translation, this is especially useful:
we have to take care of the main {autosemantic) verb only during the translation proper (the transfer phase), but
not of the (presence or absence) of auxiliary source words. For example, the type of auxiliary in German perfect
tense (sein/haben) is grammatically (or, lexically) based and has nothing to do with the other language, since that
ianguage might use quite different auxiliaries (or none at all, if it uses inflection to express the perfect tense).

Articles

Articles pose a difficult problem for translation into a language that has articles (such as English) from a lan-
guage that does not (such as Czech). The choice of an article is hardly conditioned by words of the other language;
rather, it is either determined grammatically, referentially, or by the topic/focus distinction described earlier. We
thus believe that articles, as another class of non-autosemantic words, has no place at the tectogrammatical layer
of representation, since the topic/focus and deep word order should be sufficient (together with the grammar rules
of the target language) to insert the right articles at the right places. For example, the need to use “the” in front of
every superlative is purely English-grammar-related and certainly does not stem from the language being translated
from or to; the choice of “a” vs. “the” for a general word such as “keyboard” will be determined by the topic/focus
annotation: if the word “keyboard” is in the topic, the definite article (“the”) typically has to be used, otherwise
“a” should be used instead.

Chuoice of Prepositions (and Morphemic Case)

Prepositions usually do exist across languages, even though they are not always used as separate words (cf.
Hungarian and other agglutinative languages), and often a “default” translation can be found for every preposition.
However, from the experience with inflective languages such as Czech, we consider prepositions and morphemic
cases to be at the same “level” - if not just a form variant - expressing a particular tectogrammatical functor?!.
Therefore, when transiating into English, we have to select prepositions, when translating e.g. into Czech we have
to decide the case or preposition?.

Even then, the relation between functors and prepositions/cases is not always straightforward, for at least two
reasons:

¢ The choice of preposition is driven by usage in the target language {(e.g., it depends on the noun used with the
preposition or on some similar factor);

s The choice of preposition/case is driven by the governing word and by the functor of the dependent word (i.e.
the one that has to get the preposition/case).

In both cases, the source language sentence representation does not help much. In the first case, we simply have
to have a language model or similar knowledge of the target language? that simulates usage. In the second case, a
valency dictionary of the target language (as defined in Sect. 2.4) comes in handy: once we are able to determine
the correct target word (more precisely, the lexia as the translation of the source lexia), a valency dictionary entry
gives matching functors and with each of them, its surface expression (by means of an underspecified analytical-
level annotated subtree, mostly either just a case or a preposition with its own subcategorization for a morphemic
case).

For words not having valency, their dependent nodes (as well as dependent nodes of all words with non-valency
modifier functors) acquire their preposition or case as the default value for each functor.

21. Some regular “transformations™ notwithstanding, such as in passivization, where the surface syntax expression also plays
arole.

22. Prepositions have subcategorization for case, so for subcategorization-ambiguous prepositions the correct subcat frame
must be selected together with the preposition.

23. A good language model (as used in automatic speech recognition systems) can actually help in many cases of target-
language-related conditioning.

Hajis 225

Word Order

Word order differs across languages, of course, sometimes wildiy. English has its word order mostly gram-
matically given (meaning that the grammar dictates that sentences should in the SVO order, that the rules for
systemic ordering must be followed, etc.); some exceptions in the grammar do allow for some word shuffling, such
as extraposition. However, Czech word order is discourse-driven (and thus not so “free” as often mislabeled). The
correct solution, in our opinion, to the word order problem is thus not to deal with it at the transfer level, but at
the analysis level (determining the deep word order), and at the generation stage (using the determined deep word
order to perhaps generate an extr'aposmon and using the grammar rules? of the target language to determine the
correct word order).

Agreément {in the Generation Stage).

Grammatical agreement is again determined by the rules of the target language, and not by the translation itself.
Tts importance in English is low, obviously, but it is crucial for other languages. E.g., in Czech, every adjective
has 0 agree in gender, number and case with its head noun. We propose to deal with this problem at the analytical
level, once the analytical tree is built (which includes solving the word order issue, of course); it is not related to
the tectogrammatical level in fact. Thus, for example, only the number is needed to be preserved (translated) at
the tectogrammatical level®, its dependent adjectives will be the populated by the correct morphemic values once
also the case is determined by the rules described above, and once the gender of the noun is determined from the
lexicon. The formation of the surface text is then easy through any morphological generator of the target language,
since the word order has been defined in the preceding stages.

4, Conclusion

We have described the basic ideas and annotation scheme for the Prague Dependency Treebank, a reference
corpus with three-level linguistic annotation for morphology, surface syntax, and so-called tectogrammatical layer
representation. We have then argued that the tectogrammatical layer is suitable not only for various linguistic
experiments, but also for practical use, specifically for machine translation systems, since it generalizes (and
disambiguates) in such a way that it achieves - to a certain extent limited by “language meaming” - independence
of both the source and target languages. We believe that our representation has the potential to improve the overall
translation quality, and that the additional burden of deeper analysis will not outweight its benefits.

References

Brown, Peter, Stephen Della Pietra, Vincent Della Pietra and Robert Mercer. 1993. The mathematics of statistical machine
translation; parameter estimation. Computational Linguistics, 19(2).

Cavalli-Sforza, Violetta, Krzystof Czuba, Teruko Mitamura and Eric Nyberg. 2000, Challenges in Adapting an Interlingua for
Bidirectional English-Ttalian Machine Translation. In AMTA 2000.

Collins, Michael, Jan Haji&, Eric Brill, Lance Ramshaw and Christopher Tillmann. 1999, A Statistical Parser for Czech. In
37th A/{Zeeéingscg]’ the Association af Computational Linguistics, pages 505~512, University of Maryland, College Park, MD,
June 22nd-25th.

Flanagan, Mary and Steve McClure. 2002. SYSTRAN and the Reinvention of MT. In electronic form only, at SYSTRANs
web pages (nttp: / /www. systransoft.com/IC/26459 . html).

Hajis, Jan, 1998, Building a Syntactically Annotated Corpus: The Prague Dependency Treebank In Festschrift for Jarmila
Panevova, Karolinum, Charles University Press, Prague, pages 106-132.

Haji¢, Jan. 2001. Dzsambzguanon of Rich Inflection (Computational Morphology of Czech). Prague, Czech Republic: Faculty
of Math, and Physics, Charles University. hab. thesis.

Hajig, Jan, Eva HajiSov4, Petr Pajas, Jarmila Panevovi, Petr Sgall and Barbora Vidova Hiadka. 2001. The Prague Dependency
Treebank. CD-ROM Catalog #L.DC2001T10. ISBN 1-58563-212-0.

Hajig, Jan, Petr Pajas and Barbora Vidova Hladka. 2001. The Prague Dependency Treebank: Annotation Structure and Support.
IRCS Workshop on Linguistic Databases, pages 105-114.

Hajitova, Eva, Barbara Partee and Petr Sgall. 1998. Topic-Focus Articulation, Tvipartite Structures and Semantic Confent.
Dordrecht, Amsterdam, Netherlands: Kluwer Academic Publishers.

Knight, Kevin et al. 1999. EGYPT: a statistical machine translation toolkit. Summer Workshop’99, Johns Hopkins University,
Baltimore, MD, http: / /www.clsp. jhu. edu/ws99/projects/mt/toolkit.

24, By grammar rules we mean here any kind of “rules”™; it is expected that these rules will be leamed within a statistical
meodeling framework.
25. One of the so-called grammatemes - invisible in our examples above - is devoted to this.

226 Proceedings of TAG+6

Pala, Karel and Pavel Sevedek. 1999, Final Report EuvroWordNet-1,2, project LE4-8328, Technical report, EU Commission,
Amsterdam, Sept. 1999, On the project CD-ROM.

Panevova, Jarmila. 1975. On Verbal Frames in Functional Generative Description. Prague Bulletin of Mathematical Linguls-
tics (PBML), 22 (Part I), 23 (Part 11):3-40,17-52.

Panevova, Jarmila, Veronika Reznitkova and Zdedika Uredovd. 2002, The Theory of Control Applied in Tagging of the Prague
Dependency Treebank. In Robert Frank, editor, T4G+6 Workshop {this volume), Venice, May 20-23, 2002. Univ. of
Pennsylvannia. i

Sgall, Petr, Eva Hajiova and Jarmila Panevovd, 1986. The Meaning of a Sentence in its Semantic and Pragmatic Aspecls.
Prague - Amsterdam: Academia - North-Holand.

Skoumalovd, Hana, Markéta Strafiskovi-Lopatkova and Zdendk Zabokrtsky. 2001. Enhancing the Valency Dictionary of
Czech Verbs: Tectogrammatical Annotation. In Text, Speech and Dialogue, Lecture Notes on Computer Science LNCS
2766, pages 142-147, Zelezna Ruda, Czech Rep., Sept. 2001. Springer-Verlag.

Skut, Wojciech, Brigitte Krenn, Thorsten Brants and Hans Uszkoreit. 1997. An Annotataion Scheme for Free Word Order
Languages, In the Fifth Conference on Applied Natural Language Processing (ANLP-97), Washington, D.C., USA, March
1997, Association of Computational Linguistics.

Yamada, Kenji and Kevin Knight. 2001. A Syntax-Based Statistical Translation Model. In 39th Meeting of the Association of
Computational Linguistics, Toulouse, France, July 2001,

Clustering for Obtaining Syntactic Classes of Words
from Automatically Extracted LTAG Grammars

Tadayoshi Haraf, Yusuke Miyao!, Jun’ichi Tsujiif*
tUniversity of Tokyo YCREST, JST (Jupan Science and Technology Corporation) -

1. Introduction

We propose a method for obtaining syntactic classes of words from a lexicalized tree adjoining gram-
mar (LTAG: Schabes, Abeillé and Joshi (1988)) automatically extracted from a corpus. Since elementary frees
in LTAG grammars represent syntactic roles of a word, we can obtain syntactic classes by clustering words having
the similar elementary trees. With our method, automatically extracted LTAG grammars will be arranged accord-
ing to the syntactic classes of words, and the grammars can be improved from various points of view. For example,
we can improve the coverage of the grammars by supplementing to a word the elementary trees of the syntactic
class of the word.

An LTAG grammar consists of elementary trees, which determine the position where the word can be put in
a sentence, that is, an elementary tree corresponds to a certain syntactic role. Hence, a syntactic class of a word
is represented as a set of elementary trees assigned to the word. Since the words of the same syntactic class are
expected to have similar elementary irees, we can obtain syntactic classes by clustering words having similar sets
of elementary trees.

We applied our clustering algorithm to an L'TAG grammar automatically extracted from sections 02-21 of
the Penn Treebank (Marcus, Santorini and Marcinkiewicz (1994)), and investigated the obtained clusters with
changing the number of clusters. We successfully obtained some of the clusters that correspond to certain syntactic
classes. On the other hand, we could not obtain some clusters, such as the one for ditransitive verbs, and obtained
the clusters that we could not associate clearly with syntactic classes. This is because our method was strongly
affected by the difference in the number of words in each part-of-speech class. We concluded that, although our
clustering method needs to be improved for practical use, it is effective to automatically obtain syntactic classes of
words.

The XTAG English grammar (The XTAG Research Group (1995)) is a handmade LTAG grammar which
is arranged according to syntactic classes of words, “tree families” Each tree family corresponds to a certain
subcategorization frame, and determines elementary trees to be assigned fo a word. Thanks to the tree families, the
XTAG grammar is independent of a corpus. However, it needs considerable human effort to manually construct
such 2 grammar.

Automatically extracted LTAG grammars are superior to manually developed grammars in the sense that it
takes much less costs to construct the grammars. Chiang (2000) and Xia (1999) gave the methods of automatically
extracting LTAG grammars from a bracketed corpus. They first decided a trunk path of the tree structure of a
bracketed sentence, and the relationship (substitution or adjunction) between the trunk and branches. The methods
then cut off the branches of them according to the relationship. Because the sentences used for extraction are
in real-world texts, extracted grammars are practical for natural language processing. However, automatically
extracted grammars are not systematically arranged according to syntactic classes their anchors belong to, like the
XTAG grammar. Because of this, automatically extracted grammars tend to be strongly dependent on the corpus.
This limitation can be a critical disadvantage of such extracted grammars when the grammars are used for various
applications. Then, we want to arrange an extracted grammar according to the syntactic classes of words, without
loosing the benefit for the cost.

Chen and Vijay-Shanker (2000) proposed the solution to the issue. To improve the coverage of an extracted
LTAG grammar, they classified the extracted elementary trees according to the tree families in the XTAG English
grammar. First, the method searches for a tree family that contains an elementary tree femplate of extracted ele-
mentary tree ef. Next, the method collects other possible tree templates in the tree family and makes elementary
trees with the anchor of ef and the tree templates. By using tree families, the method can add only proper ¢lemen-
tary trees that correspond to the syntactic class of anchors. Chen and Vijay-Shanker (2000) applied this method
to an extracted LTAG grammar, and showed the improvement of the coverage of the grammar. Although their
method showed the effectiveness of arranging a grammar according to syntactic classes, the method depends on

{© 2002 Tadayoshi Hara, Yusuke Miyao, and Jun’ichi Tsujii. Proceedings of the Sixth International Workshop on Tree Adjoin-
ing Grammar and Related Frameworks (TAG+6)}, pp. 227-233. Universita di Venezia,

757 U RPN SRS o Proceedings S TAGTE

G (all elementary trees in an extracted grammar)

NP} VP

T ——
VB NP} VBP NP{
5 A\

hate hate

M s
NP} VP

——
BP NP VBP NPY
1

like

NP} VP

——
VBP NPY VBP NP{
1]

—— —_—
VEP NPY VBP NP
1 1

<> <> o> <>

Figure 1: Obtaining AFGs from an extracted LTAG grammar

a manually developed grammar that takes considerable effort to construct. Since our method can automatically
obtain syntactic classes, we can obtain this benefit without the considerable cost.

2. Methods

In this section, we give a method for automatically obtaining syntactic classes of words from an automatically
extracted LTAG grammar. We first give the idea for our method, and then frace each step of our method with
examples and formalization.

In LTAG grammars, syntactic roles are represented as elementary trees, and as in the XTAG grammar, a
syntactic class of a word determines elementary trees to be assigned to the word. Given set W of words and set
T of elementary tree templates, LTAG grammar (is defined as a subset of the product of them & C T x W that
satisfies the foliowing equation,

G ={{t,w)w e W,t € F(s(w))} (1

where function s gives a syntactic class of word w, and function F' gives a set of tree templates aliowed by the
syntactic class. Handmade LTAG grammars follow this formalization, for example, in the XTAG grammar, syntac-
tic classes are represented as “tree families.” However, automatically extracted LTAG grammars are not arranged
according to syntactic classes, and lack elementary trees that do not appear in the training corpus. Therefore, we
need to obtain s and F' automatically. ‘

The idea to achieve this task can be derived from the equation 1. From this formalization, we can see that
words of the same syntactic class should have the same set of elementary trees, This indicates that, even when
the grammar lacks some elementary trees, we can obtain syntactic classes by collecting words having the similar
elementary trees. To achieve this, we apply a clustering method. First, we make anchor s feature groups (AFGs),
which represent possible syntactic roles of the word, and are objects for clustering. Next, we apply a clustering
method to collect similar AFGs, and finally, we interpret obtained clusters.

The first step in our method is to make AFGs. An AFG for a word is a set of all tree templates assigned for
the word. Figure I shows an example of AFGs. For example, an AFG for “lend” can be obtained by collecting
all elementary trees for ”lend” in the grammar, that is (8) and (%), and removing the anchor ”lend” from them.
The obtained tree templates correspond to the syntactic roles, for example, a declarative and an imperative for

Tadayoshi Hara, Yusﬁke Miyao, and Jun’ichi Tsujii 229

GJ
(@) ® . -)]
5 s s
(@) (b)| (&)} (d)| (&)| (D) NP} VP VP NP} VP
T T — —-——
11170f0]olo]—> VBP NP{NP{ VBP WPy NP} VBP NP
oo 1]1]0]0 1 .
IRERRE -
o[0jo[o[1[1 @ © ®
o{ofojojol1 L5 5 s
giol1]|1]|o}0 VP NPy vP ¥P
- 1 1
— VBP NP{ . vBP VBP
parameters b - -
AFGIend
@ s ® s © s)
—— i
NPl VP VP
———T T
VBP NP} NP} VBP NP4 NP
I 1
<> I <> . I
+ 3 {
1 1 0

Figure 2: Parameters of AFGs for clustering

“'dih'an_sitive verbs.” Formally, an AFG for word w is defined as follows.
Ag(w) = {t|lt € T, (t,w) € G} 93]

Suppose that we have “perfect” LTAG grammar G p which consists of all elementary trees for composing syntac-
tically correct sentences. From equation 1 and 2, we get

Yw € W F(s(w)) = Agp (w)
Therefore, we can obtain a syntactic class of word w from the AFG for w.
Yw € W s(w) = F~ (Ag, (w))

However, automaticaily extracted LTAG grammar G g lacks some elementary trees, because a corpus for
training does not contain all elementary trees of words!. Therefore, we cannot obtain syntactic classes of words
just as above. However, we can assume that an extracted LTAG grammar is very similar to a perfect LTAG
grammar, and an AFG for a word in Gg should be very similar to an AFG for the word in G p, and not to other
AFGs in G p at all. Formally,

argmin d(Ag, (1), Ac, (') = Ag, (w) = F(a(w)) @)

Agp (w")

Function d gives a distance measure that indicates how given two sets are different. In addition, we can see that
the words of the same syntactic class should have similar AFGs. Therefore, we can find the syntactic class by
collecting words having similar AFGs,

In order to collect similar AFGs, we next apply a clustering method, the K-means (MacQueen (1967)), which
groups “objects” close to each other. The distance between two objects is given by Euclidean distance between the
two “parameters” of the objects. In our method, the “object” for clustering is a word characterized by a certain

1. Actually, an extracted LTAG grammar may contain some improper elementary trees which can not make a syntactically
-correct sentence. But in this discussion, we consider that there are not any such elementary trees in the grammar.

230 Proceedings of TAG+6

obtained cluster ——— centroid values
AFG,,., for the cluster

AFG,

eat

s s s
N X Ny VP B
vEe Ney vBP NP} Vo el 4/4 =1.00

1

<> <>

<
> major tree templates

s
1
VP
vnﬂﬂ, 3/4=075
NP} VP NE} VP -
——— —— —— ——
VBP NP{ VBP NP} VBP NP} VBP NP
I 1 | |
<> <> <> <> the Oﬂler

0/4=0.00

tree templates

Figure 3: Centroid values for an obtained cluster

AFG, and the “parameters” for it are binary values for whether each tree template in the grammar is in the AFG
or not, A table in Figure 2 shows example parameters. The grammar is the same as the example in Figure 1. A
sequence of Os and 1s in each row is a set of parameters for an AFG. For example, the AFG for "/end” contains
tree templates (a) and (b), and therefore parameters for the two tree témplates are both 1. The other parameters for
AFG “lend” are all 0, because it does not contain the other tree templates in the extracted LTAG grammar.

The relation between obtained clusters and syntactic classes can be formalized as the following. The equation 3
shows our assumption that leads to the clustering method. We assume that the distance measure d of two sets,
T',T" C T can be given as follows:

d(T',T") = ||{T") — p1T")]|

. 1 dfueT
AT') = (2:) where z; = { 0 otherwise

The vector §{I")} is a parameter for AFG T’. According to the definition of d, equation 3 can be rewritten as
follows.

jrgr:nn) 1P Agz (w)) — FlAg, (w')]| = Agp (w) “

On the other hand, by clﬁstering AFGs with parameters as defined above, the K-means algorithm makes clusters
that satisfy the following equation:

argmin 5(Ag g (w)) — Bleentroid(c)))|| = centroid(c) s.t. Agg{w) € ¢ &)

centroid(e'} s.t. ¢'€C

where C is the set of all obtained clusters. centroid{c) is a “centroid” of the cluster ¢, which is an imaginary
object with the average of the parameters for objects in ¢:

ZAGE (w)Ee ﬁ(AGE (w))

PHeentroid(e)) = a

Comparing the equations 4 and 5, we can consider that centroid(c) corresponds to A, (w). This suggests that
the obtained clusters of words correspond to sets of words which are in the same syntactic class.

At the last, we need to interpret obtained clusters. After the clustering, the method obtains words that have
similar sets of tree templates, and the tree templates will indicate a syntactic class of the words. In particular, the set
of tree templates common to most of those words are certain to correspond to the syntactic class of the words. Such

Tadayoshi Hara, Yusuke Mivao, and Jun’ichi Tsujii 231

NP NP
o o
NN NP* Ji Np*
| i
<> <

clusters :

{centroid vakue) :

(0.955)
m0.18

(0.996) (1.0003

ne.1%

HAFGs ! 520
A S L. —

v

syntactic class : adjectives present participles . numerzls beth for
’ B adjectives and singular nouns

words ; new building 80 1987 ’40s Tuxury

last going million Sixty 1891 chief
other reporting 1.2 2750 2653.28 capital

short playing two both 734 right

Figure 4: Clusters generated in the case of 20 clusters
NPy
. e T
clusters : £ ¥B NP{ VB NP} ove
! i
. <> <>

(centroid value) : (1.000)

10,26,

0.943)

{0.348)

no.32

#AFGs : 233 3%0
S S —— —
syntactic class : transitive verbs
(base form)
words . unfortunately Exactly strictly get
apparently incredibly eagerly change
eventually sufficiently explicitly buy

maybe highly elegantly invest
Figure 5. Newly classified syntactic classes in the case of 40 clusters

free templates can be obtained by interpreting each element of the parameter for the centroid, a centroid value, as
the probability that each tree template corresponds to a part of a syntactic class. We call such tree templates “major
tree templates”, and use them to associate clusters to syntactic classes of words. The left-hand side of Figure 3
shows an example of an obtained cluster. In this cluster, major tree templates represent the syntactic roles of a
“transitive verb,” and therefore, we can interpret the cluster as a “transitive verb” class.

3. Experiments

Our clustering algorithm was applied to an LTAG grammar automatically extracted from sections (02-21 of the
Penn Treebank (Marcus, Santorini and Marcinkiewicz (1994)). The grammar is extracted by an algorithm similar
to the one in Xia (1999). From 39,598 sentences, 2,571 elementary iree templates are extracted for 43,030 words.
Accordingly 43,030 AFGs were obtained by our method. We then classified the obtained AFGs into clusters. Since
we have no knowledge how many clusters are suitable for this task, we varied the number of clusters over 20, 40,
60, 80, and 100.

Increasing the number of clusters, we could observe how the classes of syntactic roles were being obtained
- in a more detailed way. In the case of 20 clusters shown in Figure 4, for example, the cluster No. 1 was for the

232

clusters :

(centroid value) :
#AFGs :
syntactic class :

words :

Proceedings of TAG+6

in 40 clusters

457

adjectives

alive

aware

nice

cruel \

<> anchor

in 60 clusters

words :

alive
aware
satisfied
afraid

words :
nice
cruel
cool
perfect
. 217 »
-
both for predicative adjectives
and modifiers
: other clusters

Figure 6: A divided class of syntactic roles

in 80 clusters

clusters :

(centroid value} :

#AFGs : 8743

syntactic class : proper nouns which

modify NPs?
words : fail
if
may
them

!

in 100 clugters

(0.682)
no,&64

595

transitive verbs?

sit
appear
employ
select

<> anchor

Figure 7: Ambiguous clusters

Tadayoshi Hara, Yusuke Miyao, and Jun’ichi Tsujii 233

AFGs for adjectives; the cluster No. 18 was for present participles; the cluster No. 7, No. 9 and No. 12 were for
numerals; the cluster No. 19 was for the words which can be both adjectives and singular nouns. In the case of 40
clusters, the clusters for more detailed syntactic classes were generated. For example, the clusters No. 26, 31, and
35 shown in Figure 5 were for adverbs that mainly modify a sentence, an adjective, a verb, respectively; the cluster
No. 32 was for base form transitive verbs.

In addition, we could observe that there were some clusters made by dividing one cluster in the case of less
clusters, and in both of which syntactic classes could be identified. For example (Figure 6), the cluster No. 28 in
the case of 40 clusters was mainly for adjectives. About a half of AFGs in it were only for predicative adjectives
and the rest of them were not. In the case of 60 clusters, the two types of AFGs were divided almost into two
clusters, No. 28 and No. 45. We could see many AFGs only for predicative adjectives, such as “aware,” “glad,”
*alive,” in the cluster No. 28. In the other cluster (No. 45), we could see many AFGs for adjectives which could
be both predicative adjectives and modifiers, such as “wrong,” “hot,” “certain.” These clusters were penerated by
classifying the AFGs for one syntactic class in a more detailed way by increasing the number of clusters.

In the case of 80 clusters, there were some clusters whose centroid values of tree templates were no more than
0.5 (Figure 7). This meant that there was no tree template which was common to all AFGs in such clusters, and
we could not identify syntactic classes for them. This would suggest that the number of clusters exceeded the one
suitable for clustering the AFGs, and in consequence the AFGs were classified too finely.

However, this would not indicate that there would be less than 80 classes of syntactic roles in the grammar.
‘When we focused on nouns, we could find too fine classification for them. In the case of 100 clusters, the number
of them was no less than 37. On the other hand, clusters for verbs were few. In the case of 100 clusters, the number
of them was 20, and expected clusters such as one for ditrapsitive verbs were not in those 20 clusters. The reason
for this would be as follows.

A noun class contains many words, and AFGs for nouns in the grammar refiected this fact; the AFGs for
nouns occupied about 18, 427 /43,030 of all the AFGs in the grammar. On the other hand, a verb class contains
not so many words and AFGs for verbs occupied 1, 190/43, 030. Our clustering method treated all words equally
regardless of parts-of-speech, and as a result, words in the noun class would be classified too finely, and words in
the verb class, too roughly.

4. Conclusion

We proposed the method for automatically obtaining syntactic classes of words from automatically extracted
LTAG grammars. We supposed that the class of the syntactic roles of a word corresponded to the set of elementary
trees for the word, and attempted to obtain syntactic classes by clustering words that have similar elementary trees.
The experiments showed that our method could obtain some clusters each of which represents a certain syntactic
class, However, it also showed that our method would not obtain all syntactic classes properly, because it was
affected by the differences in the number of words in each part-of-speech class. We should consider this result, and
build an algorithm that would not mix various parts-of-speech, but would cluster groups of elementary trees for
them separately. If we can obtain proper classes of syntactic roles, we will be able to apply various methods that
improve and make good use of the extracted grammar. For example, we will be able to properly predict elementary
trees which are not in the extracted grammar, by giving major tree templates to all words in the cluster. Such
predicted elementary trees will improve the coverage of the grammar in a syntactically proper way.

References

Chen, John and K. Vijay-Shanker. 2000, Automated Extraction of TAGs from the Penn Treebank. In Proc. of the 6th IWPT.

Chiang, David. 2000. Statistical parsing with an automatically-extracted tree adjoining grammar. In Proc. of the 38th ACL,
pages 456—463, October,

MacQueen, J. B. 1967. Some methods of classification and analysis of multivariate observations. In Proc. of the Fifth Berkeley
Symposium on Mathemtical Statistics and Probability.

Marcus, Mitchell, Beatrice Santorini and Mary Ann Marcinkiewicz. 1994, Building a large annotated corpus of English: the
Penn Treebank. Computational Linguisties, 19(2):313-330.

Schabes, Yves, Anne Abeillé and Aravind K. Joshi. 1988, Parsing strategies with ‘Lexicalized” grammars: Application to Tree
Adjoining Grammars. In Proc. of the 12th COLING, pages 578~583.

The XTAG Research Group. 1995, A Lexicalized Tree Adjoining Grammar for English. Technical Report IRCS 95-03,
Institute for Research in Cognitive Science, University of Pennsylvania,

Xia, Fei. 1999. Extracting Tree Adjoining Grammars from Bracketed Corpora. In Proc. of the 5th NLPRS.

A New Metagrammar Compiler
B. Gaiffe, B. Crabbé, and A. Roussanaly

Loria

1. Why a new metagrammar compiler ?

Writing a TAG grammar manually is known to be a non trivial task (Abeillé 00; Doran et al. 94; Doran et al.
00; VS et al. 92). For that purpose, (Candito 96) has suggested a grammatical framework that allows linguists to
describe the syntactic properties of a language at a higher level of abstraction . Given a set of classes, each of these
containing a partial tree description, the compiler cutputs a set of tree schemata.

In order to work on the organization of a syntactic lexicon, we needed an almost equivalent tool that would
produce feature structures together with the tree schematas. Before developping a new tool, we criticized Candito’s
work (Candito 99) in considering the two following drawbacks:

1. the algorithm is closely linked to the specific linguistic description. As her analysis focusses on the study of
verbal trees, the structuration is badly adapted to the description of non verbal units ;

2. the current implementation of the compiler is not flexible enough to be easily adapted to other input/output
formats. :
In the remainder of the paper we describe our tool and discuss two possible ways to implement a metagrammar
for french verbs.

2. Design of our tool

In this section, we present the characteristics of the tool we implemented. Cur compiler ressembles the one
described in (Candito 96) and (Candito 99). We thus present the latter first in order to emphasize the differences
between her proposition and ours.

2.1. Topological factorisation

In (VS et al. 92), the authors propose to use a logic (precisely defined in (Rogers et al. 94)) which de-
scribes elementary trees of a TAG grammar so that the topological informations shared by trees is factorized in an
inheritance hierarchy.

In practice, information concerning trees may be factorized according to different points of view quite in-
dependant from each other. For instance, subcategorization information leads to a rather natural hierarchy while
realizations of syntactic functions lead to another hierarchy altogether. Therefore, attempts to describe both hierar-
chies in a unique inheritance lattice either leads to having to make a copy of one hierarchy at each leaf of the other,
or if multiple inheritance is allowed, multiplying links between leaves of the hierarchies.

2.2. Marie-Héléne Candito’s Compiler

(Candito 96) and (Candito 99) precisely explains the preceding point and advocates three independant, lin-
guistically motivated hierarchies which she calls dimensions:

1. subcategorization (which she represents in terms of imitial syntactic functions)
2. syntactic function redistributions (which lead to final syntactic functions)

3. final functions realisations

(©) 2002 Gaiffe, Crabbe, Roussanaly. Proceedings of the Sixth International Workshap on Tree Adjoining Grammar and Related
Frameworks (TAG+6), pp. 234-241, Universita di Venezia.

B. Gaiffe, B, Crabbé, A. Roussanaly 235

The underlying idea is that a linguist only describes these three hierarchies, and an automatic tool completes
the inheritance graph by crossing final classes of dimension 1 with the final classes of dimension 2 and further
crossing the result with the final classes of dimrension 3.

However, not all final classes of dimension 1 are to be crossed with all final classes of dimension 2. For
instance, intransitive verbs do not admit passive constructions. In the same way, the resulting crossed classes of
dimensions 1 plus 2 have to be crossed only with those final classes of dimension 3 that realize a final function
actually occuring in the crossed class.

The linguist has thus to give crossing conditions together with his hierarchies in order to constrain the crossing
process.

The algorithm implemented by (Candito 99) is thus the following:

diml2 = empty set
for each final class ¢l of dimension 1
for each final class c2 of dimension 2 (compatible with cl}
create ci2 that inherits cl and c2 and add it teo diml2
end for
end for
res = empty set
for each ¢l2 in dimlZ
resQfcl2 = {cl2}
for each final function ff appearing in cl2
for each class c3 of dimension 3 that realizes ff
build new classes with each element of res0fCl2 and c3
res0fCl2 = these new classes
end for
end for
res = res U resQfCl2
end for ‘
compute minimal referents for each element of res.

As this pseudo-algorithm makes clear, some constants that denote tree nodes are iabelled by a final syntactic
function. They are actually also labelled by an initial syntactic function, probably in order to keep track of the
process. In dimension 2, most of the job done by classes consists in modifying the functional assignment!. More-
over, final functions are maintained unique in any description by an additional mechanism that equates constants
bearing the same final function.

2.3. Our proposition

Our initial motivation for developping a new meta-grammar compiler had to do with the lexicon: the grammar
compiled with Candito’s tool is organised in tree families (as is XTAG (Doran et al. 00)) and lemmas are associated
to families. The anchoring of a tree thus consists in computing the lemma and the morpho syntactic features
associated to a word form, getting the families associated with the lemma and finally attempting to substitute the
lemma with the associated morpho syntactic features in the tree.

Such a process may of course fail, either because the morpho-syntactic features do not match (consider a tree
dedicated to an imperative form, together with an infinitive word form) , or because the features associated to the
lemmma do not match (some transitive verbs, for instance, do not accept a passive form).

Our starting idea was then to generate trees together with a feature structure that globally describes each tree,
and Candito’s tool did not seem to permit that.

Since we were implementing a new tool anyway, we gave ourselves some additional constraints:

¢ avoiding non monotonous mechanisms such as the modification of the final functions
e not limiting @ priori the number of dimensions:

— the third dimension is de facto a collection of dimensions dedicated to realizing each of the possible functions

1. Final functions are initialized to the initial function

236 Proceedings of TAG+6

— three dimensions is perhaps not a good choice for other categories than verbs, or for other languages than
French, English or Italian. (See for instance (Gerdes 02))

As we intend to produce trees together with a feature structure, classes of the meta-grammar contain a fea-
ture structure that describe its content. It then seems natural that these feature structures get combined through
unification along the inheritance lattice. This feature structure is then a good mechanism to avoid unwanted class
crossings, The example we mention of intransitive verbs that do not accepts passive forms may simply be taken
into account by means of an attribute transitive with values minus for an intransitive verb and plus for all passive
classes.

The remaimning problem is to find a mechanism that allowes classes to cross. In (Candito 99) compiler, this
mechanism relies on the three dimensions, but we do not want to rely on a fixed number of dimensions.

We thus decided to make explicit the reason why classes are to be crossed, typically a class of dimension 1
has to be crossed with a class of dimension 2 because it needs redistribution of syntactic functions. Classes of
dimension 2 have to be crossed with classes of ex-dimension 3 because they need that their final functions be
realized. Conversely, a class of ex-dimension 3 may provide the realization of a subject, or an object, or whatever
other function,

A class in our system is then described by:

s aname
s a set of super-classes

» a description (which is a feature structure)
aset of needs (atomic symbols)

o aset of providings {(atomic symbols)

e aformula describing trees

When a class ¢l2 inherits two classes ¢l and ¢2, the descriptions are unified (in case of failure, ¢12 is not
created), the set of needs is the union of the two set of needs minus the union of the providings, the set of providings
is also the union of the providings minus the union of the needs and the formula is the conjunction of the two
formulas.

The crossing mechanism then consists in computing all balanced final classes, that is classes whose set of
needs and providings are empty?.

Finally, the formulas corresponding to balanced final classes are used to compute minimal referents (Rogers
et al. 94) together with the description associated with the corresponding class.

3. A survey on the linguistic applications

‘We made some experiments on french verbs, conforming as much as possible to the analysis of (Abeillé 91;
Candito 99). Therefore, we give an overview of the way we describe verbs using three ‘dimensions’?.

Two ways to generate a grammar are given in the following sections. The first approach puts the focus on the
topology of the trees. While it allows to identify the nodes representing the predicate and its arguments in the tree,
it actually suffers from a major drawback due to the monotonicity of the system. That is, once a node is asserted in
the process of generating a tree, it cannot be removed. This is problematic if, for instance, one wants to describe
an agentless passive as the ellipsis of the predicate’s agent?.

The second approach comes closer to the functional analysis introduced by (Candito 99). We do a topologi-
cally free reasoning upon arguments and functions until we have specified a complete final functional subcatego-
rization frame. The main interest of this approach is that the functional component of the grammar is not anymore

2. Inorder to keep with an associative and commutative mechanism, a cancelled need as well as a cancelled providing is not
allowed to appear again.

3. Formally speaking, it should be clear that there are no dimensions anymore.

4. However, there is a trick : one can set a kill” attribute to a node. It means that the node will be removed from the tree after
its generation. The principle is that the removed node’s children (if any) become the children of the removed node’s parent (the
root of the tree cannot be removed),

B. Gaiffe, B. Crabbé, A. Roussanaly 237

mixed with the topological one. We are able to represent the agentless passive quite easily. But here, the rela-
tionship. between the tree structure and the logical arguments is lost. As a comparison, we do not specify any
topological information into the classes that belong to the equivalent of Candito’s first and second dimension. The
whole analysis is driven by the feature structures describing the classes.

Both approaches share some essentials ideas®. (1) Each tree which is generated represents the realization of a
logical predicate and its arguments. (2) The focus is put on the functional organization of the grammar. Following
these assumptions we specify through three successive layers the trees that represents the syntactic realization of
that predicate. Each of these layers performs a mapping as follows :

Predicate Structure

U Dimension 1
Initial- Function

i[s Dimension 2
Final-Function

i} Dimension 3

Surface-Realization
e Dimension 1 : maps the predicate arguments to an initial functional subcategorization frame.
e Dimension 2 : maps the initial subcategorization frame to a final functional subcategorization frame.
e Dimension 3 : maps the final subcategorization frame to a tree structure.

3.1. A node driven strategy

‘Following (Abeillé 91; Candito 99) each tree which belongs to a family répresents a predicative structure. The
first dimension is dedicated to mapping initial functions to the predicate’s argument positions. Here we define a
set of classes which represents the arguments and another set which defines the functions that are to be mapped on
them. The final classes of this dimension are a list of all the valid mappings in French. For instance the final class
SubjOVObj1 is the class where the first argument is mapped with a subject and the second is mapped with a direct
object®.

Al : Needs
subj—redis obi—redist
argd agl init—sabj init—obj
_ argl) argl Init-Subj Init—0Obj
T— —_—

TN -
argl = init-subj
argl = init—obj

subj0Vobjl,

Figure I: Overview of the first dimension

We express this mapping with the declaration of a constant’. Each of these quasi-nodes is equated with the
one representing its associated function.

To be linguistically well formed, we impose the requirement that the crossed classes map each initial function
to a final function, Then a class where an initial function node is defined contains a corresponding need for a final
function (see fig. 3.1). ’

5. These ideas are already central in (Candito 99) work.

6. For the sake of clarity, we do not expand here to the whole (Abeillé 91) analysis in families. We do not consider here
sentential arguments and verbal auxiliaries though they are important for the definitions of the families.

7. Following (Rogers et al. 94), a constant is denoting a node.

238 Proceedings of TAG*6

The second step in the generating process aims at defining a final subcategorization frame. Here we map the
initial functions given above with final functions. As a side effect, the verb is given a morphological specification.
For instance, through inheritance, the full personal passive maps the initial-subject t0 a by-object, the initial object
to a final-subject and requests the predicate to be realized as a passive subtree. Furthermore, classes that introduce
a final function emit the need that this function is realized.

[FuL-PERS-PASSTVE]
Figure 2: Overview of the second dimension

Our general strategy consists in manipulating functions through constants denoting nodes: instead of function
features, we have such constants as arg0, initial-subject, or final-object. The redistributions are then performed
by means of equalities between such constants. The final classes of dimension 2 express equalities between the
nodes carrying the initial functions and the ones carrying the final functions. The interface with the first dimension
is done through providings that satisfy the final-function needs of dimension 1 classes. For instance the Fuil-
personal-passive class will inherit classes that provide the subj-redist and obj-redist. The content of the class
reflects the mapping : the initial-subject node equals the final-by-object node and the initial-object node equals the

final subject node (see fig. 3.1).

Provides :
FUNC-RE oarohiredl
P - CONSTRUCTIO
Provides;
__ﬂmf - p
—
SUBJ-REAL| | BY-OBI-REAL | _. ~ /
- —_ - /
7 o —
— ——
A -~ 7
Se

firr-par—cbj = par-¢— Sm
prnoun \
linsubj = nsubj-r

Seneat=S tr-subj~ 32 it = N type = subst

ppprep—ex i Jex = par INV-NOM-SUB.J

QU-BY-OBJ

Figure 3: Overview of the third dimension

The functional realization ‘dimensions’, contains classes that actually yield trees. Basically, we view here a
syntactic function as a label for a set of subtrees. Thus, this dimension groups all the subtrees and each of them
is labelled as the representation of a function. The label assignment is performed through multiple inheritance as
shown in figs. 3.1 and 3.1. Note that contrary to (Candito 99) approach, there are here two *third dimensions’. One
for the predicate’s arguments and one for the predicate’s head. The motivation is mainly methodological, we want
to explicitly separate the functional and the topological patt of the grammar.

Writing a mietagrammar remains (at least for us) an experimental process. Other formalisms have been pro-
posed that rely extensively either on feature structures (HPSG) or Linguistic functions (LFG). We experimented

B. Gaiffe, B. Crabbé, A. Roussanaly 239

with a LFG inpired approach which ailows us. to deal with the topology of trees only in dimension 3. The gen-
eral sketch s then to build feature structures in dimension 1 and 2 and to assemble the trees according to the
specifications given by the feature structure in dimension 3.

' VERBAL-RE,
P
Provides: vm Vh

Smict=8

Ym et = VY typemanc

Vh et = Vigpe = anc
PASSIVE

Figure 4: Overview of ‘another’ third dimension

3.2. A feature driven strategy

The feature structure descriptions, contained in classes and therefore associated to the produced trees at the
end of the process, not only concern the anchoring, but may also actually describe the linguistic properties the tree
is responsible for, Typically, it enables us to know that a tree is the representation of a two place predicate, that
this predicate is a passive predicate, that the first argument is expressed as clitic and so forth. Thus the compiler
allows to generate trees but also complex feature structures that are an exphc1t translation of what each tree ‘means’
linguistically.

In the previous approach we put the focus on the identification of particular nodes into the trees, and the
feature structures associated to the classes only concerns the impossibilities in crossings. In the new approach
we build complex feature structures and less complex formulas as lots of constants equated in rorder to represent
redistributions simply disappear.

As an example, here are the features inherited by the following final classes:

L SUBIOVOBJI :

HEAD CAT Verb]

PRrRED
SUBCAT <INIT—FUNC SUBJECT], [INIT—FUNC objectD

] F_ULL-PERS-PASSIVE:
HEAD [VMORPH passive}

INIT-FUNC SUBJECT INIT-FUNC object
SUBCAT <FIN—FUNC BY-OBJ |, |FIN-FUNC subject)

PRED
CONS 2 CONS
SUBJ
CseT [BY—OB_T @}
L - a
e QUEST-BY-OBJ:
[[.
T I -
PRED | CSET EXTRACTION By-obj
] By-0BJ quest
e INV-SUBJ:

PRED [CSET [SUBJ inverted]ﬂ

240 "Proceedings of TAG+6

In this approach, needs and providings are dispatched as they were in the previous approach. Classes of
dimension 1 and 2 do not contain any formulas anymore. The third dimension realizes arguments as well as the
predicate subtrees.

As a sample we generate the tree representing the schema that allows to analyze the sentence Par qui sera
accompagnee Marie ? (By whom will be accompanied Mary} with the combination of the following final classes
subjOVebjl, full-pers-passive, passive, inverted-subject, questioned-par-obj(see figs. 3.1, 3.1, 3.1 and the feature
structures given above) !

S
PP S
TN PNy
Prep NJ v N
| it
par Ve Ve
4
[[CAT Verb :I |
HeAD .
VMORPH passive

FIN-FUNC BY-OBI |, |FIN-FUNC subject

INIT-FUNC SUBJECT INIT-FUNC object
SUBCAT < >
PRED

CONS 2l quesT| | CONs [[]inverted
EXTRACTION By-obj

CsET - {SUBJ

L PAR-OBJ =

Notice that when we use this second approach {which anyway is an enhancement of the node driven approachy},
the feature structure keeps track of the successive mapping steps that are performed throughout the process of
generation. This approach consists of not declaring any structural constraints in the two first dimensions®. This
solution has the benefit of clearly splitting the functional from the topological part of the grammar, But at the time
of this writing, we are not able to establish a link between the feature structures associated to the classes and the
constants of the logical formulas used to generate the trees.

4. Conclusion

The tool developped so far, though rough and buggy® enables us to experiment with metagrammar writing.
As we just mentioned it also raises interesting questions regarding the precise objects we are dealing with when
describing a grammar. One of the main drawbacks of our implementation is the absence of relationship between
the descriptive feature structure and the logical formulas. In our opinion, the root of this problem concerns what
a TAG grammar really is: a set of trees gathered in families together with indices indexing nodes (cf. n0Vnl) are
more than just elementary trees.

References

Abeillé, A., Une grammaire lexicalisée d’arbres adjoints pour le francais. Application d 'analyse automatique, Doctoral
dissertation, Université de Paris 7, 1991,

Abeillé, A, Candito, M.-H., “FTAG : A Lexicalized Tree Adjoining Grammar for French”, in Abeilié, A. and Rambow, O. éd.
Tree Adjoining Grammars. Formalisms, Linguistic Analysis and Processing, Stanford, CSLI, 2000.

Candito, M.-H., Candito, “A Principle Based Hierarchical Representation of LTAGs”, COLING, 1996.

8. That also suppress the trouble refated to node deletion as mentioned earlier for the analysis of the agentless passive.
9. ...and available at Attp:/www.loria fr/equipes/led/outils/mge/mge. html.

B. Gaiffe, B. Crabbé, A. Roussanaly 241

Candito, M.-H.,Organisation modulaire et paraméirable de grammaires électroniques lexicalisées. Application au frangais et
aé I'italien, Doctoral dissertation, Université de Paris 7, 1999.

Doran, C, Egedi, D, Hockey, A., Srinivas, B., Zaidel, M., “XTAG System - A Wide Coverage Grammar for English”, COLING,
1994

Doran, C, Sarkar, A., Srinivas, B., Xia, F.,, “Evolution of the XTAG System”, in Abeillé, A. and Rambow, Q. éd. Tree Adjoining
Grammars, Formalisms, Linguistic Analysis and Processing, Stanford, CSLI, 2000,

Gerdes, K., DTAG ? Attempts to generate a useful TAG for German using a metagrammar, TAG+6, 2002,

Joshi, A. K., Levy, L. §., Takahashi, M., “Tree Adjunct Grammars”, Journal of Computer Science, 1975,

Kinyon, A., “Hypertags”™, COLING, 2000,

Lopez, P., Bonhomme, P., “Resources for Lexicalized Tree Adjoining Grammars and XML encoding : TagML”, LREC, 2000.

Rogers, 1., Vijay-Shanker, K., “Obtaining Trees from Their Descriptions : An Application to Tree-Adjoining Grammars”,
Computational Intelligence, 10, 4, 1994,

Vijay-Shanker, K., Schabes, Y., “Structure Sharing in Lexicalized Tree-Adjoining Grammars”, COLING, 1992.

DTAG?
Kim Gerdes

Lattice, Université Paris 7

1. Introduction

This paper reports on work in progress on the creation of a metagrammar for German verbal constructions.
Section 2 circumscribes the field we are working on: We describe known and less known problems and try to
delineate the limits of a standard Tree Adjoining Grammar for Germian; we see which structures we get easily,
and which structures we will never get. In Section 3 we put the Genman data in perspective to the other TAG
languages, French and English, and we define and justify our choice to create a limited German TAG, designed
for a specific generation task. We then propose in Section 4 some of the possible elementary trees that can live
up to our expectations: Compromising on the semantic interpretability of the derivation structure as well as on
the principles underlying TAG allows us to get most of the word orders necessary for the generation task. Yet,
what we gain in usefulness in generation, we pay in linguistic descriptiveness Last but not least, in Section 5 we
discuss problems and limits of the metagrammar implementation and we give some indication on how the de-
sired elementary tree sketches can be created and maintained with a metagrammar.

We presuppose the comprehension of the tetms metagrammar and topological field of a German sentence,
which we cannot define here. For details, see Gaiffe et al. 2002 and Kathol 1995 respectively.

2. Scrambled Minds

The two existing Tree Adjoining Grammars of interesting grammatical coverage have been created for
English (XTAG, 1995) and French (FTAG, Abgilié 1991), two languages with quite rigid word order and little
case marking. On the other hand it has long been shown that German is beyond the (derivative) generative ca-
pacity of TAG: There are no verbal elementary trees carrying the nominal arguments (and thuos verifying the
predicate-argument cooccurrence constraint) that can be combined to cover some of the (so called) scrambled
word order of German (Becker et al. 1991, 92). Let us see where the problem is.

2.1. Argument Scrambling

Sentence (1) is the standard example for scrambling: The two constituents in the Mittelfeld (the positions
between finite verb and non-finite verbs) have ‘exchanged’ their position. Note that this is a very natural order
that even is the standard order if the direct and the indirect objects are pronominalized as in (1).

(1) a. Peter hat das Buch meinem Vater zu lesen versprochen.
Peter has the book to my father to read promised.
“Peter has promised to my father to read the book.’
b. Peter hat es ihm zu lesen versprochen
Peter has it him to read promised.
‘Peter has promised him to read it

By definition, a control verb like versprochen ‘promised’ assigns a theta role to the subject just like the embed-
ded verb. So the (semantic) predicate argument structure is shown in Figure la (leaving aside for the moment
the tense auxiliary because of its uncertain semantic role). As the derivation structure of TAG is a tree, we have
to restrict our analysis to one of the predicate-argument links, the subject role of the infinitive or the subject role
of the control verb.

Suppose we wanted to follow the usnal XTAG/FTAG analysis and have the control verb versprochen
‘promised’ govern its subject. Suppose further that we handled the auxiliary as an adjunction to the matrix verb.
Qur goal is then to obtain the derivation structure in Figure 1b. The first elementary tree of versprochen ‘prom-
ised’ (Figure 2) can adjoin to the root node of the infinitive and subsequently, its subject substitution node ap-
pears at the right place. However, in this case, its dative substitution node remains outside of the infinitive’s
elementary tree. We do not obtain the word order of sentence (1); the dative would be supposed to appear at the

1 would like to thank the XTAG group at the University of Pennsylvania and an anonymous reviewer for their helpful
comments on my work. [am also grateful to Tilman Becker for his help finding the least ugly trees and keeping up my faith
in TAG. 1 assume the customary responsibility for content and shortcomings.

© 2002 Kim Gerdes. Proceedings of the Sixth Imternational Workshop on Tree Adjoining Grammar and Related Frame-
works (TAG+6), pp. 242-251. Universita di Venezia.

Gerdes : 243

versprochen
‘promised’
\ 4 w VP
zulesen meinem Vater /\
‘toread’” ‘to my father’

/\ N VP /\

Peter das Buch "
“Peter’ ‘the book’ /\ N VP
VP v VP3
versprochen ﬂ d
‘promised’ N b
AN ®
! \"‘.._. /\
1 ~. . VP
zu lesen meinem Vater hat N” VP
“toread’ ‘tomy father’ ‘has’ VP VP l
| A AN v
N V VP N N v \
?;:;, ?feizz:’ [Peter |[hat | |das Buch [memem Vater |jpulesen |[versprochen. |
Figure 1: predicate-argument graph Figure 2: Scrambling is beyond TAG
and derived tree

right of the infinitive giving the so-called intraposition structure of German: Peter hat das Buch zu lesen meinem
Vater versprochen. (Peter has the book to read to my father promised), The second elementary tree for ver-
sprochen ‘promised’ shown in Figure 2, allows on the contrary the dative argnment to appear in the right place.
Then, however, the subject node appears between the infinitive and its argument and the subject cannot be sub-
stituted at its Vorfeld (sentence imitial} position.

The reader easily verifies that it actually does not make a difference if we decided to treat versprochen
‘promised’ as a raising verb, i.e. leaving the subject to the embedded verb zu lesen ‘to read’. In this case we
could not find a way to adjoin the auxiliary sat ‘has’ to its head versprochen ‘promised’,’ The only thing that
would help for this particular case is to have the auxiliary carry the subject. This possibility could be a good
choice if we wanted to develop a useful parsing grammar, as the case of a subject not neighboring the V2 posi-
tion is very rare (mainly for negative pronouns like niemand ‘nobody’ or in spoken language with a strong ac-
centuation}. It would however weaken further the semantic interpretability of the derivation tree and does not
solve the theoretical problem of the ‘free’? placement of the arguments of the left and right bracket’s verbs.

2.2. Adjunct Scrambling

It is less known that even with all the arguments in standard order, the position of the medifiers can block a
correct TAG analysis, The preferred interpretation of sentence (2) has a prepositional phrase modifying the
control verb versprochen ‘promised’, although this modifier finds itself between the infinitive zu lesen ‘to read’
and the infinitive’s argument das Buch ‘the book’

{2) Peter hat meinem Vater das Buch ohne Zégemn zu lesen versprochen.
Peter has to my father the book without hesitation to read promised.
‘Peter did not hesitate to promise to my father to read the book.’

In Fig. 3 we depict the corresponding elementary trees. The elementary tree of the adverbial modifier oine
Zdgern ‘without hesitation’, cannot reach any node of its governor’s elementary tree. The only possible TAG
analysis will give us the semantically *wrong’ derivation tree where the reading is done with hesitation.

1. If the auxiliary does not adjoin to the past participle’s tree, the information that a past participle adjoined would have to
be passed through the infinitive’s tree. This puts lexical information into the features and breaks all usual TAG principles.

2. Of course this order is only free in the sense that it does not affect the predicate argument structure of the sentence. The
order depends on the communicative structure of the sentence.

244 Proceedings of TAG+6

2.3. Relatively Difficult

VP
German relative clauses put
up two hurdles for TAGs: The VP
inner structure of the relative
clause and its placement in the //\

main clause.

The standard TAG formal-
ism excludes trees with more than
one foot node {as this would ‘ ‘ﬁé

N!l’ N”

complicate considerably the deri-

vation structure). Thus, we can-

not express the idea that an ad- VP
junct turns its governor into an
adjunct itself. However, this is N VP
the case for relativized adverbial

VP VP m:hf:’ > VP
modifiers. Take (3) as an exam-
ple. /\ /\ I

N Vv VP N N apv VP&V v
(3) der Balkon auf dem er singt. [Peter][hat [meinem Vated [das Buch |[ohne Z6gernt [z lesen i[versprochen.
the balcony on which he .
sings
‘the balcony he sings on’ Figure 3: Adjunct scrambling is even worse

The only possibility of analyzing i
such a phrase in TAG is to combine the elementary tree for sings *sings’ and the one for the relativized modifier
into one elementary tree of auf etwas singen ‘sing on something’, as if the balcony was an argument of the
singing. This clearly violates the principle of non-compositionality.

In general, as soon as we want to move an elemnent out of a substituted position, we are beyond the (deriva-
tive) generative capacity of TAG. Take example (4) of a German relative clause.

{4) der Film von dem ich nur die Musik kenne.
the movie of which 1 only the music know
‘the movie I only know the music of.”

The predicate argument structure seems clear: Musik ‘music’ is the object of kenne “know’, and von dem Film
‘of the movie’ modifies Musik. The only way out for this case is to have separate kenne ‘know’ trees for the
relativized modification of its arguments. Again, we do not obey the principle of non-compositionality and ob-
tain severely messed-up derivation trees.

Extraposed relative clauses constitute another difficulty for the TAG formalism: The preferred placement
for relative clauses in German is not directly behind the modified noun, but in the Nachfeld of the sentence’s
main domain. This preference is independent of the noun’s position in the Vor- or Mittelfeld® and it is partic u-
larly strong in two circumstances: First, when the right bracket is occupied only by a short and semantically
weak element, like for example a so-called separable verbal prefix. Secondly, when the relative clause is rather
long. In the following example (5), the separable prefix ab of the verb abschliefien “lock’ has to take the right
bracket of the main domain.* The Nachfeld position of the relative clause in (5) is clearly preferable.

(5) a.7? Peter schliefit die Tiir, die ich gestern bemalt habe, ab.
Peter closes the door, that I yesterday painted have, up.
b. Peter schlieBit die Tiir ab, die ich gestern bemalt habe,
Peter closes the door up, that I yesterday painted have.
‘Peter locks the door I painted yesterday.’

3. The agreement in number and gender of the relative pronoun with its head allows the reconstitution of the dependency
relation. The placement behind the noun might be preferable in the rare case when neither agreement nor semantic plausibil-
ity aliows associating the relative clause with its governor. Another rarity consists of two nouns of the same domain being
modified by relative clauses, In this case again, one of the relative clauses has to be adjacent to its head.

4. The separable prefixes of some verbs behave syntactically just like bare infinitival arguments of the verb: They usually
take the syntactic place the verbal dependant would take, and the more semantic weight they have, the easier is their inde-
pendent piacement into the Vorfeld. For a more detailed discussion see Gerdes & Kahane 2001.

t:

b: vorf +
k~+
refnum n0

/\relgend 20
modif #

t: vorf —

NO b: num n0 VP be 1k +

gend g0 reloum #
/\mdif #
t: vorf —

Vb prefixed _VP ik -
b: relnum n1
relgend gl
Ni b num nl VPb relnum #
schlieft gend gl I
Pf
t:
b: vorf +
k+ ab

VP relnum nl

relgend gl
/\wd:f #
t: vorf —
NI B “““”‘1 VP b+

relnum #
modif #
t: vorf -

reﬁxedm
Vb P b: re]m:m nd

rel.gcnd gt

NO b rum nOVPb relnum #
schlieft gend g0 ‘

Pf

Gerdes 245

t: vorf+
b: vorf -
VP k+
relnum #
\ & vorf —
b lk+
VP relnum #
Ndif#
t: vorf —
t ik~
v b prefixed - VPb: relnum nl
relgend gl
t: vorf —-

Tk~
schliept N1 — VP, relmum o

geﬂwgcnd £0

& t:
NO boumng VEPbrelnum#

gend g0 I
t: vorf+
b: vorf - Pf
Ik -+
VP relnum #
\ t vorf - ab
b: k+
VP relnum #
Nﬁf#
t: vorf—
t: . k-
Vb: prefixed — VP b: relnum n0
relgend g0
t; vorf -

t:
NO w:mumot VP Ik~

schlieft gend g0 b: relnum nl

Ngend gl
. t:

t
NI omm VPb:relum#
gend gl I

Pf

ab

Figure 4: The simplified V2 trees for a transitive verb with separable prefix

This is another instance of an extraction of an element out of a substituted position. For the sake of the semantic
consistency principle we have to realize the verbal prefix as a co-anchor of the verbal tree® and the verbal branch
down to the prefix in the right bracket disallows the relative’s adjunction to its head.

3. XTAG-FTAG-DTAG?

The question we have to address now is whether all this is any worse than the anglo-roman situation. Eng-
lish and French don’t have scrambling, but it is clear that there are many cases in these languages, too, where
the only possible analyses with a regular TAG will give us derivation trees with incorrect dependencies with our
TAG principles falling by the wayside (Shieber & Schabes 1994, Rambow 1995, Candito & Kahane 1998). For
example, the case of relative clauses is in fact very similar in the three languages in question: The gloss I give
for sentence (3) is a correct English sentence (although the stranded preposition is preferable), parailel construc-
tions to (3) and (4) exist in French {e.g. Le film dont je ne connais que la musigue ‘The movie I only know the

5. One sees easily that the situation is in fact identical even if we treated the verbal prefix as an argument or had it adjoin

into the main verb’s elementary tree.

246 Proceedings of TAG+6

music of”), and French has extraposed relatives just like English (in particular for parallel constructions to the
separable prefix: She threw the book away that I wanted to read.)’

" Several extension of the TAG formalism have been proposed attempting to remedy these shortcomings
(VTAG, DTG, TDG, ...). The scrambling case of sentence (1), for example, could still be handled in tree local
multi-component TAG, a little add-on to regular TAGs that does not change the weak generative power. How-
ever, if we added a 4™ verb to the sentence, this will no longer be possible.

3.1. A generation grammar!

Leaving aside the theoretical and linguistic problems of these new formalisms, including multi-component
TAG, their biggest flaw is the lack of implemented tools, a fact that creates the desire among researchers in lan-
guage engineering for a ‘real’ German TAG. In particular the language generation task can live without the
complete set of word orders. One could even go as far as saying that the limited word order possibilities are a
feature not a bug: A formalism that atlows all the possible orders would force the generation module to choose
between the different orders. These choices are dependent mainly on the information structure of the sentence, a
problem far beyond today’s running generation systems, The snag is of course that the choice implied by the
formalism is not necessarily the best choice in a given context. It has been shown though that a sentence in the
so-called ‘standard word order’ can obtain most information structures by prosodic means (Lenerz 1977, Choi
99).7

For our German TAG, we could thus be content with the standard word order. However, even for a re-
stricted generation task, it might be preferable in some cases to have access to verbal trees allowing different
word orders. The difficulty of this work lies in the fact that one has to find a compromise between restrictions of
the formalism (and the metagrammar description) and the concrete necessities for generation. We try to obtain a
German TAG linguistically as good as possible and practically as useful as possible for the generation job. On
the basis of corpora for quite simple generation tasks in German,® we decided to add all verb internal argument
permutations to our grammar (in order, for example, to encode a lexically triggered preference of some verbs to
place the accusative argument before the dative, or a preference to place temporal or local modifiers into the
Vorfeld). We disallow inter-verbal argument exchange with two exceptions too common to leave aside even for
a simple generation system: Topicalization into the Vorfeld and extraposition of relative clauses into the Nach-
feld. Further we allow placement of embedded non-finite verbs only in the right bracket of its governor’s do-
main and its extraposition into the Nachfeld.” We believe not to need any verbal positions like (partial) VP
fronting or intraposition. The grammar ends up with many more trees than the standard word order, but we sup-
pose that when these trees are inadequate, the tree description’ allows sorting them out with no trouble."

Of course such a grammar will be of limited use for parsing because in a corpus, we will encounter the
other word orders as well. It seems that the phenomena that cause trouble to TAG are more frequent in German
than in Anglo-Roman, where the ‘pure’ TAG grammars can obtain reasonable parsing results.”?

4. The compromising trees

The trees presented here are product of a compromise between a minimal violation of the TAG principles
(this comes down to a maximal semantic interpretability of the derivation tree), a maximal coverage of the
grammar, a maximal usefulness for simple language generation systems, and a maximal simplicity in the meta-

6. Another awkward example on relatives is the fact that in the phrase apples that Mary thinks John likes, the tree of
thinks has to adjoin into the likes tree, whereas in the woman who thinks John likes apples, the tree for thinks has an argu-
ment position (2 substitution node) taken by the like tree. This XTAG analysis is triggered by the restrictions of the formal-
ism and, to my knowledge, not by linguistic intuition,

7. This is in fact one of the definitions of ‘standard word order’. The ‘standard’ order of a verb’s nominal arguments can
vary lexically (Miiller 1999).

8. . We actually looked at the requirements for the German generation systems in the MultiMétéo project (Coch 1998) and
in the SmartKom project (hitp://smartkom.dfki.de).

9. Some matrix verbs like scheinen ‘seems’ prefer to construct incoherently, i.e. their verbal argument should go into the
Nachfeld of the main domain,

10. Tree descriptions are finer grained than the notion of family and this should allow a smoother interface with the lexicon,
the neglected but essential component of any grammar. Future work will show whether this approach resists when leaving
the toy state.

11. This will have to be verified when actually using the grammar. The metagrammar setup easily allows generating limited
subgrammars if desired.

12, It will be difficult to actually prove this point: One would have to compare an English and a German grammar with
equivalent lexicons, equivalent grammatical coverage, and equivalent “tricking” around the limits and principles of the for-
malism.

Gerdes

& .
NI E VPt
t: vorf— ' - . -
AVP b:lk+ t/\ {,‘{ﬁi
Nl(b: rum nl re,lm{.m # WP{ b:relnum nl relnum #
d dif
gen modif # relgend modif #
_ t: vorf — : -
b VP k- £ wh=rel vp e
' "“:.’i“) b: relnum n0 bimumnl N b: relnum no
gend g relgend g0 gend gl " relgend
case 4 & t: case 4 t W gel:. g0
NO b num n® VPb: relnum # NO b: num no VPb relnum #
gend gd | gend g0
»
‘|J b: prefixed + V b: prefixed +
abschlieft abschliefit

Figure 5: a relative elementary tree for adjacent modification (left),
the other for long-distance modification (right)

grammar description. We do not expect syntactic expressiveness from the derived tree though."® The trees in
Figure 4 illustrate some intermediate results on the way to this compromise.

We do not distinguish VP from S nodes. This simplifies the tree description in the metagrammar (see be-
low) and additionally, it makes it easier to describe relative extraposition from the Vor- to the Nachfeld, Since
the long-distance modification by the extraposed relative clause is beyond the generative capacity of TAGs ful-
filling the strong cooccurrence constraint, we relax this constraint and push the lexical information of the noun’s
number and gender into the VP spine of the verbal elementary tree, Now, an adjoining relative phrase can check
its agreement on the VP node. Of course, the corresponding derivation tree bares a relative clanse modifying a
verb and not a noun, and the generation module has to take this into account.’ See Figure 5 as an example of an
extraposed relative phrase and its comresponding elementary tree: The number and gender information of the
argument is passed up into the relnum and relgen features of the verbal spine, where it can be read by the tree of
the relative clause. The relative clause then passes it back down to its substitution node for the relative pronoun.
Case is assigned directly by the verb.

So the treatment of extraposed relative phrases is one reason for the right branching structure we use. The
other reason is that in a flat structure, the TAG formalism does not allow adjunction between sister nodes. As
modifiers can appear at any position in the Mittelfeld, we need the VP nodes as landing points for the right ad-
joining modifiers we use.'” A third reason is that the right branching tree is easily described in the metagra m-
mar, as we will show below, as every nominal argument introduces its verbal spine element into the tree sketch,
independently on the final order or realization. We do not stipulate however, that the VP-headed subtrees corre-
spond to linguistic (functional, prosodic, semantic...) objects of their own; their justification is internal to the
formalism.

The distribution of the German verb distinguishes different positions in what is usually called ‘the topologi-
cal model’ (Drach 37, Bech 55): The finite verb can take the 2™ position of the sentence (V2, for main clauses')
or the final position (Vfin, for sentential complements and relative clauses). V2 means that one constituent of
any nature has to be placed before the verb. This easily stated constraint is again beyond TAG’s expressiveness;
the translation intc TAG becomes a highly non-trivial exercise of feature manipulation. The basic idea is the

13, Many TAG grammar writers seem to put the derived structure in second place. The end of establishing a correspon-
dence between the word string and the semantically interpretable derivation tree justifies all syntactic means.

14, This boils down to some preprocessing of the derivation tree before the actual TAG generation comes in. The origina}
derivation tree for an extraposed refative originally contains a verb whose nominal argument is again modified by a verb (the
verb that opens the relative clause). In order to establish agreement, the preprocessing then not only has to move up the node
of the relativized verb from nominal to verbal modification, it also has to compute the address of the node in the verbal ma-
trix tree that will receive the relative adjunction. If this preprecessing comes out to be too costly, one could also put unique
features in the tree to make sure that the tree of the relative clause only adjoins to the corresponding node in the verbal spine.
We consider further that this preprocessor takes care of the uniqueness of the relative extraposition. An alternative choice
weouid be to put a feature into the verbal spine that rules out double exiraposition of relatives.

15, We have to aveid this modifying adjunction from the left into the root VP and into the VP of the verb in second posi-
tien (V2).This is dene with the non-unifying feature value # of the feature modif.

16. There are some cases of embedded V2, not taken care of in this grammar.

247

248 " Proceedings of TAG+6

VP
VP
VAN
VP\ N VP

N VP VP\ | N VP

N A Adv VP(vV C
Echlage [(noch einmal | | vor, | [dass | [Peter | (die Tiir] kibschlieft.|
I beat once again forth that Peter the door locks

I propose once again that Peter locks the door.

Figure 6: An analysis with sentential complement

following: The Vorfeld can be filled by any complement of the verb, argument or modifier. In both cases, the
concerned verb has a VP node in its elementary tree. If this nede dominates the Vorfeld-argument it has to pre-
vent the adjunction of modifiers, since there is only one constituent before the finite verb (see the left trees of
Figure 4). The second possibility is that the VP remains a unary node, which then forces the unique adjunction
of modifier (see the right trees of Figure 4)."

Relative clauses and sentential complements behave similarly: The complementizer or the relative pronoun
takes the first place, topologically often called complementizer fieid. This field behaves similarly to the left ver-
bal bracket, and there have been attempts to consider the complementizer and the finite verb in V2 to be ap-
pearing in the same position (see for example Kathol 1995, for a contrary view in the light of universal grammar
see Rambow & Santorini 1995). For TAG, the semantically empty complementizers should appear either with
the matrix verb or with the embedded verb, We consider the complementizers field as unification of Vorfeld and
left bracket, as in inherits properties of both fields (Gerdes & Kahane 2001). In the metagrammar, this is easily
translated as the union of the two quasi nodes Vorfeld and left bracket. The ‘universal’ interpretation of a
grammar could then consist of saying that in languages where the complementizer and the verb in V2 position
do not have a complementary distribution, this node union did simply not take piace (see Rambow & Santorini
1995 for the example of Yiddish).

As it is shown in Figure 6, we consider for the moment the sentential complement to substitute into the
matrix verb. This allows handling all finite verb finat constructions to be described quite uniformly in the meta-
grammar, but has the important drawback not to be able to treat wh-exiraction into the Vorfeld. Contrarily to
infinitival construction where every argument can join the Vorfeld, only wh-elements can be extracted out of
sentential complements (see sentences (6)). However, this extraction is not a frequent phenomenon, and many
native speakers of German consider it as bad style, preferring parenthetical constructions (which are not part of
my Grammar for the moment either).

(6) a.? Was schligst du vor, dass Peter abschlieft?
What beat you forth, that Peter locks?
b. Was, schldgst du vor, schlieBt Peter ab?
What, beat you forth, closes Peter up?
What do you propose that Peter locks?

Non-finite verbs come in many flavors: Keeping up the XTAG/FTAG division of subject-carrying control verbs
on one hand and subjectless auxiliaries and raising verbs on the other, we are obliged to distinguish infinitival
trees carTying a nominative argument or not, The infinitive can further care for the Vorfeld position or leave this
field for other verbs. Caring for the Vorfeld position means to either place an argument there or forcing a Vor-

17. The expletive es stands out in this description because it is neither a modifier nor an argument and it can only appear in
the Vorfeld, Its function is to occupy the Vorfeld if the speaker wants to avoid emphasize (topicalization or focalization, see
Choi 99) of any semantically full element, The resulting sentence is purely rhematic. Formally the tree sketch corresponding
to the expletive es it just the same as an adverbial one with the restriction that it can only adjoin into the Vorfeld. However,
giving the es an individual entry seems at odds with the semantic consistency principle, as the function of this word is pre-
cisely to take a topological position without adding semantic information.

Gerdes
~ - — provides:
| VorfeldlsMyBusiness | VerbalRealization | verbalRealization
needs:
vorfeldArguement
r VorfeldIsMyModifier | VorfeldlsMyArgument 1 I FinalPosition

/1

| VorfeldlsV2 Argument | { FiniteFinal Infinitive...

VP-root = VF
I needs:
relativedrguement
VP-verbal = VP-Ib VorfeldlsV2Modifier | Relative | I SententielComplerment |

|
I .
L]
Veane < VPrb Figure 7: Fragment of Verbal Realizations

feld adjunction to its highest node. We leave aside all other crossing of arguments with other verbs. Even now,
without cases of ellipsis we obtain 6 different trees for a simpie transitive bare infinitive (or past participle or
zu-infinitive that behave identically for the matter®). :

5. Meta!

The freer word order of German arguments corresponds well to the idea of underspecified tree descriptions
in the metagrammar: If we don’t indicate the linear ordering between two elements, all the possible orders will
be realized in the resulting tree sketches. On the other hand, the metagrammar becomes the actual linguistic de-
scription, and the tree sets obtain the status of intermediate products in the parsing process. For example, having
two elementary trees for exactly the same word forms and the same sub categorization frame as in Figure 4,
makes these cases indistinguishable on the tree level from actually different syntactic instances.”

5.1. Tmplementations

Our first attempt was to model the German verbal grammar around Candito 99°s French metagrammar in
order to be able to nse her compiler. The main difficulty, except for the fact that this tool is no longer main-
tained, lies in the rigid definitions of the three dimensions she uses: initial subcategorization, redistribution, and
realization of arguments. In order to capture the difference between V2 and Vfin positions, which is a general
choice for all verbs (independently of their arguments), we have to introduce a realization module not only for
arguments, but also for the head, the verb itseif® Although it was possible to hack Candito’s tool to accept the
verbal realization, the tree description for the V2 structure revealed a serious problem in this implementation:

At most one of the arguments of the verb has to be fronted, if none of its argument goes into the Vorfeld, it
has to be a modifier, and the highest VP node has to force exactly one adjunction from the left. So we need leaf
nodes whose function remains underspecified until the final class crossing and that eventually disappear if e.g.
they can unify with their mother node, In Candito 99°s implementation, those leaf nodes default to substitution
nodes, which prevents them from unifying with their governor. In a word: It was not possible to express this
linguistically appealing description of how the V2 elementary tree sketches came into being.

18. The infinitive extraposition to the Nachfeld, only possible for zu-infinitives, does not appear in the infinitival tree itself.
It is the matrix verb subcategorizing for a zu-infinitive that has one more class crossing in (which can mean many more ele-
mentary trees depending on the arguments of the matrix verb).

19. This situation differs from French and English where, leaving aside some exceptions, different trees correspond to dif-
ferent syntactic constructions.

20. The possibilities described in this dimension comrespond to the GB notion of head movement. We consider instead that
the head is positioned out of an unordered dependency tree directly into its final position. Nevertheless, our V2-elementary
trees without infinitival compiement have an empty node at the verb-final position, which can be interpreted as the trace of
the verb moved to the V2 position, or topologically (and preferably) as the right bracket that remained empty.

249

250 Proceedings of TAG+6

VP-root
]
n
Vp-1b
[}
= needs:
VP- bal L VerbalAnchor | verbalRealizatinn
-verbal
"
VP-anc VP-rb
VP-root
VP-root NominalArgument :
- -
n VP-ace -
VP-nom .
. NP-gce< VP-rb
NP-nom« VP-rb
needs: needs:

nemtingtiveaRealization accusative Realization

| NIV | L NINagv |

Figure 8: Fragment of the initial subcategorization

Help came from a reimplementation of the metagrammar compiler by B. Gaiffe (Gaiffe et al. 2002). This
compiler allows without difficulty to obtain the desired minimal tree for the description®. The second a dvantage
of the new compiler is that it is based on a more general approach than Candito’s three dimensions: Each final
class has a set of polar features, called needs and provisions, and all classes that can ‘do’ something for each
other, i.e. mutually neutralize a polar feature, are crossed. Only when all needs and provisions are neutralized
the minimal tree is calculated. This resolves the unclear status of the third dimension in the original approach
that consisted of a number of quite independent hierarchies for each argument to realize. Moreover, for German
at least two of the ‘classical’ redistribution for French, the passive and the causative in German, don’t have a
specific behavior different from verbal subcategorization. There is no syntactic reason to consider the passive
auxiliary and the past participle as a unit, although they are, certainly, on a semantic Ievel. If we see the meta-
gramimar only as a generator of all necessary tree sketches, we have got already the necessary tree sketch among.
the trees for predicative adjectives.”” A third advantage is the notion of tree description that replaces the notion ..
of family: A feature structure, as fine grained as needed, replaces the name of the family. For details see (Galffe B
et al, 2002). S
We conclude this section with a few extracts out of the complete German verbal metagrammar. We Illus- i
trate how the information on elementary tree sketches is distributed across the hierarchy.
In Figure 7 we depict a fragment of the verbal realization class hierarchy, indicating some partial tree de- _
scription we use. Final classes are underlined. Each final class inherits the ‘verbalRealization’ provision and will
thus be crossed with classes that need this feature. We just observe the combined tree description that the class
VorfeldlsV2ZModifier has inherited from all its superclasses: The qua51-node VP-root combines with the Vcrfeld_
and it governs directly the combination of the VP-verbal node (the quasi node governing directly the verbal an-.
chor) and the VP-Ib (left bracket) node. Thus the desired V2 position is created. Moreover, we make sure that_
the right bracket (VP-rb) follows the left bracket. This partial tree description will cross with other classes that.
need or provide any feature for it. This crossing is completely incremental; no constraint can be erased. "
Another subgrammar of the (not necessarily connected) metagrammar is the verbs’ initial subcategonzatmn
frame (corresponding to Candito’s first dimension). We observe in Figure 8 which constraints each class adds to:
the hierarchy: The verbal anchor class introduces 5 qua51 nodes and their specific constraints, Each final verbal
class inherits from this class and inherits thus these quasi nodes and their constraints. The final class NIN4V;
for simple transitive nouns, for example, inherits the verbal anchor’s tree description, the nominal argument’s
tree description, and the accusative argument’s tree description. This means that the class’s tree description:has:
already the quasi nodes for a verbal anchor, a nominative argument, and an accusative argument, each w1ﬂ1 the1

21. The calculation of the minimal representative of the tree description differs slightly from the original one by Roger
& Vijay-Shanker 1994,
22. The (rare) passives of intransitives may be a better reason to introduce the redistribution step, because these forms ni
a free sketch without subject. In any case, if, for a given application, the notion of family containing all the passwe trees ag
is used in XTAG/FTAG proves to be useful, this ‘redistribution step’ can easily be added to the grammar.
23 These final class names recall the family names in the classical elementary tree arrangement. To avoid the d;scussm
on whether the term subject corresponds to nominative (and indirect object to dative, etc) we name the arguments d1rect1y b
their case (1 = nominative, 2 = genitive, 3 = dative, 4 = accusative). S

Gerdes

corresponding VP-spine node, Their mutual order however will only be defined when the class’s three needs
will be satisfied, i.e. when the verb and the two arguments will get realized.

This should suffice to make clear the underlying principle of class inheritance and class crossing. The me-
tagrammar is actually being worked on with the goal to include as many grammatical phenomena as possible.
For real use, we will then choose the necessary grammatical phenomena and only generate the required trees.

6. Conclusion

We have scen the possibilities and limits of describing German with Tree Adjoining Grammars. As the
formalism is very restricted (and for that computationally attractive), the design of the elementary trees is a con-
stant trade-off between usefulness and descriptiveness. If however, we want a grammar for a well-restricted
area, we can nearly always find a way of covering the desired string with a more or less good-looking tree.

One experience that should be shared with TAG writers of other new languages: It seems very difficult to
start with the metagrammar as a descriptive tool, and see afterwards what trees fall out. It is much easier to de-
cide first on the concrete tree sketches and then to distribute the information contained in the tree into a hierar-
chy, in a way to maximize sharing of information. The resulting metagrammar can then be seen as an interesting
linguistic description, although its TAG-independent usefulness remains to be shown.

It was thought that the metagrammar would liberate the grammar writer from the actual messy mass of cle-
mentary trees, that one could easily extend a metagrammar by just adding some classes that will automatically
be crossed with the existing classes, In reality, the grammar writer has to check all new resulting tree sketches,
and most of the time lots of features have to be altered all around the existing metagrammar to fit in smoothly
the new classes. The metagrammar should maybe better be thought of as a specific elementary tree editor. It is
true however that it is easy to create limited subgrammars by simply commenting out the undesired classes in a
more complex grammar, .

In this paper we cannot go into greater detail on the proposed structure of a German metagrammar. We
could only outline some of the problems we encountered on the way to a/German TAG, problems which seem
to us to be instructive for the general understanding of TAGs and of the idea of a metagrammar.

References

Abeille Anne, 1991, Une LTAG pour le frangais. Ph.D. thesis, Univ. Paris 7.

Bech G. 1955, Studien iiber das deutsche Verbum infinitum, 2nd edition 1983, Linguistische Arbeiten, Nr. 139, Niemeyer,
Tubingen.

Becker, T., A.K. Joshi, O. Rambow 1991. “Long distance scrambling and tree adjoining grammars” in Proceedings of ACL-
Europe.

Becker, T., M. Niv, O. Rambow 1992, The Derivational Generative Power of Formal Systems or Scrambling is Beyond
LCFRS. IRCS Report 92-38, IRCS, University of Pennsylvania.

Candito M.-H., Kahane S. 1998, 'Can the TAG derivation tree represent a semantic graph? An answer in the light of Mean-
ing-Text Theory.' Proc. Fourth Workshop on Tree-Adjoining Grammars and Related Frameworks (TAG+4).

Candito, M.H., 1999. Structuration d'une grammaire LTAG : Application au frangais et a l'italien, Ph.D, thesis, University
of Paris 7.

Choi, H-W. 1999.0ptimizing Structure in Context — Scrambling and Information Structure, CSLI, Stanford.

Coch, J., 1998, “MultiMeteo: Interactive weather report generation” in: Proceedings of the 9th International Natural Lan-
guage Generation Workshop (INLG'98) Niagara-on-the-Lake, Canada.

Drach, E. 1937. Grundgedanken der deutschen Satzlehre, Diesterweg, Frankfurt,

Gaiffe B., B Crabbé, A. Roussanaly 2002. “A New Metagrammar compiler” in Proceedings of ‘the Sixth International Work-
shop on Tree Adjoining Grammar and Related Frameworks (TAG+6}, Universita di Venezia.

Gerdes, K., 8. Kahane 2001. “Word Order in German: A Formal Dependency Grammar Using a Topological Hierarchy™, in
Proceedings ACL 2001, Toulouse. .

Kathol, A. 1995, Linearization-based German Syntax, PhD thesis, Ohio State University.

Lenerz J. 1977. Zur Abfolge nominaler Satzglieder im Deutschen, Tiibingen, Narr.

Miiller St. 1999, Deutsche Syniax deklarativ: Head-Driven Phrase Structure Grammar fiir das Deutsche, Linguistische
Arbeiten 394; Niemeyer: Tiibingen.

Rambow, O. 1994, Formal and Computational Aspects of Natural Language Syntax, Institute For Research in Cognitive
Science, PhD thesis, University of Pennsylvania, Philadeiphia.

Rambow, O., K. Vijay-Shanker, D. Weir 1995, “D-Tree Grammars™, in Proceedings of ACL'95.

Rambow, O, B. Santorini 1995 “Incremental Phrase Structure Generation and a Universal Theory of V2” in Proceedings of
NELS 25, Amherst, MA.

Rogers, 1., Vijay-Shanker, K., “Obtaining Trees from Their Descriptions : An Application to Tree-Adjoining Grammars”,
Computational Intelligence, 10, 4, 1994,

Schabes Y., 8. Shieber 1994. “An altemative conception of tree-adjoining derivation”. in Compurational Linguistics, 20(1).

The XTAG Research group 1995. 4 lexicalized Tree Adjoining Grammar for English. TRCS-95-03, Institute of Research in
Cognitive Science, Philadelphia.

251

Cross-Serial Dependencies in Tagalog

Anna Maclachlan and Owen Rambow
Discern Communications and University of Pennsylvania
anna@discerncomm. com gnd rambow@unagl . cis.upenn.edu

1. Cross-Serial Dependencies

There are two salient linguistic uses of adjunction: for analyzing long-distance wh-movement (and related
movement types) in many languages and for analyzing cross-serial dependencies (CSD) in Dutch and Swiss Ger-
man. While the need for and the adequacy of adjunction to model wA-type movement have been questioned
(Rambow and Vijay-Shanker, 1998; Rambow et al., 2001), CSD seems ideally suited for a TAG analysis, since, as
Shieber (1985) showed, CSD cannot be derived by a context-free grammar. In fact, some of the alternate tree rewrit-
ing systems proposed which do not include adjunction, such as the DSG of (Rambow et al., 2001), cannot provide
a satisfactory analysis of CSD, either: it is specifically the definition of adjunction as an tree-rewriting operation
that inserts one tree in its entirety into the center of another that is crucial for deriving CSD. What is somewhat
troubling, however, is that the construction appears to be limited to two West Germanic languages/dialects, Dutch
and Swiss German. In this paper, we show that the same construction, though with different syntactic character-
istics, is found in a completely unrelated language, Tagalog. We show how the analysis of Kroch and Santorimi
(1991) for Dutch can be adapted for Tagalog, and we show furthermore that the syntactic analysis suggested by
TAG is preferable to an analysis based on head movement and verb incorporation.

2. The Tagalog Data

Tagalog, a major Austronesian language spoken in the Philippines, is strongly verb first. Complements and the
subject follow the verb with preferences for the agent to directly follow the verb and for the nominative argument
to be last (preferences which can be in conflict). The nominals are case marked for nominative (NOM) and oblique
(OBL), and another distinguished case is un-glossed in the examples (for a discussion of this case as both ergative
- and accusative see (Maclachlan, 1994)). The standard ordering in complex sentences is V1 Agentl linker [V2
(Agent2) Theme2], as shown in example {1a). Phrases of various sorts are separated by a linker (LK) and Tagalog
also has sentential conjunction (CONJ). A cross serial dependency ordering alternates with this basic ordering
in which the agent of the matrix clause follows the embedded verb as in (1b): V1 linker V2 Agentl (Agent?)
Theme?2.!

(1) Basic and CSD alternates

a. Nagisip si Pedro-ng bumili ng bulakiak
AT-thought NOM-Pedro-LKX AT-buy flower

b. Nagisip na bumili siPedro ng bulaklak
AT-thought LK AT-buy NOM-Pedro flower

‘Pedro thought to buy (of buying) a flower.’

Let us note two further properties of the CSD for which we will account with a TAG analysis. First, the CSD
process can be iterated:

(2) Iteration of CSD

1. Baldridge (1998) claims that Tagalog simply has long-distance scrambling and that a V3 V2 NW2N1 ordering is also allow-
able. However, he gives only one example, and admits that the sentence may have a completely different interpretation {in
which the two NPs form one NP). We have, in our work with native speaker informants, not found any evidence for general-
ized long-distance scrambling, and therefore will assume for the sake of this paper that we have a CSD, not a long-distance
scrambling construction. I it were in fact a Jong-distance scrambling construction, TAG would not be powerful enough for an
analysis — see (Rambow, 1994) for a discussion of German. Baldridge (1998) also discusses asymmetries in wh-extraction in
Tagalog. We do not address the issue here.

(© 2002 Anna Maclachlan and Owen Rambow. Proceedings of the Sixth International Workshop on Tree Adjoining Grammar
and Related Frameworks (TAG+6), pp. 252-258. Universita di Venezia.

Maclachian and Rambow 253

a. Ipiniangako ni Maria-ng subuka-ng manalo sa karera
promised Maria-LK try-LK win OBL-race

b. Ipiniangako-ng subukan ni Maria-ng manalo sa karera
promised-LK try Maria-LK. win OBL-race

¢. Ipiniangako-ng subuka-ng manalo ni Maria sa karera
promised-LK try-LK win Maria OBL-race

‘Maria promised to try to win the race,’

Second, the CSD sentence permits only one NOM nominal, while the basic complex sentence permits two.
This can be seen when the theme is NOM in the embedded clause as in (3). In this essentially passive clause type,
the verb is marked with Theme Topic morphology (TT) whereas in the essentially active clause type, as in both
clauses in (1), the verb is also marked but with Agent Topic morphology (AT). While the matrix agent is NOM in
(3a) it cannot be in the CSD equivalent in (3b) as long as the embedded theme is NOM

£))] Basic and CSD alternates with embedded passivization

a. umasa si Maria-ng sulatin ang kuwento
AT-hoped NOM-Maria-LK write-TT NOM-story

b. umasa-ng sulatin {*siMaria /noi Maria} ang kuwento
AT-hoped-LK. write-TT {*NOM-Maria / Maria} NOM-story

‘Maria hoped to write the story,’

3. A TAG Analysis

In TAG, we derive CSD by recursively adjoining elementary trees into each other at interior nodes. As is the
case with all embedded clause constructions (be they CSD or not), each clause is adjoined into its immediately
embedded clause, since the most deeply embedded clause does not have a linguistically meaningful footnode
labeled with a clausal category (and hence its embedding clause must adjoin into it, rather than vice versa). When
we adjoin an auxiliary elementary tree such as that shown schematically at the top left in Figure 1 (the superscript
1 indicates that this represents the matrix clause) to the initial tree at the top-right (the superscript 2 indicates that
this is the embedded clause, we are only considering one level of embedding in this schematic discussion, though
of course the process can iterate), the result is as shown below in Figure 1. The nodes labeled A, B, C, D represent
either substitution or terminal nodes — in either case, these are positions below which terminals can be generated.
Of course, we do do not expect terminal symbols to be generated below each of these symbols. In fact, if we
restrict ourselves to the case in which we have one (overt) noun phrase and one verb in each elementary tree, two
" of the symbols will dominate the empty string. If we choose A and D to dominate the empty string, we obtain a
center-embedded structure with the associated string B B2 (1), a5 desired. The derivation is essentially a
context-free derivation and does not actually make use of the full power of adjunction, since no terminal nodes are
generated above the adjunction site.

It is clear that to obtain CSD, we must choose as overt terminal nodes one above the adjunction site (4 or I?)
and one below (B or C). If we choose, say, A and B as the overt nodes, we obtain a structure which is not derivable
with a context-free grammar, but the string nonetheless represents center-embedding (A(2 A B{1 B®), Thus,
we must choose one overt terminal to the left of the spine, and one to the right. This leaves us with exactly two
possibilities — A and are ovent, or B and D. Since in Dutch and Swiss German CSD, the first element is always
a matrix noun phrase (and not an embedded one), we cannot use A and C' as the overt elements: while adjoining
the matrix clause into the embedded clause would result in A A CD 1} with cross-serial dependencies, the
string starts with the wrong A: A rather than A(Y). Thus, we must leave A and C' empty, with the overt material
inBand D,

This is of course exactly the choice that Kroch and Santorini (1991) make. They propose that in Dutch,? the
verb raises from its ordinary position as sister to the S footnode to a position above the adjunction site (which

2, Their analysis also applies to the relevant Swiss German data.

254 P}oceedings of TAG+6
3 2
i)

AR g(2) D2

A gt D)

B® S(Nn

Figure 1: Elementary trees (auxiliary, above left,and initial, above right) and derived tree obtained by adjoining the
auxiliary tree into the initial tree at the latter’s interior S node(below)

can be interpreted as right-Chomsky-adjoining® to the regular maximal projection). What makes their analysis so
compelling is that this analysis, in which the verb “raises” to a higher position in the tree, takes up some elements
of the analysis suggested previously in the Germanic syntax literatare. In this analysis, which dates to at least Bech
(1955) and was expressed somewhat more formally in a transformational framework by Evers (1975), the verbs
actually raise out of their clauses and form a single morphological unit. Such an analysis is impossible in TAG,
since apart from the effect of adjunction, the elementary tree retain their structural integrity. Furthermore, Kroch
and Santorini (1991) argue that there are empirical arguments against a morphological verb cluster, though not
against verb raising itself. Thus, the analysis proposed by Kroch and Santorini (1991) is the closest possible TAG-
based analysis which uses the independently proposed notion of verb raising (but not verb cluster formation), and
it also corresponds to the only possible analysis considering the topology of trees and the definition of adjunction!

Let us now turn to Tagalog. In Tagalog, we have a verb-initial construction rather than a verb-final construc-
tion. However, the argument about possible analyses is exactly the same as in Dutch, and we conclude that B
and D must be overt, not 4 and €. Because Tagalog is verb-initial, we must choose B to represent the verb,
and D to represent the noun phrase. We thus are forced to adopt an analysis in which the NP is raised, and in
which it is the raising of the NP which results in the CSD.* This is shown in Figure 2 (the subscripts indicate the
relation between traces and moved elements within elementary trees, while the superscripts, as before, indicate
which clause a terminal symbol belongs to). The trees in this figure derive the CSD version of (1), (1b), repeated
here for convenience:

(4 Basic and CSD altemates (=(1))

a. Nagisip si Pedro-ng bumili ng buiakiak
AT-thought NOM-Pedro-LK AT-buy flower

3, we use “Chomsky-adjoining” to refer to derivation processes within elementary trees (following the general approach of
(Frank, 2001)), while “adjoining” refers to the TAG operation that combines elementary trees,
4. This does not mean that the verb cannot also raise from a VP-internal position to a higher position on its own projection,
as is custornarily assumed for verb-initial languages. It just means that the landing site of the verb must be below the node at
which adjunction of the matrix clause happens. This is in fact exactly the analysis in Figure 2,

Maclachlan and Rambow 255

/P\ /P\

T NP IP NP
R Aél) If/\spEC Tiz)
TN
Vi 1} NP VP /\ !2)
| I"'"/.\V INFL VP AT
el . /\
i vi#» NP VP PRO
€2 | N
1 N-P V
oo
€2 €3

Figure 2; Elementary trees for Tagalog clauses in CSD order: matrix clause (left) and embedded clause (right)

b. Nagisip na bumili si Pedro ng bulaklak
AT-thought LK AT-buy NOM-Pedro flower

‘Pedro thought to buy (of buying) a flower.’

We assume that Tagalog is underlyingly verb-final,® and in both trees the verb has raised from V to INFL. In
the matrix clause on the left (with superscript (1)), the verb also subcategorizes for an I' (the footnode) and an NP,
the agent, which has raised to a position to the right of the spine, Chomsky-adjoining to I'. In the embedded clause
on the right, the verb subcategorizes for two NPs, the first of which (the agent) is realized as PRO and occupies
the SPEC of IP position, and the second of which (the theme) has scrambled out beyond the agent. The matrix
clause adjoins to the matrix clause at its I’ node, and the result is the derived tree shown in Figure 3, with the word
order in sentence (4b). We will postpene a discussion of the non-CSD case (4a) until after a discussion of case
assignment.

The question arises whether this analysis, imposed on us as it is by the definition of adjunction. is indepen-
dently motivated. As it tums out, in Tagalog there is independent linguistic evidence for NP raising (just as thers
is independent linguistic evidence for verb raising in Dutch). The evidence comes from the agreement facts in
Tagalog, In the following, we will assume that NOM (a case marker which does not fully correspond to nomina-
tive case in other languages) is assigned through SPEC-head agreement, and that IP is SPEC-final.® Rather than
being associated with tense or aspect marking, NOM is associated with topic morphology (TT and AT) in Tagalog.
We will assume that other, non-NOM arguments ({including the clausal argument) may optionally leave the VP
and Chomsky-adjoin to the I’ or IP nodes (without being assigned NOM). This optional movement of arguments
is at the heart of the availability of two analyses in Tagalog: we obtain the “basic™ word order when the clausal
argument has been moved beyond the NOM argument, as shown in Figure 4 on the left. We will assume that when
the clausal argument has not moved out of the VP, it cannot project to more than I/, presumably for reasons related
to case (or some extended notion of case). This will prevent us from deriving nested dependencies. At the same
time, this asymmetry — between a node label of IP for the basic word order, and a node label of T’ for the CSD
word order — reflect a widely held intuition that in the CSD order, the clauses are less “sepaarted” from onc another
than in the basic word order. Similar intuitions in Dutch (and other West Germanic languages} led Bech (1955)
and Evers {1975} to postulate the existence of only one clause in certain constructions (“clause union™).

We now tum to the question why in the CSD construction, there can be at most one NOM-marked nominal
argument, while in the basic construction, each clause may have its own. It is clear that in our analysis of the
basic construction, there are two IPs each with its own SPEC position, so that two NOM cases can be assigned
independently, as in (3a), repeated here for convenience,

(5) Basic and CSD altemmates with embedded passivization (=(3})

5. This assumption is actually irrelevant from the TAG point of view, but it is consistent with much recent work on the syntax
of V1 languages.
6. There is cross-linguistic support for this ¢laim from other Austronesian languages such as Malagasy.

256 f’roceedings of TAG+6

1P
P NP
2
/\ Ti 2)
r SPEC
A%ﬁ)
PRO

Figure 3: Derived tree for Tagalog clauses in CSD order

P P
1] i 1P NP
0
1] SPEC g SPEC °
INFL VP Aél) INFL VP A!f)
|
vil) N!'P /\//P\; V12) NP VP PRO
T
o FV oY
€3 €2 ei2 613

Figure 4: Elementary trees for Tagalog clauses in standard order: matrix clause (left) and embedded clause (right)

Maclachian and Rambow 257

I."
/\ 12)
INFL VP Ail) g SPEC °
JI) /\ /\ 12)
vV NP VP INFL VP A}
ee NP VP vio NP VP PRO
N | N
Gil) 1CRY e NPV
] | |
€3 € €3

Figure 5: Elementary trees for Tagalog clauses in CSD order with interleaved nominal arguments, corresponding
to sentence (7); matrix clause (left) and embedded clause (right)

a. umasa si Maria-ng sulatin ang knwento
AT-hoped NOM-Maria-LK write-TT NOM-story

b. umasa-ng sulatin {*siMaria /ni Maria} ang kuwento
AT-hoped-LK write-TT {*NOM-Maria / Maria} NOM-story

‘Maria hoped to write the story.’

We might be tempted to derive the fact that the matrix c¢lause agent cannot receive NOM case along with
the embedded verb theme (as shown in (5b)) from the fact that the matrix clause simply does not have a SPEC
position for INFL, and therefore it cannot have a NOM-marked argument. However, this cannot be the whole story,
since it is clearly wrong: in (4) we have a NOM-marked matrix argument in both the basic and CSD word orders.
A different approach would be to postulate the existence of a feature shared across and between projections of
different verbs, but not across IP nodes (again capturing the same intuition of “clause union™). This feature would
ensure that only one constituent is marked NOM. However, this theory misses an additional complicating factor:
in (5), it is altogether impossible for the matrix agent to be NOM-marked, whether or not the embedded theme is
NOM-marked:

(6) * umasa-ng sulatin siMaria {ang kuwento / ng kuwento}
AT-hoped-LK write-TT NOM-Matria {NOM-story / story}

Intended meaning: ‘Maria hoped to write the story.’

We therefore retum to an analysis which exploits the node labels, but we make an additional assumption:
case assignment can be shared between an overt argument and a PRO it controls (just as other features, such as
referential indices, are shared). Thus, the matrix agent in (4b) gets its NOM not from the matrix SPEC of IP (since
there is none), but rather through co-indexation with the embedded agent, which is PRO in SPEC of IP of the
embedded verb, In fact, in all cases in which we have a NOM case in a matrix clause of a C8D, it is the controler
of a PRO in the lower clause which must be in SPEC of IP, given the verbal morphology. While the notion of
case being passed from PRO to its controler may seem at first strikingly odd, we note that in the derived tree (see
Figure 3), the PRO actually ¢-commands its controler!

4. Evidence Against Verb Incorporation

‘We point out a series of cases that are readily handled in the TAG analysis which pose a problem for two other
types of analyses of CSDs. As argued in (Maclachlan, 1991), analyses that assume a mechanism like head-to-head
movement of an embedded verb head into the matrix verb head similar to a causative verb incorporation approach
or a morphological verb complex (Evers, 1975) cannot account for these cases. It is possible for a phrase from

258 Proceedings of TAG+6

the matrix clause to occur intermingled with embedded clause elements even while other matrix clause elements
remain in place. Namely, negation, floated quantifiers and full phrases can intervene between the two verbs of a
CSD. One such example is given in (7) where the matrix clanse has an agent, a sentential and an oblique argument.
The basic order is V1 Agentl Goall [CONJ V2 Goal2] as in (72) but a possible CSD orderis V1 Goall CONJ V2
Agentl Goal2 as in (7b) where the matrix oblique phrase remains between the verbs.

)] Basic and CSD altemates with intervening phrase

a. Sinabi ni Fe kay Juan kung kailan tatawag kay Maria
TT-said Fe OBL-Juan CONJ when AT-call OBL-Maria

b, Sinabi kay Juan kung kailan tatawag ni Fe kay Maria
TT-said OBL-Juan CONJ when AT-call Fe OBL-Maria

‘Fe told Juan when to call Marja.’

We can derive such cases by assuming that in the analysis in (2), the matrix goal has remained in the VP, while
the matrix agent is Chomsky-adjoined to I'. (Note that no NOM is assigned in this example.) This is shown in
Figure 5. Crucial to our analysis is the fact that each verb has its own projection which enters into the derivation
fully formed, thus allowing the intervening material.

5. Conclusion

In this paper, we have discussed cross-serial dependencies in Tagalog. As in the case of Dutch discussed
by Kroch and Santorini (1991), the definition of adjunction leaves only one possible way of using TAG in the
linguistic analysis. As in Dutch, but for completely different reasons, this analysis is independentlty motivated
by other (non-TAG) linguistic analyses. Furthermore, as in the case of Dutch, analyses have been proposed for
Tagalog which include processes such as clause union or verb complex formation/verb incoproration which cannot
readily be modeled by TAG. Again, as in the case of Dutch, there is independent empirical evidence against such
a process. The striking parallel betwen Dutch and Tagalog, despite the stark differences in syntax between the two
languages, lends further credence to the claim that adjunction represents a linguistically meaningful operation.

References

Baldridge, Iiason Michael (1998). Local scrambling and syntactic asymmetries in Tagalog. Master’s thesis, University of
Pennsylvania.

Bech, Gunnar (1955). Studien iber das deutsche Verbum infinitum. Det Kongelige Danske videnskabernes selskab, Historisk-
Filosofiske Meddelelser, bd. 35, nr.2 (1955} and bd. 36, ar.6 (1957), Munksgaard, Kopenhagen. 2nd unrevised edition
published 1983 by Max Niemeyer Verlag, Tibingen (Linguistische Arbeiten 139).

Evers, Arnold (1975). The Transformational Cycle in Dutch and German, PhD thesis, University of Utrecht. Distributed by
the Indiana University Linguistics Club.

Frank, Robert (2001). Phrase Structure Composition and Syntactic Dependencies. MIT Press, Cambridge, Mass.

Kroch, Anthony and Santorini, Beatrice (1991). The derived constituent structure of the West Germanic Verb Raising construc-
tion. In Freidin, R., editor, Principies and parameters in comparative grammar, pages 269-338. MIT Press, Cambridge,
Mass.

Maclachtan, Anna (1991). Implications of a Tagalog construction for incorporation theory constraints. In Wilson, Tom, editor,
Proceedings of the Annual Conference of the Canadian Linguistic Association, pages 209-220, Toronto.

Maclachlan, Anna (1994). Conjunction reduction and the syntax of case in Tagalog. In Ode, Cecilia and Stokhof, Wim,
Iﬂ\lditl?xrsi Pgoceedings of the Seventh International Conference on Austronesian Linguistics, pages 443-460, Leiden, the

etherlands,

Rambow, Owen (1994). Formal and Computational Aspects of Natural Language Syntax. PhD thesis, Department of Computer
and Information Science, University of Pennsylvania, Philadelphia. Available as Technical Report 94-08 from the Institute
for Research in Cognitive Science (IRCS) and also at fip://fip.cis.upenn.edw/pub/rambow/thesis.ps.Z .

Rambow, Owen and Vijay-Shanker, K. (1998). Wh-islands in TAG and related formalisms. In Proceedings of the Fourth
International Workshop on Tree Adjoining Grammars and Related Frameworks (TAG+4), number 98—12 in IRCS Report,
pages 147-150. Institute for Research in Cognitive Science, University of Pennsylvania.

Rambm&)Owen; Vijay-Sharker, K.; and Weir, David (2001). D-Tree Substitution Grammars. Computational Linguistics,
2%1).

Shieber, Stuart B, {1985). Evidence against the context-freeness of natural language. Linguistics and Philosophy, 8:333-343,

Reranking an N-Gram Supertagger

John Chen*, Srinivas Bangalore*, Michael Collins*, and Owen Rambow!
*AT&T Labs—Research, tUniversity of Pennsylvania
{jchen, srini,mcollins}@research.att.com, rambow@unagi.cis.upenn.edu

1. Introduction

As shown by Srinivas (1997), standard n-gram modeling may be used to perform supertag disambiguation with
accuracy that is adequate for partial parsing, but in general not sufficient for full parsing. A serious problem is that
n-gram modeling usually considers a very small, fixed context and does not perform well with large tag sets, such
as those generated by automatic grammar extraction (Xia, 1999; Chen and Vijay-Shanker, 2000; Chiang, 2000).
As an alternative, Chen, Bangalore and Vijay-Shanker (1999) introduce class-based supertagging. An example of
class tagging is n-best trigram-based supertagging, which assigns to each word the top n most likely supertags as
determined by an n-gram supertagging model. Class-based supertagging can be performed much more accurately
than supertagging with only a small increase in ambiguity. In a second phase, the most likely candidate from the
class is chosen.

In this paper, we investigate an approach to such a choice based on reranking a set of candidate supertags
and their confidence scores. RankBoost (Freund et al., 1998) is the boosting algorithm that we use in order to
learn to rerank outputs. It also has been used with good effect in reranking outputs of a statistical parser (Collins,
2000) and ranking sentence plans (Walker, Rambow and Rogati, 2001). RankBoost may learn to correct biases
that are inherent in n-gram modeling which lead to systematic errors in supertagging (cf. (van Halteren, 1996}).
RankBoost can also use a variety of local and long distance features more easily than n-gram-based approaches
(cf. (Chen, Bangaiore and Vijay-Shanker, 1999)) because it makes sparse data less of an issue.

The outline of this paper is as follows. First, we develop the background and motivations behind the task of
reranking the output of an n-best frigram supertagger. Second, we introduce RankBoost as the approach that we
adopt in order 1o train the reranker. Third, we perform an initial set of experiments where the reranker is trained
with different feature subsets. Fourth, we perform an in-depth analysis of several reranking models. Fifth, after
pointing out causes that at times render the reranker ineffective, we develop and test some new models that attempt
to sidestep these limitations. Lastly, after some significance testing results, we state our conclusions and remark
on potential future directions.

2. Background and Motivation

In this section, we motivate the desirability of exploring the use of n-best reranking of supertags. Although
we give multiple motivations, we focus on justifying our approach as a promising alternative in improving the
performance of a full parser. First, we review the supertagging task and its applications. Because supertagging
requires the existence of a particular TAG, we subsequently introduce automatically exiracted TAGs and motivate
their use. Although extracted grammars have their advantages, supertagging using automatically extracted TAGs
runs into damaging sparse data problems. We review n-best supertagging as one means of alleviating these prob-
lems. Lastly, we run experiments that show supertagging is potentially a viable option in order to speed up a full
parser. Throughout this section, we describe the kinds of linguistic resources that we use in all of our experiments
and the kinds of notation that we will employ in the rest of this paper.

2.1, Supertagging

Supertagging (Bangalore and Joshi, 1999) is the process of assigning the best TAG elementary tree, or su-
pertag, to each word in the input sentence. It performs the task of parsing disambiguation to such an extent that it
may be characterized as providing an almost parse. There exist linear time approaches to supertagging, providing
one promising route to linear time parsing disambiguation. However, Srinivas (1997) shows that standard n-gram
modeling may be used to perform supertagging with accuracy that is adequate for partial parsing, but not for full
parsing. On the other hand, n-gram modeling of supertagging has been found to be useful in other applications such
as information retrieval (Chandrasekhar and Srinivas, 1997b) and text simplification {Chandrasekhar and Srinivas,
1997a).

(© 2002 John Chen, Srinivas Bangalore, Michael Collins, and Owen Rambow, Proceedings of the Sixth International Workshop
on Tree Adjeining Grammar and Related Frameworks (TAG+6), pp. 259-268. Universita di Venezia.

260 Proceedings of TAG+6

2.2. Autematically Extracted Grammars

Recently, procedures have been developed that antomatically extract TAGs from broad coverage treebanks
(Xia, 1999; Chen and Vijay-Shanker, 2000; Chiang, 2000). They have the advantage that linguistically motivated
TAGs can be extracted from widely available treebanks without a huge investment in manual labor. Furthermore,
because of their direct extraction from a treebank, parameters can be easily and accurately estimated for building
statistical TAG models for parsing (Chiang, 2000; Sarkar, 2001) or generation (Bangalore, Chen and Rambow,
2001).

In our experiments, we use an automatically extracted TAG grammar similar to the ones described by Chen
and Vijay-Shanker (2000). This grammar has been extracted from Sections 02-21 of the Penn Treebank (Marcus,
Santorini and Marcinkiewicz, 1993). It contains 3964 tree frames (non-lexicalized elementary trees). The param-
eters of extraction are set as follows. Each tree frame contains nodes that are labeled using a label set similar to
the XTAG (XTAG-Group, 2001) label set. Furthermore, tree frames are extracted corresponding to a “moderate”
domain of locality. Also, only those empty elements in the Penn Treebank that are usually found in TAG (subject
and object trace, for example) are included in this grammar.

2.3. N-best Supertagging

The efficacy of n-gram modeling of supertagging is limited by sparse data problems of very large TAGs, such
as those that are automatically extracted from broad coverage treebanks. Chen and Vijay-Shanker (2000) show that
supertagging using extracted TAGs is performed at a lower accuracy (around 80%) than accuracies that have been
published for supertagging using hand-written TAGs (around 90%). Faced with this evidence, it might seem that
it is a hopeless task to use supertagging using extracted TAGs as a preprocessing step to accelerate full parsing.
On the other hand, Chen, Bangalore and Vijay-Shanker (1999) investigate class-based supertagging, a variant of
supertagging where a small set of supertags are assigned to each word instead of a single supertag. The idea is to
make the sets small enough to represent a significant reduction in ambiguity so as to speed up a full parser, but to
construct the sets so that class-based supertagging is much more accurate than supertagging.

One such promising class-based supertagging model is n-best supertagging, where a trigram model assigns up
to n supertags for each word of the input sentence. Let W = wy,...,w, represent the sequence of words that is
the input to a supertagger. Let Tyr; = $1.1,.. ., t5,1 be the output of the (1-best) trigram supertagger. The output
of the n-best supertagger is a sequence of n-best supertags NBEST(i) = #;1,...,%;n(;) for each word w; such
that each supertag ¢; ; has an associated confidence score ¢; ;. Assume that each sequence NBEST(z) is sorted in
descending order according to these confidence scores.

The n-best supertagger is obtained by a modification of the (1-best) trigram model of supertagging. Both
supertaggers first use the Viterbi algorithm to find T;,; by computing the most likely path p{T}.;} through a lattice
of words and pairs of supertags. In the trigram supertagger, each node k along the path p(T},.;) is associated with
exactly one prefix probability (the highest). In contrast, the corresponding node k in the n-best supertagger is
associated with the n highest prefix probabilities. This difference allows the n-best supertagger to associate up to
n supertags for each word w;. The confidence score ¢; ; of supertag t; ; is the jth-best prefix probability of a node
k divided by the least best prefix probability of the same node.

2.4, Parsing with N-best Supertagger Output

We claim that supertagging is a viable option to explore for use as a preprocessing step in order to speed up
full parsing. In order to substantiate this claim, we perform exploratory experiments that show the relationship
between n-best supertagging and parsing performance, Using the grammar that is described in Section 2.2, we
train n-best supertaggers on Sections 02-21 of the Penn Treebank. For each supertagger, we supertag Section 22,
which consists of about 40,100 words in 1,700 sentenices. We then feed the resulting output through the LEM
parser, 2 head-driven TAG chart parser (Sarkar, 2000). Given an input sentence and a grammar, this parser either
outputs nothing, or a packed derivation forest of every parse that can be assigned to the sentence by the grammar.
It does not return partial parses.

The results of these experiments are shown in Table 1. The input to the parser can be the output of either a
1, 2, or 4-best supertagger. It can also be sentences where each word is associated with all of the supertags with
that word’s part of speech, as determined by a trigram part of speech tagger. This is labeled as “POS-tag” in the
table. Lastly, it can simply be sentences where each word is associated with the correct supertag. This is labeled
as “Key.” The table shows the supertagging accuracy of each corpus that is input to the parser. It also shows each

Chen, Bangalore, Collins, and Rambow 261

Table 1: Relationships between n-best supertagging and parsing

Input % Supertagging Ambiguity % Sentences Time to
to Parser Accuracy {supertags/word} Receiving Parse
Some Parse Corpus
1-best 81.47 1.0 282 < 3 hours
2-best 88.36 1.9 53.6 < 2 days
4-best 0141 3.6 76.7 2-3 weeks
8-best 92.77 6.3 - -
POS-tag 97.30 4413 - -
Key 100.00 1.0 97.0 < 5 hours

% Sanlences Parsad Versus % Supertagging Accuracy
100 + 1 T T T

% SUbeﬂaggind Accuracy‘ ——

80
80

0

% Sentences Parsed
g
T

zc 1 1 1 1 1 L 1 1 1
80 a2 84 86 88 90 82 ™ 96 g8 100

% Supariagging Accuracy

Figure 1: Percentage of Sentences That Were Parsed Versus Percent Supertagging Accuracy

corpus’s ambiguity in supertags per word, the percentage of sentences in the corpus which the parser successfully
found a parse, and also the time to parse the corpus. Parsing results are not available for “8-best” and “POS-tag”
because of the unreasonable amount of time the parser takes for those kinds of corpora.

Table | reveals some interesting aspects of the relationship between supertagging and parsing. For example,
it shows that merely doing part of speech tagging is inadequate as a preprocessing step if the purpose is to signif-
icantly speed up full parsing, In contrast, it also shows that the !-best supertagger does speed up full parsing, but
at the cost of missing many parses of sentences. Row “Key” shows that if supertagging works accurately enough,
then it would indeed fulfill the promise of speeding up a fuli parser.

The second cofumn of Table 1 is plotted against its fourth column in Figure 1. It shows how the percentage
of parsed sentences in the test corpus increases as the supertagging accuracy on the test corpus increases. There is
the obvious result that a higher supertagging accuracy always leads to a greater percentage of sentences being able
to be parsed. There is apparently a less obvious result that this relationship is non-linear; the steepest increase in
percentage of parseable sentences occurs for supertagging accuracies between 88% and 92%.

We have seen that full parsing of automatically extracted TAG grammars is apparently quite slow. We have
also seen that simply part of speech tagging the input sentences as a preprocessing step does not seem to reduce
ambiguity to a sufficient degree in order to speed up full parsing to a desirable extent. On the other hand, we
have shown that 1-best supertagging does indeed speed up full parsing considerably—at least more than tenfold.
However, in order for supertagging to fully parse a considerable portion of a corpus, it is necessary to achieve
sufficiently high supertagging accuracies. Regarding the use of n-best supertagged input to a parser, we have seen
that it is best to keep n < 3 in order to prevent extreme degradation in parsing performance.

262 Proceedings of TAG+6

2.5. Summary

We have seen that reranking the cutput of an n-best supertagger based on a TAG extracted from a tresbank
is attractive for a variety of reasons. Use of such a TAG is justified because parameters for stochastic models can
be estimated easily and accurately, Use of an n-best supertagger is justified because of the considerable potential
etror reduction and its implications. In particular, it can be clearly seen from Table 1 that an optimal reranking
of the output of an 8-best supertagger would achieve a more than 50% reduction in supertagging error. It is not
unreasonable to believe that this would greatly improve the performance of applications based on supertagging,
such as information retrieval and text simplification. Furthermore, Figure 1 shows that this error reduction would
greatly increase the viability of using supertagging as a preprocessing step to speed up parsing.

3. Reranking an N-Best Supertagger

Our reranker takes as input a set of sentences that has been supertagged by an 8-best supertagger, including a
confidence score for each selected supertag. It then ranks them according to its model. This model is trained using
the machine leaming program RankBoost (Freund ef 4l., 1998) which learns from sets of correctly supertagged
sentences the same sentences that have been supertagged using an 8-best supertagger.

We use the variant of RankBoost introduced by (Coilins, 2000). Further information about RankBoost is found
in (Schapire, 1999). RankBoost learns from a set of examples. For our purpose, an example is an occurrence of a
word w; in a particular sentence afong with its supertag ¢; ; selected by an n-best supertagger and its confidence
score ¢; ;. Each example is associated with a set of m binary indicator functions &,(#; ;) for 1 < 8 < m. For
example, UNI(w,s) is a two-argument feature template that states that the current word w has supertag s. When
this template is instantiated with «; =book and ¢; ; = aINXN, we obtain the following indicator function: function
might be
1 ifti;=aNXNandw; = book
0 otherwise .

fy23a(ts5) = { n
Each indicator function A, is associated with its own parameter ;. There is also a parameter cy associated with
the confidence score. Training is a process of setting the parameters ¢ to minimize the loss function:

loss(a) _ Z e_'(ao{In(c{,1}—ln(c;,,'))+za &.(h.(ti,l)"‘h.(ti,j))) @)
4.3

At the start of training, no features are selected, i.e., all of the cv,’s are set to zero, The optimization method that
is used in training is greedy; at each iteration it picks a feature &, which has the most impact on the loss function.
The result is a set of indicator functions whose output on a given candidate is summed. These sums are used to
rerank a set of candidates. Another set of examples—tuning data-—is used to choose when to stop.

4. Initial Experiments

A set of features is required in order to train RankBoost to rerank supertags. As pointed out by Srinivas (1997),
the traditional n-gram modeling of supertagging suffers from the flaw of only considering local dependencies when
deciding how to supertag a given word. This is counter to one of the attractions of the TAG formalism, namely
that even long distance dependencies are localized within a given TAG (Schabes, Abeillé and Joshi, 1988). Chen,
Bangalore and Vijay-Shanker (1999) provide an example sentence where non-local context is needed to determine
the correct supertag: “Many Indians feared their country might split again.” Here, the supertag for the word feared
is partially determined by the proximity of the word might. Chen, Bangalore and Vijay-Shanker (1999) introduce
the notion of head supertag context which they show increases supertagging accuracy when suitably folded into a
stochastic model. While the notion of head supertags can be useful, it cannot be straightforwardly applied to our
current situation; determining head supertags was feasible in (Chen, Bangalore and Vijay-Shanker, 1999) because
they used the XTAG grammar, whereas it is not immediately clear which supertags should be head supertags in
our extracted grammar, which is an order of magnitude larger than the XTAG grammar (3964 tree frames in the
extracted grammar versus 500 tree frames in the XTAG grammar).

Chen, Bangalore and Vijay-Shanker (1999) make it clear, however, that both local and long distance features
are important, In that spirit, we have designed an initial set of feature templates that is shown in Table 2. For
example, UNLis a two-argument feature template that states that the current word wyq has the supertag to,1. Feature

Chen, Bangalore, Collins, and Rambow 263

Table 2: Feature Templates Used In Initial Experiments

w; tth word in input sentence relative to current word which is wo
t; supertag of th word in input sentence relative to current word which is wg

Name Parameter List Example of Instantiation

UNI wg, to,; wp =book, ty,; = aNXN

BI wy,t_1.1.%0,; wp =book,t_1,1 = SNn, ty,; = aNXN

TRI ' wo,t-2,1,1-1,1,%0,5 | wo =book,t_»1 = ADnx,t_;; = fNn,1o,; = aNXN
FORWARD-BI wo, to,5: 41,1 wo =book, tp ; = aNXN, t; ; = anx0V
FORWARD-TRI wo, o 5,%1,1,%2,1 wo =book, tp ; = aNXN, {;; = anx0V, 131 = SvxN
LEFT-FAR-BI, 3 <z < 8) t_z1,t0,5 t_z,1 = ADnx, tp,; = aNXN

RIGHT-FAR-BI, 3 <z < 8) to,j,tz,1 to,; = aNXN, #; 1 = OnxPnx

LEFT-WIN, (z € {4,8,16}) | t—y.1,%0,5 t_y = anx0Vnxl,0 <y < z,tp ; = aNXN
RIGHT-WIN,, (z € {4, 8,16 H 10,55 ty1 tg,; = aNXN, by = SrixPox, 0 <y <z

LEFT-FAR-BIy
RIGHT-FAR-BI

BI
TRI ~
FORWARD-BI
FORWARD-TRI

SHORT

Figure 2: Sets of Features That Are Used In Various Experiments

templates exist that take into account local context and others that take into account long distance context. Local
feature templates basically take into consideration the same context that a trigram model considers. They are UNIL,
Bi, TRI, FORWARD-BI, and FORWARD-TRI. Long distance feature templates take into consideration extra-
trigram context. There are two kinds of long distance feature templates: *-FAR-BI,; and *-WIN,. The *-FAR-BI_
kind states that the current word has the supertag #p ; and there exists a supertag a fixed distance z away from
the current word having supertag t ;. The *-WIN, kind of feature template states that the current word has the
supertag to,; and there exists a supertag ¢, 1 which lies within some distance y, 0 < y < &, of the current word.

The list of feature templates in Table 2 is somewhat long and unwieldy. In order to simplify our exposition of
different reranking models, we have given names to various subsets of these feature templates. These are shown
in Figure 2. The set of all *-FAR-BI,; feature templates is called PART. The set of all *-WIN_ feature templates
is called WIN. PARTUWIN yields LONG. SHORT is the set of all trigram-context feature templates. NEAR is
SHORT — UNL

Traimng RankBoost for reranking supertags requires n-best supertagged data. This is obtained by first ex-
tracting a TAG from the Penn Treebank as described in Section 2.2, 8-best supertaggers are then used to derive
training, tuning, and test data. Ten-fold cross validation of Sections 02-11 and part of 12 provides the training
data (475197 words). 8-best supertagged versions of the rest of Section 12 and Sections 13-14 serve as tuning
data (94975 words). Test data is derived from the output of an 8-best supertagger trained on Sections 02-14 on
Section 22 (40117 words). Note that for these experiments, a truncated version of the usual Penn Treebank train-
ing data—Sections 02-21, are used. This is done merely to expedite the training and testing of different reranking
models.

Table 3 shows the supertagging accuracy results for the n-best supertagger, before and after reranking by

264 "Proceedings of TAG+6

Table 3: N-best supertagger results and Reranker results using different feature sets on Section 22.

% Supertag Accuracy
n-best | Before SHORT LONG LONG | LONG WIN PART
Rerank USHORT | UUNI UUNI UUNI

80.20 80.77 80.13 81.73 81.39 8163 81.04
87.13 87.67 87.13 88.59 8838 8855 88.09
89.24 89.73 85.24 90.24 90.16 9025 89.88
90.28 90.63 90.28 90.95 90.88 9098 90.77
90.84 81.07 90.83 91.33 91.27 9133 9119
91.22 91.38 91.20 91.54 91.50 91.54 9144
91.52 91.57 91.52 91.66 9164 91.65 5162
91.73 91.73 91.73 91.73 9173 9173 9L73

60 ~1 Ch Ln A W R —

RankBoost. The ni-best results for 1 < n < 8 are derived by considering only the top n supertags proposed by
the 8-best supertagger. The left half of the table shows three different models are trained using RankBoost, one
that uses SHORT features only, one that uses LONG features only, and another that uses both LONG and SHORT
features. The rules that are learned by RankBoost are then applied to the 8-best supertags to rerank them.

The results are encouraging. The 1-best supertagger achieves an accuracy of only 80.20%. Nevertheless, the
8-best accuracy is 91.73% which shows that an optimal reranking procedure would halve the error rate. Reranking
using SHORT features results in a statistically significant error reduction (p <0.03) of 2.9% for 1-best. Reranking
also using LONG features results in an error reduction of 7.7% for 1-best (and an error reduction of 13.3% with
respect to the RankBoost topline of 91.73%). Therefore RankBoost is obviously able to use LONG features
effectively in conjunction with the SHORT features, despite a big increase in the number of parameters of the
model. Note also that reranking improves the accuracy for ail n-hest results, 1 < n < 8.

Apparenily, there is some interaction between LONG and SHORT features which makes model
LONGUSHORT effective whereas model LONG is useless. In order to study this interaction, and also to determine
what kinds of LONG features help the most, we have tested models LONGUUNI, WINUUNI, and PARTUUNI.
The results are shown in the right half of Table 3. Model LONGUUNI achieves much of the performance of model
LONGUSHORT, even though it only considers the unigram feature, One possible explanation for this phenomenon
is that SHORT features aid LONG features not because the tocal trigram context that is modeled by SHORT is so
much more important, but instead it is lexicalization that is important, SHORT features being lexicalized whereas
LONG features are not. Also note that model WINUUNI outpetforms model PARTUUNI. This seems to indicate
that PART feature templates are less useful in supertag disambiguation than WIN feature templates.

5. Analysis of Some Initial Experiments

At first glance, there does not seem to be much of a difference between model LONGUSHORT and model
SHORT. The difference between them in terms of accuracy of 1-best supertagging reranking is slightly less than
one percent, about five percent in terms of reduction in error. On the other hand, as Table 6 shows, this small
difference is still statistically significant. In order to get a better grasp on the differences in behavior of model
LONGUSHORT and model SHORT, and also to get a feeling about how one might improve reranking models for
supertagging, we perform a semi-qualitative analysis of the 1-best reranked output of these two models.

The ten most frequently mistagged supertags (i.e. those supertags that were most misclassified by the
reranker), sorted by frequency, for model SHORT and model LONGUSHORT are shown in Table 4. At first
glance, there is not much difference between the two models; they both mistag mostly the same kinds of supertags,
and the supertags’ rankings are about the same. However, certain differences can be discerned. Notably, the fre-
quency of mistagging aNXN is 25% less in LONGUSHORT than it is in SHORT. Also, there is somewhat less of
a PP attachment problem in LONGUSHORT than there is in SHORT, as can be seen by the frequencies of the PP
attachment supertags SnxPnx and SvxPnx. The fact that the frequency of mistaggings of enx0Vmx1 drops from
168 in SHORT to 130 in LONGUSHORT is also noteworthy; apparently LONGUSHORT is performing better at
resolving NP versus S subcat ambiguity.

For each of several supertags in Table 4, we proceed to determine the most important features that

Chen, Bangalore, Collins, and Rambow 265

Table 4: Ten Most Frequently Mistagged Supertags, By Frequency, for SHORT and LONGUSHORT

SHORT LONGUSHORT
Frequency Superiag ; Frequency Supertag | Frequency Supertag | Frequency Supertag
6350 alNXN 167 BnxN 474 aNXN 155 BVnx
410 BNnx 162 fAnxPunct 356 SNnx 151 AnxPnx
303 BvxPnx 148 AnxPnx 289 BvxPnx 147 aN
216 BAnx 130 BucpPunct 203 BANx 144 SnxPunct
168 anx0Vox1 117 aN 166 BnxN 130 anx0Vnx1

LONGUSHORT uses in order to choose the correct supertag. Our methodology is as follows. Given a supertag
~, we determine the set of instances in the test corpus where LONGUSHORT reranked -y to first place from an
originaily lower ranking. For each instance, we determine the features that caused LONGUSHORT to rank -y more
highly, tabulating the number of times each feature is used. We also record the multiset ¢{y) of supertags v/ #
such that LONGUSHORT replaced ' with -~y as the first ranked supertag.

Consider supertag anx0Vnx1, Most frequently occurring members of ¢(anx0Vnx1) include SVvx, Snx0Vsl,
o]Nnx(}Vnxl (declarative transitive supertag with complementizer), and SvxINnx0Vnxl. The most frequently
used features that are used to rank onxOVnxl more highly are LEFT-WIN;5(EOS,anx0Vnx1) and LEFT-
WINg(EOS,anx0Vnx1), where EOS is a sentence delimiter, in this case the left sentence delimiter. Intu-
itively, these features seem to suggest that anx0Vnx1 should appear nearer to the beginning of the sentence
than for example, SvxINnx0Vnxl, being a verbal postmodifier, should. Another frequently used feature is
LEFT-WIN4(oNXN,anx0Vnx1)}. It is apparently used to make sure there exists an NP to the left of the cur-
rent word that would fit in the subject slot of anxOVnx1. The existence of the frequently used feature LEFT-
WIN; 6(AMDvx,anx0Vnx1) is also of interest. Apparently, this feature occurs because anx0Vnx1 often serves
as the sentential complement of another verb to its left. This verb can take a variety of supertags, including
Anx0Vsl and ANOnx0Vsl for example, Having a separate feature for each of these supertags would possibly
lead to suboptimal reranking performance because of sparse data. Instead, apparently based on the generaliza-
tion that these supertags are usually modified by a modal verb SMDvx, RankBoost chooses the feature LEFT-
WIN1g(SMDvx,anx(Vnx1),

All of the features that we have discussed are LONG. In fact, there is a preponderance of LONG features
used to rank anx0Vnxl: the ten most frequent features are LONG. There are however, some SHORT features
that are heavily weighted, although they are not used quite as often. One notable SHORT feature is FORWARD-
BI(has,3Vvx,fDnx}. Intuitively, it resolves the ambiguity between SVvx and anx0Vnx1 by seeing whether an NP
(prefixed by a determiner) immediately follows the current word.

Supertag aNXN presents another interesting case. The most frequently occurring members of ¢{aNXN)
include onxON, SnxN, and BvxN. The most frequently used features that are used to prefer aNXN in-
clude LEFT-WIN; ¢ (oNXN,aNXN), RIGHT-WIN; g(aNXN, 3sPeriod), RIGHT-WIN; ¢(aNXN, InxPnx), LEFT-
WIN4(SNn,aNXN). These features seem to encode the context that is likely to surround aNXN. Of course, these
features also seem likely to surround other members of ¢(aNXN). Perhaps these features are chosen because of a
general bias that the n-best supertagger has against supertagging head nouns appropriately.

6. Further, Exploratory Experiments

Based on our experience with reranking of n-best supertags, we have drawn some possible avenues for im-
provement of the reranking procedure. In the following, we list some common reasons for lack of optimum
reranking performance and discuss how they might be eliminated.

¢ The feature that would perform the appropriate reranking is not chosen because of sparse data. Note that the
supertags that do instantiate feature templates tend to be very common, It is not surprising, therefore, that there
exists a feature such as LEFT-WIN4(aNXN,anx0Vnx1). Recall that this appears to ensure that anx0Vnx1 has
an NP subject to the left. An analogous feature is not likely to appear for an infrequently occurring supertag,
such as SNOnx0Vsl. One possible solution would be to instantiate feature templates with certain aspects of
supertags instead of entire supertags. Along this line, we perform some exploratory experiments in Section 6.1.

266 Proceedings of TAG+6

» The correct supertag for word wq does not exist in the n-best supertagged output. One way to ameliorate this
problem is to improve the performance of the first stage n-best trigram supertagger. Along this line, we perform
some exploratory experiments in Section 6.2,

s For words other than the current word, the feature template is instantiated only from the 1-best supertag cutput,
which is not always correct. For example, the feature LEFT-WIN{aNXN,anx0Vnx1), depends on the fact that
the supertags to the immediate left of the current word are, in fact, correctly supertagged, whereas they are only
correctly supertagged about 80% of the time. Now, the training process should compensate for this somewhat
because the inputs to the training process are (flawed) supertagged sentences. On the other hand, perhaps a
different approach would be more effective in tackling this problem. One avenue would be to rerank n-best
paths of supertags, instead of n-best per word supertagged output. Along this line, we have implemented an
n-best paths supertagger, based on a trigram model, but employing a search strategy similar to (Ramaparkhi,
1996). Trained on Sections 02-21 of the Penn Treebank, this supertagger achieves about 89% supertag accuracy
only when the top 100 paths are chosen. It remains to be seen whether this will cause difficulties in terms of
memory or space resources for traimng the reranker.

6.1. Training the Reranker with Part of Speech Features

Having features consider entire supertags is a limiting factor in contributing to the performance of the reranker
not in the least because of sparse data. One possible solution is to base features on aspects of supertags instead of
entire supertags. For example, one might take the approach of breaking down each supertag into a feature vector
(Srinivas, 1997; Xia et al., 1998; Xia ef al., 2000; Chen, 2001), and to base RankBoost features on elements of that
vector. Another approach would be to consider each supertag as generated by a Markov process (Collins, 1997;
Collins, 1999). In this case, one would base RankBoost features on individual steps in that process. Here, we
consider using part of speech as a component in feature space.

As implied by Section 2.2, the preterminal tag set for our extracted grammar is similar to the XTAG part of
speech tag set. For our features, we can either choose to retain the XTAG parts of speech or use the more detajled
Penn Treebank part of speech tagset. This choice displays the usual tradeoff between assuaging sparse data (the
former) and having detailed enough features to make appropriate decisions (the latter). We have chosen the latter
because the Penn Treebank part of speech tagset (about 45 tags) is already an order of magnitude smaller than the
supertag tagset (about 3900 tags), although we believe that it would also be interesting to repeat our experiments
using the XTAG part of speech tagset (about 20 tags).

For cach feature template in LONGUSHORT, an analogous feature tempiate is created with supertag parame-
ters other than the current word replaced with part of speech parameters. For example, LEFT-WIN4-POS(p,,to,cur)
is a feature template that states that the current word is supertagged with g, ¢y and there exists a word to the left
that has part of speech p, within a distance of four words of the current word. Furthermore, we give the same
name to these new subsets of feature templates as is given to the previous subsets, affixed with -POS. For example,
WIN-POS is the set of feature templates consisting of LEFT-WIN,-POS and RIGHT-WIN-POS.

After the RankBoost training, tuning, and test corpora were suitably annotated using a trigram model Penn
Treebank part of speech tagger, models NEAR-POSUSHORT and LONG-POSULONGUSHORT were trained
and tested. The results are shown in the left half of Table 5. Although the 1-best reranking accuracies are not
significantly higher for the *-POS models than for the corresponding non-POS models (Table 6), it is important
to keep in mind that these are preliminary results. We believe that the higher accuracies for the *-POS models
indicate that there may exist other, untried models which use part of speech information more effectively.

6.2. Reranking of Smoothed N-Best Supertagging

There are many cases where the reranker cannot give the correct supertag the top ranking because it does not
exist in the n-best putput, One possible solution to this problem is to enhance the n-best supertagger by smoothing
its emit probability p{w|t), and then run the reranker on the resulting output. Here, we perform such an experiment.

Our experiment proceeds as follows. We choose to smooth p(w|t) using the approach mentioned in (Chen,
2001). It accounts especially for the fairly large set of cases (about 5%) in which the word and the correct supertag
have both been seen in the training data, but not in combination. These cases would normally be assigned a prob-
ability of zero by the supertapging model. Using this approach, we prepared training, tuning, and test data using
the smoothed version of the n-best supertagger as appropriate. We subsequently trained model LONGUSHORT
on this training and tuning data, and then tested the reranker as usual.

Chen, Bangalore, Collins, and Rambow 267

Table 5: N-best supertagger results, smoothing, and smoething plus LONG U SHORT reranker results

T % Supertag Accuracy
Before | NEAR-POS LONG-POSU | Smoothed Smoothed and
n-best | Rerank | USHORT LONGUSHORT LONGUSHORT
1 80.20 80.97 82.04 81.64 82.99
2 87.13 87.77 38.83 £9.02 90.42
3 89.24 89.77 90.38 51.24 9231
4 90.28 90.63 91.04 92.37 93.14
5 90.84 91.07 91.34 93.07 93.59
6 91.22 91.37 91.53 93.54 93.88
7 91.52 91.57 91.65 93.84 94.05
g 91.73 91.73 91.73 94.14 94.14

Table 6: Differences in 1-best supertagging accuracy for all pairs of reranking models. Significant differences
{p < 0.05) are marked with *“*”

Before S L Lus LUuU WuU PUU &M SM & NPOS
Rerank LuS US

S +0.57

L -0.07 -0.64

LUS +1.53* +0.96* +1.60*
LuU +1.19% +0.62 +1.26* -0.34
wWuu +1.43* +0.86 +1.50* -0.10* +0.24
PUU +0.84 +0.27 +0.51* -0.69 -0.35 -0.59
SM +1.44* +0.87 +L.51* -0.09 +0.25 +0.01 -+0.60
SM&LUS | +2.79% +2.22*% +2.86* +1.26* +1.60* +1.36* +1.95* +1.35%
NPOSUS | +0.77 +0.20 +0.84 -0.76 -0.42 -0.66 -0.07 -0.67 -2.02%
LPOS U
LUS +1.84* +1.27% +191* +0.31 +H).65 +041 +1.00% +040 -095* <+1.07*

The smoothing technique was successful in raising the 8-best supertagging accuracy to 94.14% from 91.73%.
And, as can be seen in Table 5 RankBoost can still improve on the output, though to a slightly lesser extent. Overall,
the error reduction increases to 14.1% over the unsmoothed, non-reranked 1-best supertags (of which RankBoost
contributes 6.9% absolute). As far as we know, these are the currently best results for supertagging using large
supertag sets.

7. Significance Testing

We performed a one-way analysis of varance on the 1-best supertagging results of all of the reranking models
that are mentioned in this paper. Table 6 tabulates the differences between 1-best supertagging accuracies of the
various models and marks significant differences, p < 0.05, with “*” The F-value is 18.11; the critical value for
the Tukey test is 0.89,

8. Conclusions and Future Work

This paper has explored the use of RankBoost in order to rerank an n-gram supertagger. We have seen that
such a reranking, performed effectively, is potentially useful in a variety of applications, including speeding up
a parser. We have performed experiments that show that RankBoost can indeed produce models that perform
reranking well, to a statistically significant degree. We have identified specific features that explain why the
reranker performs effectively. We have also identified causes that limit the reranker’s performance. Finally, we
have performed other, exploratory experiments that ameliorate these limitations.

268 Proceedings of TAG+6

An advantage of using RankBoost is that numerous candidate features can be added robustly because Rank-
Boost learns to choose only the relevant ones. This invites the possibility of investigating kinds of features for
reranking other than the ones mentioned in this paper. Bilexical features may be useful, along with features that
take into account tree families, different kinds of parts of speech, punctuation, or the results of chunkers or even
parsers. It is also important to keep in mind that the performance of the reranker is limited by the performance of
the n-best supertagger. Thus, novel means to increase the n-best supertagger’s accuracy should also be explored.
We also intend to investigate other ways of obtaining candidate supertag sets using other notions of class-based
supertagging presented in (Chen, Bangalore and Vijay-Shanker, 1999).

References

Bangalore, Srinivas, John Chen and Owen Rambow. 2001. Impact of Quality and Quantity of Corpora on Stochastic Genera-
tion. In Proceedings of the 2001 Conference on Empirical Methods in Natural Langauge Processing, Pittsburgh, PA.
Bangalore, Srinivas and A. K. Joshi, 1999. Supertagging: An Appiroach to Almost Parsing. Computational Linguistics, 25(2).
Chandrasekhar, R. and B. Srinivas. 1997a. Automatic Induction of Rules for Text Simplification. Krowledge-Based Systems,

10:183-190.

Chandrasekhar, R. and B. Srinivas. 1997b. Using Supertags in Document Filtering: The Effect of Increased Context on
Information Retrieval. In Proceedings of Recent Advances in NLP '97, .

Chen, ‘f-! ohn. 2001, Towards Efficient Statistical Parsing Using Lexicalized Grammatical Information. Ph.D. thesis, University
of Delaware,

Chen, John, Srinivas Bangalore and K. Vijay-Shanker. 1999. New Models for Improving Supertag Disambiguation. In
};Iroceedings of the 9th Conference of the European Chapter of the Association for Computational Linguistics, Bergen,

orway,

Chen, John and K. Vijay-Shanker. 2000. Automated Extraction of TAGs from the Penn Treebank. In Proceedings of the Sixth
International Workshop on Parsing Technologies, pages 65-76.

Chiang, David. 2000. Statistical Parsing with an Automatically-Extracted Tree Adjoining Grammar, In Proceedings of the the
38th Annual Meeting of the Association for Computational Linguistics, pages 456463, Hong Kong.

Collins, Michael, 1997. Three Generative Lexicalized Models for Statistical Parsing. In Proceedings of the 35th Annual
Meeting of the Association for Computational Linguistics. v

Collins, Michael. 1999. Head-Driven Statistical Models for Natural Language Parsing. Ph.D. thesis, University of Pennsyl-
vania.

Collins, Michael. 2000. Discriminative Reranking for Natural Language Parsing. In Proceedings of the 17th International
Conference on Machine Learning.

Freund, Yoav, Raj lyer, Robert E. Schapire and Yoram Singer. 1998. An Efficient Boosting Algorithm for Combining Prefer-
ences. In Machine Learning: Proceedings of the Fifteenth International Conferece.

Marcus, Mitchell, Beatrice Santorini and Mary Ann Marcinkiewicz. 1993, Building a Large Annotated Corpus of English: the
Penn Treebank, Computational Linguistics, 19(2):313-330.

Ratnaparkhi, Adwait. 1996. A Maximum Entropy Model for Part-of-Speech Tagging. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing, pages 133-142, Somerset, NJ.

Sarkar, Anoop. 2000, Practical Experiments in Parsing using Tree Adjoining Grammars, In Proceedings of the Fifth Inferna-
tional Workshop on Tree Adjoining Grammars and Related Frameworks, Paris, France.

Sarkar, Anoop. 2001. Applying Co-Training Methods to Statistical Parsing. In Proceedings of Second Annual Meeting of the
North American Chapter of the Association for Computational Linguistics, Pitisburgh, PA.

Schabes, Yves, Anne Abeillé and Aravind K. Joshi, 1988. Parsing Strategies with ‘Lexicalized’ Grammars: Application to
Tree Adjoining Grammars. In Proceedings of the 12th International Conference on Computational Linguistics, Budapest,
Hungary.

Schapire, Robert E. 1999, A Brief Introduction to Boosting. In Proceedings of the 16th International Joint Conference on
Artificial Intelligence.

Srinivas, B. 1997. Performance Evaluation of Supertagging for Partial Parsing. In Proceedings of the Fifth International
Workshop on Parsing Technologies, pages 187-198, Cambridge, MA.

van Halteren, H. 1996. Comparison of Tagging Strategies: A Prelude to Democratic Tagging. In Research in Humanities
Computing 4. Clarendon Press, Oxford, England,

Walker, Marilyn A., Owen Rambow and Monica Rogati, 2001, SPoT: A Trainable Sentence Planner. In Proceedings of the
Second Meeting of the North American Chapier of the Assoctation for Computational Linguistics, pages 17-24.

Xia, Fei. 1999. Extracting Tree Adjoining Grammars from Bracketed Corpora. In Fifth Natural Language Processing Pacific
Rim Sympasium (NLPRS-99}, Beijing, China.

Xia, Fei, Chung hye Han, Martha Palmer and Aravind Joshi, 2000. Comparing Lexicalized Trecbank Grammars Extracted
from Chinese, Korean, and English Corpora. In Proceedings of the Second Chinese Language Processing Workshop
(CLP-2000), Hong Kong, China.

Xia, Fei, Martha Palmer, K. Vijay-Shanker and Joseph Rosenzweig, 1998. Consistent Grammar Development Using Partial-
Tree Descriptions for Lexicalized Tree Adjoining Grammars, In Fourth International Workshop on Tree Adjoining Gram-
mars and Related Framewaorks, pages 180-183,

XTAG-Group, The. 2001, A Lexicalized Tree Adjoining Grammar for English. Technical report, University of Pennsylvania.
Updated version available at http://www.cis_upenn.eduw/xtag.

Hidden Markov model-based Supertagging
in a user—initiative dialogue system

Jens Bicker and Karin Harbusch

University of Koblenz—Landau, Computer Science Department
Universitdtsstr. 1, D-56070 Koblenz, Germany

E-majl: {ibaecker harbusch}@informatik.uni-koblenz.de

Abstraet

In this paper we outline the advantages of deploying a shallow parser based on Supertagging in an automatic dialogue
system in a call center that basically leaves the initiative with the user as far as (s)he wants (in the literature called user—
initiative or adaptive in contrast to system—initiative dialogue systems), The Supertagger relies on a Hidden Markov model
and is trained with German input texts, The entire design of a Hidden Markov—based Supertagger with trigrams builds the
central issue of this paper. The evaluation of our German Supertagger lags behind the English one. Some of the reasons
will be addressed later on. Nevertheless shallow parsing with the Supertags increases the accuracy compared to a basic
version of KoHDaS that only relies on recurrent plansibility networks.

1. Introduction

Wizard—of—Oz experiments show that users of aufomatic dialogue systems would preferentially take the ini-
tative in many dialogues instead of being asked a long list of tiny little questions by the system (cf. (Boje et al.,
1999)). Empirical evaluations demonstrate that adaptation to the user’s dialogue preference leads to significantly
higher user satisfaction and task success {cf. (Strachan et al., 1997) or (Litman, Pan and Walker, 1998)). In con-
trast to these results, it can also be observed that in such user—initiated dialogue systems the user is sometimes feft
without a clear understanding of his/her options at a given point in the dialogue. This can cause frustration or even
breakdowns of the communication. Consequently, an adaptive system which reacts to the user’s preferred mode,
i.e. is able to ask explicit questions when the user doesn’t take the initiative and to react to user-provided complex
turns adequately as well at any particular state of the dialogue, serves as a user-friendly dialogue system,

The criticised strict dialogue structure with an explicit and inevitable initiative by the system (henceforth called
system—initiative in contrast to user—initiative) resuits from the crucial fact that with any of these questions by the
system a particular sub—grammar and sub-lexicon of the speech analysis system (e.g. a simple number or yes/no
grammar and lexicon, respectively) can be associated to analyse the user’s answer more reliably, Clarification
dialogues caused by incorrectly analysed words can be circumvented by this method. Hence it is essential for a
user—initiative or adaptive (or also called mixed-initiative) system to remedy the shortcomings resulting from the
less reliable analysis of the user’s spoken turm with a general gramniar and lexicon, respectively. Furthermore, the
task parameters, i.e. the information provided in the user’s turn to perform the user-intended task by the system,
have to be extracted without knowing exactly where in the user’s turn or whether at all they have been uttered yet.
In the case that not all task parameters are provided even a user—initiative system has to ask questions — similar to
a system~initiative system.

KoHDaS-NN! is an automatic help desk system in a call center that basically leaves the dialogue initiative
with the user as far as (s)he wants. The user’s tum circumscribing the problem as a whole is handed to a hierarchy
of recurrent plausibility networks which classify the according problem. In the next step the systeni extracts even
only implicitly mentioned task parameters of this problem class from the turn by a graph-matching technique.
Remaining or unidentified task parameters required to solve the problem are asked by the system in an ordinary
question—answering manner. The resulis of KoHDaS-— NN where the classification and the extraction of the task
parameters is performed only on the basis of simple words are promising. However the number of wrong classifi-
cations and questions for yet uttered task parameters has to be further decreased in order to provide a user—friendly
dialogue with the customers. Hence we investigate in the following whether deploying a shallow parser based on
Supertagging increases the performance of the system — both with respect to the classification and the extraction
of the task parameters.

The Supertagger in KoHDaS--8T relies on a Hidden Markov model and is trained with German input texts.
The main section of this paper is devoted to the description of this method (cf. Section 3; it also comprises some

1. The acronym KoHDaS stands for Keblenzer Help Desk with automatic Speech recognition. In the following the basic
version is called KoHDaS-NN (NN stands for Neural Networks). Later on we investigate KoHDaS~ST where ST stands for
- SuperTagging.

(© 2002 Jens Bicker and Karin Harbusch, Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and
Related Frameworks (TAG+6), pp. 269-278. Universit4 di Venezia.

270 Proceediﬁgs of TAG+6

implementation details to gain efficiency). With respect to accuracy our German Supertagger lags behind the
English one. Some of the reasons will be addressed later on. Nevertheless shallow parsing with the Supertags
increases the accuracy compared to a basic version of KoHDaS that only relies on recurrent plausibility networks.

The paper is organized as follows, In the next Section KoHDaS$ and its functionality is described. In Section 3
the Supertagger based on Hidden Markov models is outlined. Section 4 is devoted to the description of KoHDaS—
ST, i.e. how Supertagging used in shallow parsing is integrated into the application of KoHDaS. Furthermore, it
depicts the results of KoHDaS~ST compared to KoHDaS-NN. In Section 5 related work is portrayed. Here further
methods that favorably compare to Supertagging are outlined on the one hand. On the other, different Supertagging
methods and their application domains are delineated. The paper ends addressing future work and open problems.

2. KoHDaS — an adaptive dialogue system for First-Level Support via telephon

KoHDasS (see, e.g., (Harbusch, Knapp and Laumann, 2001)) explores methods which provide automatic user—
initiative dialogues in call centers, i.e. the initiative shouid basically be left with the user as far as {(s)he wants.
Compared to system—initiative dialogue systems, user~initiative systems cannot rely on restricted dictionaries and
grammars during the speech recognition process to gain more reliable results. Hence, methods to remedy the
reduction of understanding in the first phase have to be impinged on the system.

KoHDaS-NN deploys the following two techniques towards a natural dialogue behaviour. First, a hierarchy
of neural networks classifies the user’s whole tum (on average 25 words) according to a list of problem classes.
After a confirmation dialogue the fask parameters mentioned in the user’s turn are extracted to avoid redundant
guestions by the system for information to perform the task the user wants the system to perform — in our case a
data base look—up for a solution of the user’s hardware problem.

As for classification, a hierarchy of recurrent plausibility networks (cf. (Wermter, 1995)) accomplishes the
consideration of arbitrary previous contexts in current decision making in KoHDaS. After a confirmation that the
problem class is correctly recognized, the task parameters, i.e. the necessary information to enable the system to
perform the task the user intended the system to do, are extracted from the user’s initial turn by a graph matching
technique imposed on the dialogue graphs, i.e. the specification of all possibly asked questions by the system and
the according task parameters provided by the user (note that these graphs have to be specified anyhow to model a
user who does not take the initiative at all).

KoHDaS is currently customized to the domain of first level support for computer hardware but it can easily
be adapted to new domains. .

A drawback of KoHDaS-NN is the absence of syntactic information in the processing of the user’s turn
as KoHDaS-NN works simply word-based. With respect to the classification task, a word such as “monitor”
remains active by the context-layer independent whether the word in mentioned in a subordinate clause or as a key
concept to characterize the problem (cf. “My new monitor flickers since I have ...” vs. “My SCSI hard drive which
I bought together with my new monitor two weeks ago from your customer’s service cannot be formatted ...”).
With respect to the extraction of task parameters negations are contpletely ignored in KoHDaS—NN. For instance,
“My monitor flickers although the boxes are nof activated” takes for granted that the monitor only occasionally
flickers when the boxes are activated. Hence the wrong conclusion is drawn from the customer’s utierance. In
order to remedy this shortcoming, KoHDaS-8T deploys a robust syntactic analysis based on a Supertagger (Joshi
and Srinivas, 1994) and a Lightweight Dependency Analyzer (LDA) (Srinivas, 1997a) in the analysis of the user’s
turns. Particularly for the correct interpretation of the scope of negations we have decided to use Supertagging
instead of chunking (cf. Section 5). The structural information — which possibly remains partial — provided by
this analysis is used in the classification step as well as in the information extraction step of KoHDaS. The use of
structural information in classification can prevent words occurring in deeply nested sub—sentences from having
high impact on the determination of the problem class. In the information extraction step, the use of structural
information allows to detect dependencies between structures in the turn, that can’t be detected in the word—based
version of KoHDaS—NN (e.g., negations; cf. Section 4).

3. Hidden Markov model-based Supertagging

Qur German Supertagger uses a frigram model ‘and is based on Hidden Markov models (HMMs) enabling the
use of the well known algorithms on HMMs (see, e.g., (Rabiner, 1989)) to guess the most likely syntactic structure

Bicker and Harbusch 271

of a sentence. We use a trigram model as it has shown to achieve good results in Supertagging (cf. (Srinivas,
1997a)).

In this section the basic concepts of Hidden-Markov models are briefly introduced. Thereafter a Hidden
Markov model-based Supertagger is portrayed. Finally, aspects of the implementation —particularly with respect
to time and space efficiency — are highlighted.

3.1. Basic concepts of Hidden Markov models

Let us assume the following notational conventions (adapted from (Rabiner and Juang, 1986) and (Charniak,
1993) or see, e.g., (Rabiner, 1989) for a good infroduction):

» T = length of the sequence of observations (training set),
¢ N = number of states (either known or guessed),

s M = number of possible observations (from the training set),

Qx = {q1,...qn } (finite set of possible states),

e 1o = {v1,..., vps } (finite set of possible observations),

e X, random variable denoting the state at time ¢ (state variable),

e (J; random variable denoting the observation at time t (ouiput variable),

® o = 01, ..., o7 (Sequence of actual observations)

and distributional parameters:

* A= {a;;} with a;; = Pr(X¢41 = gj|X; = g;) (transition probabilitiesi
o B = {b;} with b;(k) = Pr{O: = vk|X; = g;t) (observation probabilities),
e 7= {m;} with m; = Pr(Xy = g (initial state distribution).

A Hidden Markov model (HMM) is a five-tuple ((2x, 1o, A, B, m). Let A = { A, B, 7} denote the parameters
for a given HMM with fixed (tx and (1p. This means, a discrete—time, discrete—space dynamical system governed
by a Markov chain emits a sequence of observable outputs: one output (observation) for each state in a trajectory
of such states, From the observable sequence of outputs, the most likely dynamical system can be inferred. The
result is a model for the underiying process. Alternatively, given a sequence of outputs, the most likely sequence of
states can be inferred. The model can also be used to predict the next observation or more generally a continuation
of the sequence of observations. Three basic problems can be formulated for HMMs:

1. Find Pr(ci)), i.e. the probability of the observations given the model.
2. Find the most likely state trajectory given the model and observations.
3. Adjust A = {A, B, r} to maximize Pr(c|)).

For any of these questions efficient algorithms are known (see, e.g., (Rabiner, 1989))., The Forward-Backward
algorithm (Baum and Eagon, 1967) solves the first problem, problem 2 is yielded by the Fiterbi algorithm (Viterbi,
1967) und problem 3 can be dealt with by the Baum-~Welch algorithm (Baum, 1972).

3.2, Hidden Markov models for Supertagging

Many variants of Supertagging use models similar to POS-Tagging (cf. Section 5 for a brief description of the
variants Trigram Supertagging, Head Supertagging and Transformation—based Supertagging). Here, we underlay
the Supertagger with Hidden Markov models (HMMs).

In this framework, the Supertags are encoded as states and the words as symbols of the output alphabet of
the HMM. Assuming a bigram model (i.e, n~Gram with n = 2), the realization is easy and straightforward. Any
Supertag becomes an individual state and any terminal an individual output symbol. The according Tagger can be

-trained with the Baum—Welch algorithm. The observation sequence is provided by the sentences of the training

272 Proceedings of TAG+6

set (unsupervised learning). However, this method lacks behind supervised learning methods (see, e.g., (Merialdo,
1994Y). Such a corpus can be gained with the Fiterbi algorithm (cf. problem 2 mentioned above}, as this algorithm
denotes the optimal sequence of states for a given observation sequence — in our case the optimal sequence of
Supertags.

The Supertagger we report on in this paper uses a trigram model (cf. (Bicker, 2001) for an evaluation of the
HMM-based Supertagger using bigrams). According to the trigram model, two previous states (1.e. Supertags) are
encoded in the HMM in a well-known manner (see, e.g., (El-Beze and Merialdo, 1999)):

» The states of the HMM correspond to pairs of Supertags (t;—1,%;).
o The transition probability Pr((t;—1, t;)|(ti—2,t:—1)] is denoted by the trigram probability Pr(t;|t;—2t;—1).
* The output symbols are provided by the words which are tagged with t; and which are emitted in states (_, #;).

At the beginning of a sentence pseudo states (B, ;) with @ a pseudo category are assumed.

In general, the Baum—Welch algorithm (cf. problem 3) can be applied to optimize the model parameters in
order to maximize Pr{training set|\). Our results are gained on the basis of a labeled corpus. Hence we don’t
impose the Baum—Welch algorithm on our Supertagger. On the basis of the labeled corpus we directly estimate the
model parameters according to the Maximum Likelihood Estimation (MLE) method. For trigrams this means:

te L.t
c(tk 3 tj)
t .
PT'MLE(wkItj):f:(f_gf")”s 1<j<N, 15k<M @)
7 .
with: 3
e(t;) = number of occurrences of ¢; in the training set,
ety te) = number of occurrences of ¢; followed by ty,
etk tj,t;) = number of occurrences of ¢y followed by ¢;, which itself is followed by t;, and
e(wr, ;) = number of occurences of wy, labelled as ¢;.

In order to overcome problems with sparse data, i.e. not all trigrams occur in the training set, smoothing
techniques (for a good introduction see, e.g., (Jurafsky and Martin, 2000) or (Manning and Schiitze, 2000); in
{Chen and Goodman, 1956) the performance of various smoothing techniques are evaiuated) are applied in our
system. Furthermore the treatment of unknown words is described in the following.

In our system we employ Good-Turing Discounting (Good, 1953). This means, the equation (1) of the MILE
estimation which relies on the absolute frequency ¢(t, t5,t;) of a trigram is replaced by the following equation:

C"l (tk, tj,ti)
C(tk, tj) !

with ¢* the modified number of trigrams. The Good—Turing Discounting computes ¢* according to:

Prep(tilts, t5) = 1<i<N, 1<j<N, ' (3)

¢f=c firc>k 4
and according to (Katz, 1987):

\ (c+1) Nfi’t] NN (a9 2/ 51

¢ = 1 (k+1gNki1Nl forl<e<k. &)
- o

Here the constant k denotes a threshold to prevent the system from re—estimating rather accurate results (according
to high frequency).

The discounting method can be further improved by a method that differentiates between unseen trigrams.
The Backoff method (Katz, 1987) uses the frequencies of (n — 1)-grams in the following marner:

ﬁ(tjlti-‘ztiwl): ifc(tz'_zt,;_lt@) > 0,
Prpo(tilti—ati—1) = ¢ a1 P(tijtim1), ife(tiooti—1t;) = 0 and eft;—qt;) > 0, (6)
agls(ti), otherwise.

Bécker and Harbusch 273

If the frequency of a trigram (bigram, resp.) is zero, the frequency of the bigram (unigram, resp.) is considered.
However, a factor a; (aa, fesp.) is supposed to normalize the resulting probability. This means, for any given ¢,
the following holds:

| > Pritaltity) = 1.)

2%

In formula (6) P denotes the probability which results form a discounting method {otherwise the values don’t fulfil
equation (7)). We use again the Good-Turing discounting method here. The according formula looks as follows:

PTGT(tiiti—zt'—ﬂ, ifc(t'i—Zti,—lti) 3 O’
Preo(tilti-2ti-1) = a{th23)Prop(titioy), ifc(tistiats) = 0and c(t;1t;) > 0, ®)
a(tn-1)Pror(t:), otherwise.

Unknown words are treated in our system in the following manner. The probability Pr{w|t;) is computed by
the Backoff method. In case wy, 1s an unknown word we adapt the method by (Weischedel et al., 1993) which deals
with features of words. The prefixes and suffixes of words are considered to estimate the probabilities according
to the following formula;

Pr(wkitj) - {PT‘M_[,E(wk Itj) ifc(wk', tj) >0, ©)
Pr{unknownit;) * Pr(features|t;) otherwise.

The probability of the occurrence of an unknown word Pr(unknowni|t;) for the currently considered Supertag is
estimated according to: '

Pr(unknownit;) = Nngt—;-)—, (10

where Ny(t;) is the number of words which occur in the training set exactly once with the Supertag ty;
Pr(features|t;) denotes the probability whether a word with the same prefix or suffix as wy, respectively, occurs
together with the Supertag t;.

Now we face the task of tagging itself. The tagging is performed by the Viterbi algorithm. For a given ob-
servation sequence O = {01, Oy,... , O} the most likely sequence of states @ = {q1,42,... ,¢r} is computed
in four steps (Initialization, Recursion, Termination and Reconstruction (Path Backtracking); the time complexity
of the Viterbi algorithm ist O(N?n) where n is the length of the input). For a German test set of 30 sentences,
78.3% of the words were assigned the correct Supertag. In the conclusions we compare this result with English
Supertagging.

In general the above described HMM-bases Supertagger was tested with a German corpus of 250 tagged
sentences {cf. the evaluation in Section 4). The German training and test corpus has been constructed in the
following manner. Basically we looked at writter German dialogues in news groups in the area of first level
support for computer hardware. We developed an LTAG with 127 elementary trees covering the domain of the
KoHDa$ system (cf. (Bicker, 2002)) and automatically parsed these dialogues. The reviewed results of all parses
constitute the tagged corpus. We trained our Supertagger using 250 tagged sentences. For the estimation of the
HMM’s model parameters we used Good-Turing discounting combined with Katz’s Backoff model to smooth the
parameters resulting in better estimations of unseen trigrams. We use word features similar to (Weischedel ef al.,
1993) (i.e. prefixes and suffixes of words) to estimate the observation probability of unknown words.

3.3. Implementation of the HMM-based Superfagger

The overall system is implemented in Java. In this paragraph we highlight some implementational details
which reduce space and time complexity of our system (cf. (Cutting ef af,, 1992) for a discussion of efficiency
matters for POS-Taggers).

Let us first beer in mind which complexity a HMM comes along with. The model parameters of a HMM
consist of N states and M output symbols from a V x /N matrix A of transition probabilities, a N x M matrix B

274 ‘ Proceedings of TAG+6

of observation probabilities and a N—dimensional vector « (initial state distribution), All these parameters have to
be yielded, i.c. the space complexity is O(NZ 4+ M N).

The states of our HMM comprise pairs of Supertags. Hence the number of states equals the square of the
number of Supertags T'. Consequently the space complexity is O{T* + MT?), und the run time of the Viterbi
algorithm is O{T"*n)}. From this fact directly follows that the model parameters cannot be represented by a two—
dimensional array (for the 127 Supertags in our system, the two—dimensional array of 64-bit digits for the transition
probabilities requires 2 GB space). As a consequence, all model parameters are stored in an associative manner in
our system 2.

A reasonable space reduction results from only storing probabilities greater than zero®. With respect to the
transition probabilities the following holds. These probabilities are computed during the training phase where
they don’t become smoothed. Smoothing is performed during tagging. During that process the trigram, bigram
and unigram models are determined. Furthermore, the factors of the Backoff method are computed. A smoothed
probability is only computed on demand (getA{ (t;—z, t;—1)). Consequently the overall space complexity depends
on the actually deployed training set (unknown trigrams are not stored).

With respect to the run time the following improvements can be performed to gain more efficiency in Su-
pertagging. The Viterbi algorithm iterates over all words and all states in the following manner:

for each word w; in sentence {
for each state m {
for each state n {

Shortcuts for states with an observation probability zero and unique POS can reduce the run time reasonably, The
associative hash tables allow to access all states of the currently considered word occurring in the training phase.
These sets computed for the current word and its predecessor build the basis to collect the set of relevant states of
the current word (Backoff method for the observation probabilities). Only for these states the iteration needs to be
performed instead of the nested iteration over all states. More formally speaking:

relevantstates(i,j) = {(te, t1) | Pr{wity) > 0 A Pr{w; |t} > 0}

is supposed to be regarded in the two nested loops mentioned above. Fori < ¢ and § < 0, respectively, u; and
w;, respectively, denote the pseudo words at the beginning of a sentence. Assuming only relevant states decreases
the average run time reasonably. Our Supertagger requires approximately 28 ms for the tagging of a sentence only
conducting relevant states whereas it runs at ieast a second if all states are considered.

4. Application of Supertagging in the user—initiative Help Desk system KoHDaS

The results of the Supertagger described in the previous section allow a LDA (Srinivas, 1997a) to discover
dependencies between the Supertags in the user’s turn. The dependency structure accomplished by this method is
used in classification and in information extraction in the following manner.

In KoHDaS-NN, the user’s tum is classified according to significance vectors of the form:

occurrences of a word from w within class ¢;
viw,) = —
¥ occurrence of words from w within class ¢;
j=1
2. ;fhe associative storing in Java is realized by the class HashMap, which provides a Hash table (see, e.g., (Flanagan,
2002)).
3. Itis important to notice here that due to the fact that the real-digit arithmetics cannot differentiate between zero an very
small values (as holds for the products of probabilities computed in the Viterbi algorithm) we deal with the logarithms of the
probabilities in the hash table of the probabilities of Supertags. This states a suitable method here because not probabilities
themselves but the arguments of such probabilities are maximized, i.e. the Viterbi algorithm computes the maximum sum of
the logarithms of the probabilities insiead of the maximum product of the probabilities.

Bicker and Harbusch 275

where only 616 words are actually regarded and matched with a reduced vocabulary with 131 word groups ¢;, i.e.
general concepts in our domain (such as ‘hard disk’, ‘monitor’ and ‘capacity’) containing words, which can be
considered to be synonymous (e.g., words in class "hard disk’ are ‘disk’ or “harddrive’). Generally, significance
vectors account for the importance of the word in a specific problem class.

In KoHDaS-ST, these significance vectors are adjusted using the results of the structural information collected
by the Supertagger and the LDA. The adjusted significance vectors ¢* are computed by:

adv(w,c.i) ifv(w)ci) > }{'E?:l Cis
v (w,e) =4 (1+8d)«0.1 ifv(w,e;) =0andd > 0,
(1 + Bd)v(w,e;) otherwise.

where d represents the syntactic depth of the sentence in that the current word occurs and v and 5 are constant
values. Tests have shown that suitable values for « and 5 are o = 0.8 and 5 = 0.6.

The results of this approach compared to the pure neural net-based version of KoHDaS are outlined in Table 1.
The table shows that the Mean Squared Error (MSE) of three sub—networks of KoHDaS-NN is decreased in the
top level net as well as in the local net for disk problems but increased in the local net for monitor problems.
The reasons why the monitor problems behave in this unexpected manner are topic of future investigations (cf.
Section 6).

Table 1: Mean Squared Error (MSE).

Net MSE in Test
KoHDaS-NN | KoHDaS-ST
NN differentiating monitor and disk probs. 3.85 345
Local NN - disk probs. 10.33 9.65
Local NN - monitor probs. 472 491

In the graph-based information extraction step, each node of the graph corresponds to the information already
extracted from the tam. Nodes can be associated with questions to be asked by the system. Edges are labeled with
sets of word groups enabling a transition if an appropriate word occurs in the user’s input. See Figure 1 for a partial
dialogue graph of KoHDaS—NN.

In KoHDaS—ST the results of the dependency analysis together with features in the lexicon are used to create
a kind of semantic representation of the user’s tum (cf. (Bécker, 2002)). Edges in the new dialogue graphs are
labeled with this representation (see Figure 2) resulting in improved processing of the turn. For example the turn
“Sometimes my computer drives me mad. My monitor started glimmering 3 days ago.” would enable the transition
from node 5 to 51, as ‘sometimes’ 1s found in the input. In KoHDaS-ST this will not happen, because ‘sometimes’

is not related to ‘glimmering’.
Is there any elactronic
eguipment next to the monitor?

Is the monitor gimmering
alwavs or just sometimes?

Figure 1: Part of a dialogue graph in the problem class of glimmering monitors in KoHDaS.

{sometimes) (speaker... {switch on/use/...)

5. Related work

A well stadied method to extract relevant information from potentially ill-formed (as is the case for spoken
utterances) or not completely mastered (as is the case for automatically analysed spoken utterances) input is chunk

276 Proceedings of TAG+6

Is there any electronic
equipment next to the monitor?

next_to{el_equipment, monitor)

Is the monitor glimmering
atways or just sometimes?

Figure 2: Part of a dialogue graph in the problem class of glimmering monitors in KoHDaS-ST.

sometimes{glimmer)

parsing (also called chunking; see, .g., (Abney, 1991), (Appelt et al., 1993), (Grishman, 1995) or (Hobbs et af.,
1997))). Cascaded finite state automata analyse various phrase types expressed in terms of regular expressions. The
main advantage of this approach is its robustness and the fast run time. The main obstacle of chunking issues from
the restricted formal power of finite state automata. Cascades of several levels (cf. the system FASTUS (Appelt
et al., 1993), (Hobbs et al., 1997) with five levels) allow for the analysis of recursive structures to some extend.
The basic level accepts smaller linguistic constructions, whereas in the next levels these elements become grouped
into larger linguistic units. Accordingly, FASTUS can basically recognize ‘complex words’ such as proper nouns
consisting of several individual words., However the coverage remains restricted to the static number of cascaded
phases.

Another robust and fast parsing method offers statistical parsing. According to a labeled corpus generalization
rules can be extracted (cf. Treebank, (Marcus, Santorini and Marcinkiewicz, 1993)). These rules can be grammar
rules (see, e.g., {Chamiak, 1997), (Collins, 1996)) or decision trees (see, ¢.g., (Magerman, 1995)). Each rule be-
comes associated with a probability, which is determined in the training phase with respect to the corpus. Parsing
means to find the most likely derivation according to these rules. The term statistical parsing subsumes a further
variant where the rule set is also determined beforehand (see, e.g., (Black et al., 1993)). In the training phase prob-
abilities for these rules are computed according to the corpus (cf. Probabilistic Context—Free Grammars (PCFG,
(Booth, 1969)). The goal of this method is primarily disambiguation whereas robustness is a not so relevant here.

Let us finally mention recent work in the area of Supertagging. Supertagging (Joshi and Srtinivas, 1994) is
a disambiguation method which extends Part-Of-Speech Tugging (POS-Tagging). A Lexicalized Tree Adjoining
Grammar, i.e. any rule has at least one lexical anchor {cf. (Schabes, 1990)) underpins the system. As is the case
for Part—Of—-Speech Tagging, the model is trained with a labeled corpus. In the training phase, each word of
each input sentence becomes associated with a lexicalized rule according to the model (Supertag). On the basis
of this relation, a Lightweight Dependency Analyzer (LDA, (Srinivas, 1997a)) identifies relations between the
Supertags of the individual lexical entries of a input sentence, i.e. the grammar rules the Supertagger gives the
highest probabilities. As far as possible a complete parse is computed. Particniarly the ability to produce complete
parses (if possible) compared to individual phrases in chunking led to the choice of the latter method for our
application domain. Here, the user’s utterance should be best analysed particularly in the step of extracting task
parameters. Our conjecture is that Supertagging allows for a more elaborate identification of complex constructions
such as negations and their scope in the user’s utterance.

In the area of Supertagging various approaches for the model have been proposed in the literature (e.g., Tri-
gram Supertagging by (Srinivas, 19972) with Good-Turing Discounting (Good, 1953) and the Backoff method
by Katz (Katz, 1987)). On the basis of a training corpus of 1 000 000 English words the Supertagger provides an
accuracy of 92,2%. Head Trigram Supertagging (Srinivas, 1997a) is a similar method based on trigrams. However
not the two previous Supertags are used to compute the current Supertag but the two previous Head Supertags. A
Head Supertag is a previously computed Supertag which influences the choice of the current Supertag, The method
works in two phases. In the first one all Head Supertags are determined. In the second phase, the Head Supertags
are used to compute the probabilities of all Supertags. This method assigns in 91,2% of the cases the correct Head
Supertags for a training corpus of 1 000 000 words. Its accuracy is 87%.

Transformation-based Supertagging (Srinivas, 1997a), (Srinivas and Joshi, 1999) adapts the central idea of
transformation-based POS—Tagging (Brill, 1993), (Brill, 1995). For this method any word in the corpus is labeled
with its most frequent tag. During Tagging these tags can be changed by a list of transformations. Such a transfor-
mation consists of a pattern, which activates the rule and a rewriting rule. In order to train this Supertagger a set of
transformation patterns and a labeled reference corpus has to be provided. The training algorithm determines the

Bicker and Harbusch 277

best order of rule applications by minimizing the error rate of the Tagger compared to the reference corpus. The
Supertagger based on this model has been trained with 200 000 words and reaches an accuracy of 90%.

A Supertagger for German (Bicker, 2001) based on Hidden Markov models and a bigram model was trained
and tested with word classes instead of individual words. Notice that from this fact a loss of accuracy results. Fur-
thermore only basic smoothing techniques were imposed. Accordingly, first results lack far behind the previously
mentioned ones. On the basis of 5460 sentences of the NEGRA corpus (Brants ef al., 1997) the Supertagger has
an accuracy of 65,5%. This was basically the reason to impose trigrams to the Supertagger we describe here,

Supertagging and Lightweight Dependency Analyzers exhibit high robustness and efficiency” and are de-
ployed for shallow parsing in various contexts {e.g., text chunking with Supertags (Srinivas, 1997b)). Text chunking
(Abney, 1991) means that a sentence is divided into several non-overlapping segments. By this method individual
types of phrases (e.g., identification of noun phrases Noun Chunking) can be identified in a text. A respective LDA
reaches high precision (91,8%) and recall (93%) (cf. {Srinivas, 1997b)).

6. Conclusions

In order to conclude, the application of Hidden Markov model-based Supertagging in the user-initiative di-
alogue system KoHDaS-ST helps to remedy the lack of accuracy resulting from speaker—independent speech
recognition on the basis of general dictionaries and grammars as required in a user-initiative dialogue system.

Comparing the results of German Supertagging (78.3%) to English (92.2%), two different reasons lead to
less good results. First, our training set (1 973 words) is small compared to the English one (1000000 words).
Accordingly, many unseen trigrams are imposed on the system. Second, German is a language with free word
order. This fact amptifies the effects of sparse data (cf. Spanish Supertagging has an accuracy of about 80%
(Srinivas, 1998)). In the future the training set of KoHDaS—ST will be extended. Furthermore, unsupervised
leaming methods integrated with supervised methods (cf. (Montoya, Suérez and Palomar, 2002)) will be deployed
in our system. How far we can get with a free word order lanpuage like German is currently an open problem.

A further open problem is why the adjustment of significance vectors according to the identified sentence
structure decreases the number of correctly classified problems with respect to the class of monitor problems,
Perhaps our conjecture that concepts mentioned in subordinate clauses have a lower impact to the decision making
than those in the main clause is too strict.

References

Abney, Steven. 1991. Parsing by chunks. In Robert Berwick, Steven Abney and Carol Tenny, editors, Principle-based parsing:
Computation and Psycholinguistics. Kluwer Academic Publishers, Dortrecht, The Netherlands, pages 257-278.

Appelt, Douglas E., Jerry R. Hobbs, John Bear, David Israei and Mabry Tyson. 1993. FASTUS: A Finite-state Processor
for Information Extraction from Real-world Text. In Proceedings of the 13th International Joint Conference on Artificial
Intelligence (IJCAF-93), pages 11721178, Chambéry, France.

Bicker, Jens. 2001. Entwickiung eines Supertaggers fiir das Deutsche. Studienarbeit, Universitit Koblenz-Landau, Institut fiir
Computeriinguistik, Koblenz, Germany.

Bicker, Jens. 2002. KoHDaS-ST — Superagging in dem automatischen Dialogsystem KoHDa8. Diplomarbeit, Universitit
Koblenz-Landau, Institut fiir Computerlinguistik, Koblenz, Germany.

Baum, Leonard E. 1972, An inequality and associated maximization technique in statistical estimation for probabilistic
functions of Markov processes. fnequalities, 3:1-8.

Baum, Lecnard E. and J. A. Eagon. 1967. An inequality with applications to statistical estimation for probabilistic functions
of Markov processes and to a model for ecology. Bulletin of American Mathematical Society, 73:360-363.

Black, Ezra, Frederick Jelinek, John Lafferty, David M. Magerman, Robert Mercer and Salim Roukos. 1993. Towards History—
based Frammars: Using Richer Models for Probabilistic Parsing. In Proceedings of the 3 1st Conference of the Association
of Computational Linguistics (ACL—93), pages 31-37, Columbus, Ohio, USA.

Boje, Johan, Mats Wiren, Manny Rayner, Ian Lewin, David Carter and Ralph Becker. 1999. Language~Processing Strategies
and Mixed~Initiative Dialogues. In J. Alexanderson, L. Ahrenberg, K. Jokinen and Jonsson, editors, Special Issue on
Intelligent Dialogue Systems, ETAI (Electronic Transactions on Artificial Intelligence).

Booth, Taylor L. 1969. Probabilistic representation of formal languages. In JEEE Conference Record of the 10th Annual
Symposium on Swilching and Automata Theory, pages 74-81.

Brants, Thorsten, Roland Hendriks, Sabine Kramp, Brigitte Krenn, Cordula Preis, Wojciech Skut and Hans Uszkoreit. 1997.
Das NEGRA-Annotationsschema. Negra project report, Universitit des Saarlandes, Computerlinguistik, Saarbriicken,
Germany.

Brill, Eric. 1993. Automatic grammar induction and parsing free text: A transformation-based approach. In Proceedings of the
31st Annual Meeting of the Association for Computational Linguistics (ACL-93), pages 259-265, Columbus, Ohio, USA.

4. The run time of a Supertagger-based LDA is O{rn) where n denotes the length of the input.

278 Proceedings of TAG+6

Brill, Eric. 1995. Transformation-based error-driven learning and natural language processing: A case study in part-of-speech
tagging. Computational Linguistics, 21(4):543-566.

Chamiak, Eugene. 1993, Statistical Language Learning. Cambridge, Massachusetts: MIT Press.

Chamiak, Eugene. 1997, Statistical parsing with 2 context-free grammar and word statistics. In Proceedings of the 14th
National Conference on Artificial Intelligence (AAAI-97), pages 47-66, Menlo Park, CA, USA.

Chen, Stanley F. and Joshua Goodman, 1996. Anempirical study of smoothing techniques for language modeling. Proceedings
of the 34th Annual Meeting of the Association for Computational Linguistics (ACL—96), pages 310-318,

Collins, Michael John. 1996, A New Statistical Parser Based on Bigram Lexical Dependencies. In Proceedings of the 34th
Annual Meeting of the Association for Computational Linguistics (ACL-96), pages 184~-19], San Francisco, CA, USA.

Cutting, Douglas, Julian Kupiec, Jan O. Pedersen and Penelope Sibun. 1992, A practical part-of-speech tagger. In Proceedings
of the Third Conference on Applied Natural Language Processing (ANLP), pages 133-140, Trento, Italy.

El-Beze, Marc and Bernard Merialdo, 1999, “Hidden Markov Models”, In Hans van Halteren, editor, Syntactic wordclass
tagging, chapter 16, pages 263-284, Dordrecht, the Netherlands: Kluwer Academic Publishets.

Flanagan, David. 2002. Java in @ Nutshell. 4th edition. Cambridge, MA, USA: O’Reilly.

Good, Irving J. 1953. The population frequencies of species and the estimation of population parameters. Biometrika, 40:237-
264

Grishman, Ralph, 1995, The NYU System for MUC-6 or Where’s the Syntax? In Proceedings of the 6th Message Under-
standing Conference (MUC-6), pages 167—175, San Francisco, CA, USA.

Harbusch, Karin, Melanie Knapp and Christoph Laumann. 2001. Modelling user-initiative in an automatic help desk system.
In Hitoshi Isahara and Qing Ma, editors, Proceedings of the Second Workshop on Natural Language Processing and
Neural Networks (NLPNN200 1), pages 6976, Tokyo, Japan.

Hobbs, Jerry R., Douglas E. Appelt, John Bear, David Israel, Megumi Kameyama, Mark Stickel and Mabry Tyson. 1997.
FASTUS: A cascaded finite-state transducer for extracting information from natural-language text. In Emmanuef Roche
and Yves Schabes, editors, Finite State Devices for Natural Language Processing. MIT Press, Cambridge, MA, USA,
pages 383—406.

Joshi, Aravind K. and Bangalore Srinivas. 1994, Disambiguation of Super Paris of Speech (or Supertags): Almost Parsing. In
Proceedings of the 17th International Conference on Computational Linguistics (COLING-94), pages 154~-160, Kyoto,
Japan.,

Jurafsky, Daniel and James H. Martin. 2000. Speech and Language Processing. Upper Saddle River, NJ, USA: Prentice Hall,

Katz, Slava M. 1987. Estimation of probabilities from sparse data for the language model component of a speech recognizer.
IEEE Transactions on Acoustics, Speech and Signal Processing, 35(3):400-401.

Litman, Diane, Shimei Pan and Marilyn Walker. 1998. Evaluating response strategies in a web—based soken dialogue agent. In
Proceedings of the 36th Annual Meeting of the ACL and the 17th International Conference on Computational Linguistics
(COLING-ACL-98), pages 78(—786, Montreal, Canada.

Magerman, David M. 1995. Statistical Decision-Tree Models for Parsing. In Proceedings of the 33rd Annual Meeting of the
Association for Computational Linguistics (ACL-95), pages 276-283, Cambridge, MA, USA.

Manning, Christopher D. and Hinrich Schiitze. 2000. Foundations of statistical language processing. Cambridge, MA, USA:
MIT Press.

Marcus, Mitchell P., Beatrice Santorini and Mary Ann Marcinkiewicz. 1993. Building a large annotated corpus of english: The
penn treebank. Computational Linguistics, 19:313-330.

Merialdo, Bernard. 1994. Tagging English text with a probabilistic model. Computational Linguistics, 20(2):155-172.

Montoya, Andrés, Armando Sudrez and Manuel Palomar. 2002. Combining Supervised-Unsupervised Methods for Word
Sense Disambiguation. In Alexander Gelbukh, editor, Proceedings of the 3rd International Conferences on Intelligent
Text Processing and Compuiational Linguistics (CICLING), pages 156~164, Mexico City, Mexico. Springer.

Rabiner, Lawrence R. 1989. A tutorial on Hidden Markov Models and selected applications in speech recognition. Proceedings
of the IEEE, T7(2):257-286.

Rabiner, Lawrence R. and Biing-Hwang Juang. 1986. An introduction to hidden Markov models. IEEE ASSP Magazine, pages
4-15, January.,

Schabes, Yves. 1990. Mathematical and Computational Aspects of Lexicalized Grammars. Ph.D. thesis, University of Penn-
sylvania, Philadelphia, PA, USA,

Srinivas, Bangalore. 1997a. Complexity of Lexical Descriptions and its Relevance to Partial Parsing. Ph.D. thesis, University
of Pennsylvania, Philadelphia, PA, USA.

Srinivas, Bangalore. 1997b. Performance evaluation of Supertagging for partial parsing. In Proceedings of Fifth International
Workshop on Farsing Technology (IWPT-97), Boston, USA.

Srinivas, Bangalore. 1998. Transplanting Supertags from English to Spanish. In Proceedings of Fourth International Worishop
on Tree-Adjoining Grammars (TAG+4), pages 5-8, Philadelphia, PA, USA,

Srinivas, Bangalore and Aravind K. Joshi. 1999. Supertagging: An approach to almost parsing. Computational Linguistics,
25(2):237-265.

Strachan, Linda, John Anderson, Murrey Sneesby and Mark Evans. 1997. Pragmatic user modelling in a commercial software
system. In Proceedings of the 6th International Conference on User Modeling, pages 189-200, Chia Laguna, Haly.

Viterbi, Andrew J. 1967. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. JEEE
Transactions on Information Theory, IT-13:260-269,

Weischedel, Ralph, Marie Meteer, Richard Schwartz, Lance Ramshaw and Jeff Palmucci. 1993, Coping with ambiguity and
unknown words through probabilistic models. Computational Linguistics, 19(2):359~382.

Wermter, Stefan. 1995. Hybrid connectionist natural language processing. London, Great Britain; Chapman and Hall,
International Thomson Computer Press.

Exploiting Semantic Knowledge in LTAG-based controlled in-
dexing of technical data

Patrice Lopez David Roussel
LORIA Labs EADS Suresnes

1. Introduction

The work presented in this abstract follows the first experiments presented in (Lopez and Roussei, 2000) on
the robust modeling of terms in the LTAG framework to index spoken annotation transcriptions. We continue to
experiment the LTAG workbench (Lopez, 2000), and integrate it with on the shelf tools (term extractor, taggers,
terminological model) that embed and manage different kind of linguistic resource. The key advantages of using
the LTAG formalism in this context is a precise linguistic modeling useful for the representation of term variants,
the exploitation of semantic constraints and the ability to specialize the terminological resources to several specific
tasks. To illustrate the last point, we first present another application that motivates this work, the exploitation
of technical documentation. In this particular application, the semantic disambiguisation can help to improve the
accuracy of the documents and their reuse to design checking procedures. We then present more precisely the
LTAG modeling and the implemented system TERESA based on a POS tagger, finite-state transducers encoding
LTAG trees and a semantic tagger.

2. Application

When documentation is an important part of a company activity, there are always some existing resources
which formalize semantic information available for technical words. For example, currently, in the EADS context,
“the design of an ontology that gives the semantic categories of specific terms is considered as an important starting
point. During the document life ¢ycle within a project, an ontology facilitates also intra-operation between different
kind of document and so, a mandatory part of the work being done by the project community is to standardize the
terms, acronyms and abbreviations. This task is an EADS directive and procedure.

Since these terms are already defined, their identification for the purpose of classifying and accessing doc-
uments is called controlled indexation in opposition to free indexation where the index terms are automatically
defined. Controlled indexation allows us to exploit existing resource to achieve a better precision in the indexation
and to link old and new information in a more coherent and comprehensive way for documentalists.

The experiments in this work have been made with XML elements called WARNINGS extracted from an air-
craft documentation, The correct identification of a particular term and its varianis The use of controlled indexing
on these elements is twofold : first, help the navigation into those elements in order ot control the coherence of the
content of these element, second, to be able to disambiguate semanticaily sequence of words.

An expected enhancement of robust controlled indexing is to derive more easily a procedure from the descrip-
tion of the warning in the whole documentation, or at least to take more easily into account the important warning
in the procedures. The identification of a particular operation benefit from a disambiguation of certain sequence of
words.

For instance, engine operation concern the motor intervention (table 1) or the system intervention (table 1). To
avoid engine damaged, it is sometime necessary to access both the cockpit and the motor. One interest of semantic
knowledge exploitation in controlled indexing is to extract directly the sentences that concem one type of engine
intervention.

You must not operate the engine with the fan cowl doors open.

During engine operation, the bleed valve can open.

Operation of the engine can cause fuel to go overboard.

Ear protection must be wom by all person who operate the engine while engine operates.

Figure I: Example of motor intervention.

& 2002 Lopez & Roussel. Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and Related Frame-
works (TAG+6), pp. 279-284. Universita di Venezia.

280 Proceedings of TAG+6

The engine must operate 9 hours at idle with the lubrication system filled.

Do not motor, start or operate engine unless a positive fuel inlet pressure is indicated.

The exhaust gas is hot when the engines operates at idle or higher power.

To maintain satisfactory engine oil temperature do an engine start and operate the engine at idle.

Figure 2: Example of engine intervention that need a control from the cockpit.

In the first case (motor intervention, table 1), the operation implies the filtering of sentences that gather a
person as ar agent or implicit agent, A syntactic analysis is enough to disambiguate this case from the next case
(table 2), that implies that the engine is the subject of the operation. However, different elementary trees are
concern, and don’t provide an easy interface to the integration of the syntactic analysis of the terms within an
application.

To consider a unique semantic feature instead of different kind of derived tree, we extend the syntactic cate-
gories of elementary trees with semantic constraints and compile them as FST. This allows us to keep abstraction
in the description of linguistic resource and to benefit from other linguitic tool, namely the semantic tagger Tropes
in order to study the dependance between semantic classes in a corpora. Tropes is a semantic analyser (Ghiglione
et al., 1998). It embed morphosyntatic and semantic analyser that) segment a text in linguistic proposition, ii)
extract homogeneous category according to their thematic content, iii) export the result in a XML coding, 1v) to
count the frequence and the dependency between semantic classes. The Tropes environment facilitate the adap-
tation of the default semantic classes hierarchy in order to take into account specific semantic knowledge. A set
of heuristics are applied to disambiguate the semenatic categorie of a lexical unit. They consist in finding iso-
topies of a same semantic classe and exploiting statistical coocurrences between complementary concepts inside a
grammatical proposition.

3. LTAG-based Terminological Processing

3.1. LTAG representation of 2 terminology

A given term can be represented as a partial parsing tree, i.e. a derived tree, as represented figure 3. After
removing all lexical information in this tree, we obtain a elementary tree schema in the sense of (Candito, 1996)
that can be used to represent syntactically similar terms.

N N
VAN N AN
N N#* [N N
t operation l l
engine engine operation
N
operation{1) /\
I N N
engine(2) . l
Sy O

Figure 3: Anchored elementary trees, derived and derivation tree and the corresponding tenm schema for N-N
terms.

This principle can be used to represent a complete terminology by parsing the list of tenms with a LTAG
grammar which coverage is limited or with existing term trees. For each term we obtain one or several derived and
derivation trees, We have used the LTAG Workbench presented in (Lopez, 2000) for this purpose. Practically for
English and French, a LTAG grammar covering only NP structures and basic verb and relatives is enough to cover

Lopez and Roussel 281

N N
/\ operation (1) /\
N N T T
engine operation ' ergiae(2) S o
N N
AN AN

N PP

| ’ \ operati;m _on(l) T l \
! <

operation P

N engine(2) (1) -
BN | N

of Il)et T the of Dlet T
the engine the < (2)
§ S
‘I‘Z\N ope{mte(l) \i}\N
| l\ engine(2) | |\
operate Det N <& Det N
' the M | [
the engine E the ©(2)

Figure 4; A basic term aligned with two of its variants.

nearly all terms and their variants, The resulting set of elementary tree schema can be reused and be anchored by
new terminologies. This linguistic representation allows us to extend very easily the coverage of a list of terms to
their variants without the use of specific complex meta-rules specifically developed for the terminological purpose
as in (Jacquemin and Tzoukermann, 1999).

3.2. Term variance

Term variarts are very important in terminology analysis and extraction. Variance is can be caused by inflec-
tion, morphological derivation, adjectival modification, optional or variable preposition, ellipsis, coordination or
the use of copulative or support verbs. Experiments have shown that usually approximately 30% of terms occur
as term variants of basic terms (Jacquemin and Tzoukermann, 1999). In our model a basic term template and its
variants are gathered in a tree family, i.e. the possible variance is a linguistic knowledge encoded in a family. The
lexical information are then removed from these trees templates and their correspondances in term of morphologi-
cal root are directly annotated as shown in figure 4. Classically candidate terms are validated by an occurence in a
corpus.

3.3. Finite-state Compilation

Using a classical LTAG parser would be too expensive and too powerful since the identification of a term is
limited to the lexical anchoring of a LTAG tree taking into account possible variances. Consequently we compile
the LTAG model into another structures more relevant for computational processing. Finite-State Transducers-
based processing is particularly well suited for processing large scale and lexicalized grammars.

282

<morph lex ="engine™>
<lernmaref cat="N" name="*¢ngine*" />

Proceedings of TAG+6

<lemma cat="N" name="*operation*">
<anchor tree—id="N-N" />

N-N clementary tree

</morph> <cpanchor node_id="N_1"> N
) <lemma cat="N" name="*engine*" /> /\
<merph lex ="operation"> </eoanchor> N N
<lemmaref cat="N" name="*npematior" /> </anchor>
</morph> ’ </lernma> | l

enginerenging O E:*engine*
engine:*engine*
2.7 N:N

. . NN O‘———CD) Adj:Adj:
. ; £k .
OPEW@@I\.% *operation* *operation®
&N

Figure 5: A term represented as an elementary tree schema encoded in TAGML and its compilation in Layered
FST (without the morpho-syntactic features and the morphology root for more readability).

All the transducers used in this work are Layered Finite State Tranducers (LFST). LFST have been described
in (Adant, 2000). LFST extends usual FST by constraining each sequence of transition o be divided in layers.
The alphabets associated to these layers can be different. Traditionally the character /? is the default symbol,
and ¢ the symbole for empty string. LFST allow the combination of different levels of information while keeping
an important sharing of states. Figure 5 gives an exemple of two morphosyntatic transducers and a syntactic
transducer compiled from a LTAG grammar initially in the TAGML format. The convertion algorithm extends
certain transition by possible categories which can be introduced by modifiers.
 All the resulting transducers are then combined into a morphosyntactic ransducer and a terminological trans-
ducer which are both determinized and minimized as possible thanks to standard FST algorithms (Mohri, 1997).
The lexicalization step consists of representing the text as an identity transducer that is combined first with the
morpho-synfactic transducer and then with the ferminological transducer, resulting in a transducer where all pos-
sible terms have been identified.

3.4. Adding Semantic Constraints

A basic assumption concerning the use of semantic knowledge in NLP applications is that it improves the
customization of the final results. On the other hand, the amount of ambiguities the application have to deal with
grows up and perturb the result interpretation.

The idea is to add semantic class categories in the node label of LTAG trees similarly as presented in (Lopez
and Roussel, 2000). The semantic consistency principle is exploited in order to localize the semantic constraints of
the predicate represented by the term and the tree. When compiled into a LFST, the semantic category introduce a
new layer as shown in figure €.

Practically the semantic class are provided by the Tropes semantic fagger based on a training corpus.

4, The TERESA System

4.1. Bootstrapping the system resources

The resources for a given terminological domain are obtain thanks to two training corpora. The first one
validates term variants allowed given a list of terms as explained in section 3.2. The second one is used to obtain
a list of relevant semantic class thanks to the Tropes semantic tagger. For instance, in the application presented in

Lopez and Roussel 283

engine:engine £ :*engine*

I\N ©‘FO € Engine
|

Engine Process

engine operation

operation:operatio £ :*operation*

€ :Process,

N:N
} 7

/7 Adj:Ady :

E:N

engine:*engine* Engine:Engine

operation:*operation* Process:Process

Figure 6: Semantic information integrated in elementary tree schema and in its compiled LFST.

section 2, the semantic tagging is based on 125 collocations that have extracted from a short extract of 350 caution
docurments. The semantic tag must match the sernantic categories given by the term hypothesis. If the semantic
tag differs, the corresponding term hypothesis is pruned.

4.2. Term analysis with TERESA

The TERESA systern (TERminological Extraction and Statistical Analysis) allows us to analyse or extract
terms in textual or semi-structured documents, Textual data is first tokenized and the morphology is processed
thanks to the combination of the input string represented as a FST and a morpho-syntactic FST. The result isa FST
that encoded all possible lexical analysis of the text.

/ Morpho—syntactic FST

Terminological P
LTAGD 0S tagger
\ Y S FST combination

Terminological FST
with semantic constraints

text

_________ FST convertion

________ FST combination

-------- Statistical prunning

--------- First best
annotated text

Figure 7: Overview of the TERESA system.

We apply then on this FST a POS tagger specially developed for this purpose. While the vast majority of
POS tagger are limited to a linear tagging of text and a fully disambiguated tag assignation. The tagger used
for this experiment is able to process efficiently word graphs coming from an Automatic Speech Recognizer for
instance, and to give, if necessary, the list of ambiguous tags with their corresponding probabilities. This tagger
is based on a classical trigram model with a viterbi search algorithm, it uses the linear interpolation algorithm for

284 Proceedings of TAG6

sparse data, implements a suffix based statistical models for unknown words. Classically a beam is used to speed
up significantly the viterbi search with a negligible impact on the accuracy result. This pure statistical process is
combined with a deterministic step based on the application of negative rules. This rules are compiled into a FST
that is combined to the input represented as a FST, preliminarly to the statistical process, similarly to (Tzoukermann
and Radev, 1999). The ability to deliver ambiguous results is very important since we know that accuracy of POS
taggers is limited.

The terminological LTAG model that encodes semantic class category constraints is then combined to the
resulting ambiguous tagged LFST. After this step all possible terms are identified according to the morphosyntactic,
the POS tagging and a semantic match.

Finally only the best path of the final structure is considered thanks to a classical Dijkstra shortest path algo-
rithm implementation.

5. Conclusion

We have presented a LTAG-based terminological system able to identify very precisely a given list of terms in
text. The same LTAG-based terminology can be specialized to spoken application and can exploit other relevant
parsing techniques. This specialization illustrates the benefit of using a linguistically motivated formalism as a
generic resource. The interest of LTAG for our indexing application is the ability to exploit semantic knowledge in
this process thanks to the precise semantic interface and the use of a semantic tagger.

This work fit into a serie of experiments using LTAG formalism in applications in order to :

e Mmanage grammars because it’s easier to contro] and design one lexicalized grammar than several small grammars
o design of a robust LTAG parser that cope with the analysis of a graph of speech recognition hypothesis.
& to detect certain ambiguities in the procedures and prevent misunderstandings.

A major feature is the possible integration with existing NLP tool thanks to the XML framework adopted.

References

Amaud Adant. 2000. Study and Implementation of a weighted finite-state library - application to speech synthesis. M.sc.,
Faculté Polytechnique de Mons.

Marie-Héléne Candito. 1996. A principle-based hiezarchical representation of LTAGs. In COLING '96, Copenhagen, Denmark.

R. Gbiglione, A. Landré, M, Bromberg, and P. Molette. 1998. L’analyse automatique des conterus. Dunod, Parls.

C. Jacquemin and E. Tzoukermann. 1999. NLP for Term Variant Exiraction: A Synergy of Morphology, Lexicon and Syntax.
In T. Strzalkowski, editor, Natural Language Information Retrieval. Kluwer, Boston, MA.

Patrice Lopez and David Roussel. 2000. Predicative LTAG grammars for Term Analysis. In 74G+5, Paris, France.

Patrice Lopez. 2000. LTAG Workbench: A General Framework for LTAG. In TAG+S5, Paris, France.

Mehryar Mohri. 1997. Finite-State Transducers in Language and Speech Processing. Computational Linguistics, 23:269-312.

Evelyne Tzoukermann and Dragomir Radev. 1999. Use of weighted finite state fransducers in part of speech tagging. In
Andras Kormai, editor, Extended Finite State Models of Language. Cambridge University Press.

