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Abstract

In this paperwe presentan architecture
for generatingtexts that vary in the em-
phasisput on conciseness,readabilityand
the markingof particularlysalientitems.
Weabandonthetraditionalpipelinearchi-
tecture, and use an integrated approach
which makes the searchfor an optimum
text explicit, taking into account both
inter-sentential and intra-sententialfea-
tures. We describea context sensitive
scoring systemwhich can relate surface
properties to a deeper representational
level. We show how this approachcanbe
usedin generatingparagraphlengthtexts,
optimisedagainstvariouscriteria.

1 Introduction

1.1 Overview

The consensusview of the generationcommunity
is that the pipeline architecture(Reiter and Dale,
2000) is suitablefor many generationtasks. How-
ever, this architecturedoesnot easily support the
control of certainpropertiesof the surfaceform of
the generatedtext. An exampleof this is the text’s
length(Reiter, 2000).However, amorefundamental
difficulty is that many of the textual characteristics
which areproblematicfor a pipelineto generateare
alsodifficult to measurecomputationally. Examples�
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of thesearereadabilityandthemarkingof particu-
larly salientitems.

The reasonfor the pipeline’s difficulty with cer-
tain surfaceformswasgivenby Zock (Zock, 1987)
andDanlos(Danlos,1987). It may not be easyto
determinewhat effect a decisiontaken at an early
stagein the pipeline will have at the surface; and
decisionstaken at onestagemayprecludeat a later
stageachoicewhich resultsin amoredesirablesur-
face form. In general,the interrelationsbetween
the levels of representationusedin NLG arecom-
plex andimperfectlyunderstood.Varioussolutions
to this problemare describedin (Reiter and Dale,
2000) and (Reiter, 2000). The pipeline’s primary
competitoris anintegratedarchitecture.

The systemsSTREAK (Robin and McKeown,
1996) and MAGIC (McKeown et al., 1998) illus-
tratethetrade-offs implied by pipeliningor integra-
tion. Theformer integratesaggregationandlexical-
isation, therebyproducingconciseoutput text, but
slowly. Thelatterpipelinesthesefunctions,thereby
generatingquickly, but at the cost of lessoptimal
texts. Anotherdisadvantageof an integratedarchi-
tectureis thata representationwhich canmodelall
the constraintsto be integratedis likely to be un-
wieldy. SPUD(StoneandDoran,1997) integrates
communicative intent and semanticand syntactic
constraints,but it is acknowledgedthatit is difficult
to build resourcesfor usewith thissystem.

In the next sectionwe presentthe problem we
have investigated. It requiresflexibility in the use
of textual properties(length,saliencemarking and
readability)which cannotbe controlledeasilyby a
pipeline.In section3 wedescribeoursystem,which



usesan integratedarchitecture.We explain that it
cangeneratethetextswerequire,but thatit requires
suitablemeasuresof thedesiredsurfacepropertiesin
termsof deeperrepresentations.In section4 we de-
scribea possiblesolutionto theproblemof finding
suchmeasures.In section5 we describea prelimi-
naryevaluationof this solution.

2 The problem we address

Wehaveinvestigatedadomainin whichflexibility in
certaincharacteristicsof thesurfacetext is required.
This is thegenerationof simpleconcisedescriptions
from dataaboutobjects. In particular, we have ex-
aminedthegenerationof descriptionsof onlineedu-
cationalresourcesfrom rich meta-data;suchdatais
associatedwith a largenumberof these.

For this task,certaincomponentsof the descrip-
tion should be marked as particularly salient; the
text shouldbe fluent and readable;the text should
beconcise.Theseconstraintsmayconflictwith each
other. Ourtextsmaybeusedin avarietyof contexts;
in eachof these,therelative importanceof thecon-
straintsmaybedifferent.Sowerequireto beableto
controlwhichprevails in aparticulargeneratedtext.

Theinput datais createdfrom a cataloguerecord
for anonlineresource(drawn from a largedatabase
of suchrecords),which consistsof a set of fields.
The specification for these records provides for
about50 fields. Thefieldsareattribute valuepairs.
Eachgenerationrunexpressesarecord,but notnec-
essarilyall of its 50 fields.This is because,first, the
databaseis imperfect: not every recordhasdatain
every field. And second,not all fields areof equal
interestto aparticularuser:weemploy ausermodel
which filters out fieldswhich areof no interest,and
marksthosewhichareparticularlysalient.

Hence,theinputdatasetto aparticulargeneration
run is a collectionof fieldsdrawn from a particular
record,with somefields marked asparticularly in-
teresting. Seefigure 1. The generator’s task is to
expressall thesefields asa concise,readablepara-
graph,and to expressthosemarked as salientin a
waywhich indicatestheir status.

Thetarget text, with thepublisher’s nameandthe
gradedeemedto be particularly salient, and with
a requirementfor for concisenessand readability,
might be:

“Wild World of Words Challenges” is
publishedby online provider AskOLLY,
whoseaddressis OLLY/IT, Delmott Uni-
versity, Delmott,NY 13244.It is suitable
for grade3 studentsandis anHTML for-
mat lessonplan. It will benefitstudents
and is a tool for teachingprofessionals
which is availablefor free.

Thesalientitemsareindicatedassuchby their po-
sition in the main clausesof the first and second
sentences.Noticethat theprominenceof thesalient
itemswould be increasedsomewhatby theabsence
of the relative clause“whose address...”. We may
supposethat theconcisenessrequirementprecluded
the use of a (marginally) longer form, with sin-
gle sentence“AskOLLY’s address...”, placedasthe
fourthsentence.

So the problem is one of documentstructuring
and microplanning. Documentstructuring is the
task of deciding in which order the items should
bepresented;microplanningthatof settingsentence
boundariesand aggregating. However, thesetwo
tasksconflict,becausemicroplanningwhichaimsto
producesyntacticallyaggregatedtext mustre-order
theitems.

3 Using an integrated architecture

Ourapproachusesasits primaryrepresentationtree-
adjoininggrammar(TAG) (Joshi,1985)extendedto
includeunification basedfeaturestructures(Vijay-
Shanker andJoshi,1991).

TheTAG usedby oursystemis suchthatits string
set is exactly thoseparagraphswhich are compre-
hensiblesummariesof subsetsof fields. That is,
for every possibleinput dataset,thereis a string in
thegrammarwhich expressesit. It shouldbenoted
that sucha TAG not only modelssyntacticallycor-
rect sentences,but also integratessemanticcheck-
ing and,to someextentsupra-sentencelevel features
(i.e. orderingandpronominalisation).We have de-
signeda prototypefor sucha TAG, which modelsa
limited numberof summaryparagraphs.

(Joshi,1986)describedtheadvantagesTAG pos-
sessesasa syntacticformalismfor NLG. TAG has
usuallybeenappliedto generatingclausesandsen-
tences.(Webberetal.,1999)outlinedthebenefitsof
modellinglargerstringsof text by thesamemeans.



Field Name= Value Particularly
interesting?

DC.Type= lessonplan
GEM.Grade� Grade= 3 �

DC.Format � ContentType= text/html
DC.Publisher� Role= onlineProvider

DC.Publisher� Name= AskOLLY �
DC.Publisher� Postal= OLLY/IT, Delmott University, Delmott, NY

13244
DC.Rights � PriceCode= 0

DC.Title = “Wild World of WordsChallenges”
GEM.Audience� ToolFor = teachingprofessionals

GEM.Audience� ToBenefit= students

Figure1: A typical input dataset.

We alsousea scoringsystemwhich indicatesthe
extent to which its string obeys surfaceconstraints.
The scoringsystemis thesubjectof sections4 and
5. At this point, it is sufficient to notethreepoints.
First, it mapsa TAG derivation structure(or frag-
mentof a derivationstructure)to a tupleof numeri-
cal numericalscores.Second,eachentry in this tu-
ple indicateshow well acompletederivation’s string
obeysonesurfaceconstraint.Appliedto afragment,
it evaluateswhat contribution that fragmentis ex-
pectedto make to a completederivation in which it
might occur. Henceit may be usedduring genera-
tion asan heuristicto guidethe search.Third, the
relativeweightattachedto eachconstraintcanbeset
asa parameterbeforegenerationbegins.

Thegenerationtaskmaybeviewedasaconstraint
satisfaction problem. The systemmust find a text
which

� is syntacticallycorrect

� is semanticallycorrect

� containsall theinput data

� is short

� is readable

� hasthesalientitemsat prominentpositions

Thefirst two areincorporatedinto thegrammaras
outlinedabove: the text modeledby any derivation
in thegrammarmeetsthesetwo constraints.This is

achieved by thecarefuldesignof featurestructures
on elementarytreenodes.For example,in a partic-
ular sentencethesubjectandobjectmustagreewith
thepersonandnumberof theverb; also. they must
refer to entitieswhich maystandin therelationship
representedby theverb. Featurestructuresmayim-
posetheseconstraints.

Theotherconstraintsareintegratedby thegener-
atorin two stages.Thefirst stageis atransformation
of the grammar, similar to that describedin (Eddy
et al., 2001). It is a bottom-upprocedureon theel-
ementarytreeswhich directly expressthe required
fields. Its input is theoriginal grammar,

�
, together

with the input dataset, and the scoringtable (see
section4) associatedwith eachof

�
’s elementary

trees. The output is a numberof sub-grammarsof�
,
���	�
�
���
�

. Each
�
�

’s string set is a subsetof�
’s; eachstring expressesonly fields in the input

data. Further, the enumerationof each
�
�

’s string
set is feasible(althoughthis hasnot beenproved).
In addition,the transformationassociateswith each
of the

�
�
anindicationof thelikelihoodof thestring

whichoptimally meetsthesurfaceconstraintsbeing
foundin

�
�
’s stringset.This indicationis informed

by thescoringsystem.

Thesecondstageselectssomeof the
� �

andenu-
meratestheir stringsets.It basesits selectionon the
indicationprovidedby thefirst stage.It thenselects,
from thestringsfoundby theenumerations,thebest,
asjudgedby thescoringsystem.



4 Context-sensitive scoring system

The scoringsystemwe now describeis similar to
the evaluationmetric usedby (ChengandMellish,
2000) in that it relatessurfacepropertiesto deeper
structures,in our caseTAG derivation trees. How-
ever, we hopethat it is moreflexible, andcansub-
sumethatmetric. We make two observationsabout
the scoringsystem.First, the scoringsystemis in-
dependentof any particulargenerationsystem.We
have implementedthe generationsystemdescribed
in theprevioussection,andit makesuseof thescor-
ing systemto guide its search,but other, perhaps
better, usescould be madeof the scoringsystem.
Second,we intendthat thescoringsystembesuffi-
ciently parameterisablethat it is independentof any
particularsurfaceconstraint. It is dependenton its
parametersbeingsetup(or “trained”) appropriately.
We describein this sectionhow it might beusedto
modelconciseness,readabilityandsalience.In sec-
tion5wedescribeandevaluatetheresultsof training
it to modelreadability.

The scoringsystemoperateson TAG derivation
structures(whole or fragmentary). It mapseach
derivation to a tupleof numericalscores;oneentry
of thetupleis for eachconstraintbeingmodeled.For
example,supposethe scoringsystemmodelscon-
ciseness,salienceandreadability, andsupposethat
somestring hasa correspondingderivation whose
tuplethescoringsystemcalculatesas(1,5,2). Then
theextentto which thestringis concisemayberead
off as1, salientas5, andreadableas2. (Of course,
thesevaluesareonly meaningfulrelativeto thosefor
otherstrings.)

Eachelementarytreein aderivationstructuresup-
pliesa tupleof scores.Thefirst elementin thetuple
for thecompletestructureis calculatedasthemean
of thefirst entriesin thetuplessuppliedby eachcon-
stituentelementarytree, and so on for the second
andsubsequententries.

Thetuplesuppliedby anelementarytreeis based
on a scoringtable,andthecontext in which theele-
mentarytreefindsitself. Figure2 is anexampleof a
scoringtable.Eachelementarytreein a grammaris
associatedwith one.A context is a derivationstruc-
ture,or a fragmentof a derivationstructure.Figure
2 evaluatesasa 3-tuple. The �	��� columnsupplies
the scorefor the � ��� entry in the tuple. Eachcol-

umncontainsa default scoreanda sequenceof tree
fragments,eachassociatedwith ascore.

The procedurefor selectinga scorefrom a col-
umn is asfollows. Eachfragmentin thecolumnis
comparedwith thecontext of which theelementary
tree is a constituent. If any fragmentmatchesthe
context, that is, if the fragmentis a subtreeof the
context, thenthescoreassociatedwith thatfragment
is chosen.If no fragmentmatchesthenthe default
scoreis chosen.If morethanonefragmentmatches,
then a conflict resolutionproceduredecideswhich
scoreshouldbe used(for example,the scorewith
thehighestabsolutevaluemight bechosen).

We now illustratetheproceduredescribedabove.
We use an abbreviated linear notation for deriva-
tion fragments: elementarytrees are named by
Greekletters,a treeis representedby a lisp-like list,
andcompositionalinformation(adjoinor substitute,
and address)is omitted. Supposefigure 2 is the
scoretablefor elementarytree � . In the derivation
( � ( ��� ) � ), it contributes the tuple �������
��� �"! .
It scores0 for conciseness(because( � ) is a sub-
treeof thecontext), 10 for salience(( � ( �#� )) is
a subtree)and4 for readability(noneof the listed
contexts match,sothedefault valueis used).

To illustrate the use of the context mechanism,
considertwo problems:avoiding repetitionin syn-
tacticconstructused,andmarkingsalience.We can
assignscoresfor (say) a relative clausewhich are
lower whenusedin the context of anotherrelative
clause. We can also assignscoresfor a tree con-
taining a given dataitem that arehigherwhenthat
itemoccursin thecontext of themainclause.While
sucha local context mechanismno doubtmissas-
pectsof theinteractionswhich resultin quality text,
it is manageableandseemsto capturemany useful
features.

5 Evaluation

A small-scaleevaluationof thescoringsystemwith
respectto the readability of paraphraseswas per-
formed. We comparedthe system’s assessmentof
texts’ readabilitywith that of humanjudges.Base-
lineswereestablishedby comparingotherreadabil-
ity measureswith the judges’assessments.The re-
sultswere inconclusive, but provide a basisfor fu-
turework.



Constraint Conciseness Salience Readability

Valuesin context ( � )=0 ( � ( ��� ))=10 ( $ )=0.2
(context=value) ( ��% )=-1 ( % )=2

( �#% )=-3
Default value 5 1 4

Figure2: An exampleof ascoringtablefor someelementarytree.

17setsof inputdatawerechosen,anddividedran-
domly between“training” and“test” portions,con-
taining 5 and 12 input setsrespectively. We then
“trained” the parametersof the scoringsystemby
hand, by modifying the scoring tablesassociated
with theelementarytreesin thegrammar. At theend
of thetrainingprocedure,thecontext sensitive scor-
ing system’s assessmentof the texts approximately
matchedour intuitionsabouttheir readability.

Thetestphasewascarriedout in aproceduresim-
ilar to that usedby (Bangaloreet al., 2000). Hu-
mansubjectswereasked to readshortparagraphs.
For each,they answeredtwo questionson a 7 point
scale.

� Understandability: “How easyis this para-
graph to understand?” The options were la-
belled “Dif ficult” (=1), “Fairly easy” (=4),
“Very easy” (=7). Intermediatevalueswere
possiblebut unlabelled.

� Quality: “How well-written is this para-
graph?”.Theoptionswerelabelled“Horrible”
(=1), “Alright” (=4), “Very well-written” (=7).
Again, intermediatevalueswere possiblebut
unlabelled.

Therewere10 subjects,who werestaff andstu-
dentsof the Departmentof Computingat Heriot-
Watt University. 50 paragraphswereused. These
were selectedaccordingto the following scheme.
For eachof the12testinputdatasets,acollectionof
paragraphswasgenerated.(Thetexts in eachcollec-
tion areparaphrasesof the sameinformation). For
eachcollectionof paraphrases,thebest,worst, and
two (in two cases,three)intermediatetexts werese-
lected,the judgmentof quality beingmadeby the
(trained)scoringsystem. Eachsubjectjudged20
paragraphs,and henceeachparagraphwas judged
by 4 subjects.

Thedatawasnormalised1 to correctfor thevaria-
tion betweensubjects. The final scorefor a text’s
understandabilitywas the meanof the normalised
judgmentsfor understandabilityfor that text. Simi-
larly, thefinal scorefor atext’squalitywasthemean
of thenormalisedjudgmentsfor quality for thattext.
It wasexpectedthat therewould be strongcorrela-
tion betweenthenormalisedqualityandunderstand-
ability judgments.Thedataconfirmedthis: thecor-
relation co-efficient betweenthe meannormalised
understandabilityscoresand the meannormalised
quality scoreswas0.92(&(')� � �+* ).

The subjects’ judgmentswere then compared
with variousreadabilitymetrics:

� Thescoresassignedby thetrainedcontext sen-
sitive scoringsystem

� (Baseline1) TheFlescheasyreadingindex2

� (Baseline2) Thelengthin charactersof thethe
paragraph.

Our main hypothesiswas that the scoring sys-
tem would correlatebetter with understandability
andquality thanour baselinemetrics.This wasnot
confirmed.Thecorrelationsof thescoreswith nor-
malisedreadabilityandquality were � �-,/. and � �-, �
respectively. For both &102� � �+* . The correlations
of theFleschIndex with normalisedreadabilityand
quality were � � � . and � �-./3 respectively. For both
&4'5� � �+* . The correlationsof simple lengthwith
normalisedreadability and quality were � � � , and
� � � , respectively. For both &60)� � �+* .

1Following theprocedureof (Bangaloreetal.,2000),let 7 8 9
be thescorethatsubject: gave to the ;=<?> paragraph.Thenor-
malisationof 7 8 9 is @�ACB D+EGFIH JLKNMPOQ@�ASRUT T T @VAXWIYUZ[ < H J]\NHU^_\"\`FVa 8 H < 8 KNJPKNMbOC@�AcR`T T T @�A-WVY`Z .2FleschIndex dfe]g�hji kml=npoqkmrji h @VsUtQtu \`@ owvmi g�vxn u \`@@�FVJ < , where7UyjzSz , {L|j7 and 7x} ~/� arethenumberof syllables,wordsandsen-
tencesrespectively, in theparagraph.



Althoughthenon-confirmationof our hypothesis
is a blow for thecontext-sensitive scoringsystem,it
is not theend.Thetrainingof theparametersfor the
presentevaluationwas unsatisfactory. This is pri-
marily duethelabouriousnessof handtraining. Be-
causeof this, only a small quantityof training data
could be usedand hencethe resultantparameters
lacked generality. Of course,the following ques-
tion remainsopen.Couldanytrainingof thecontext
sensitive scoringsystemyield a metric sufficiently
generalto performwell in theevaluationabove?We
believe it could, but that the successfulprocedure
couldnotbecarriedoutby hand.

6 Conclusion and further work

We have outlined the argument against using a
pipeline architecturefor generatingtexts in which
flexible control of surfacefeaturesis required. We
have indicatedtheneedfor a computationalassess-
mentof thesesurfacephenomena,anddescribedthe
beginningsof a systemfor supplyingthat: a system
of context-sensitive scores.

Devising context sensitive scoresis not easyand
is a time consumingtask. However, we expectit to
bepossibleto for thesescoresto belearnedby arel-
atively simpleproceduregiventexts rankedby ahu-
man judge. The judgmentssuppliedfor the above
evaluationwill initially provide the basisfor this.
Wewill theninvestigatetrainingthesystemto other
surfacephenomena.

Successwill provide two benefits.First, we will
havemetricsfor certainsurfacephenomenain terms
of TAG derivations. Second,thesemetricsmight
giveinsightintoothercharacterisationsof thesephe-
nomena.
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