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Abstract

In this paperwe presentan architecture
for generatingtexts that vary in the em-
phasisput on concisenesggadabilityand
the marking of particularly salientitems.
We abandorthetraditionalpipelinearchi-
tecture, and use an integrated approach
which makes the searchfor an optimum
text explicit, taking into account both
inter-sentential and intra-sententialfea-
tures. We describea contt sensitve
scoring systemwhich can relate surface
propertiesto a deeper representational
level. We shav how this approacicanbe
usedin generatingparagraphengthtexts,
optimisedagainstvariouscriteria.

1 Introduction

1.1 Overview

The consensuwview of the generationcommunity
is that the pipeline architecture(Reiter and Dale,
2000)is suitablefor mary generationtasks. How-
ever, this architecturedoesnot easily supportthe
control of certainpropertiesof the suriaceform of
the generatedext. An exampleof thisis thetext's
length(Reiter 2000).However, amorefundamental
difficulty is that mary of the textual characteristics
which areproblematicfor a pipelineto generatare
alsodifficult to measureeomputationallyExamples
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of thesearereadabilityandthe marking of particu-
larly salientitems.

The reasonfor the pipelines difficulty with cer
tain suriaceformswasgiven by Zock (Zock, 1987)
and Danlos(Danlos,1987). It may not be easyto
determinewhat effect a decisiontaken at an early
stagein the pipeline will have at the surface; and
decisiongaken at one stagemay precludeat a later
stagea choicewhichresultsin amoredesirablesur
faceform. In general,the interrelationsbetween
the levels of representatiomsedin NLG arecom-
plex andimperfectlyunderstood.Varioussolutions
to this problemare describedin (Reiterand Dale,
2000) and (Reiter 2000). The pipelines primary
competitoris anintegratedarchitecture.

The systemsSTREAK (Robin and McKeown,
1996) and MAGIC (McKeown et al., 1998) illus-
tratethe trade-ofs implied by pipeliningor integra-
tion. The formerintegratesaggreationandlexical-
isation, therebyproducingconciseoutput text, but
slowly. Thelatterpipelinesthesefunctions,thereby
generatingquickly, but at the cost of lessoptimal
texts. Anotherdisadwantageof an integratedarchi-
tectureis thata representatiomvhich canmodelall
the constraintsto be integratedis likely to be un-
wieldy. SPUD (Stoneand Doran, 1997) integrates
communicatre intent and semanticand syntactic
constraintshut it is acknavledgedthatit is difficult
to build resourcesor usewith this system.

In the next sectionwe presentthe problemwe
have investigated. It requiresflexibility in the use
of textual properties(length, saliencemarking and
readability)which cannotbe controlledeasilyby a
pipeline.In section3 we describeour systemwhich



usesan integratedarchitecture. We explain that it
cangeneratehetexts we require,but thatit requires
suitablemeasuresf thedesiredsurfacepropertiesn
termsof deeperrepresentationdn section4 we de-
scribea possiblesolutionto the problemof finding
suchmeasureslin section5 we describea prelimi-
nary evaluationof this solution.

2 Theproblem we address

We haveinvestigatecadomainin whichflexibility in
certaincharacteristicef the surfacetext is required.
Thisis thegeneratiorof simpleconcisedescriptions
from dataaboutobjects. In particular we have ex-
aminedthegeneratiorof description®f onlineedu-
cationalresourcedrom rich meta-datasuchdatais
associateavith alarge numberof these.

For this task, certaincomponent®f the descrip-
tion should be marked as particularly salient; the
text shouldbe fluent and readable;the text should
beconcise.Theseconstraintgnayconflictwith each
other Ourtexts maybeusedn avarietyof contets;
in eachof these therelative importanceof the con-
straintsmaybedifferent. Sowe requireto beableto
controlwhich prevails in a particulargeneratedext.

Theinput datais createdrom a cataloguaecord
for anonlineresourcgdravn from a large database
of suchrecords),which consistsof a set of fields.
The specificationfor these records provides for
about5b0 fields. Thefields areattribute value pairs.
Eachgeneratiorun expresses record,but notnec-
essarilyall of its 50 fields. Thisis becausefirst, the
databaseés imperfect: not every recordhasdatain
every field. And secondot all fields are of equal
interestto a particularuser:we emplo/ ausermodel
which filters out fields which areof no interest,and
marksthosewhich areparticularlysalient.

Hencetheinputdatasetto aparticulargeneration
run is a collectionof fields drawvn from a particular
record,with somefields marked as particularlyin-
teresting. Seefigure 1. The generatos taskis to
expressall thesefields asa concise,readablepara-
graph,andto expressthosemarked as salientin a
way which indicatestheir status.

Thetamgettext, with the publishers nameandthe
gradedeemedto be particularly salient, and with
a requirementfor for concisenes&nd readability
mightbe:

“Wild World of Words Challenges”is
publishedby online provider AskOLLY,
whoseaddresss OLLY/IT, Delmott Uni-
versity Delmott,NY 13244.1t is suitable
for grade3 studentsandis anHTML for-
mat lessonplan. It will benefitstudents
and is a tool for teachingprofessionals
whichis availablefor free.

The salientitemsareindicatedassuchby their po-
sition in the main clausesof the first and second
sentencesNoticethatthe prominenceof the salient
itemswould be increasedomevhatby the absence
of the relatve clause“whose address”.. We may
supposéhatthe concisenessquiremenprecluded
the use of a (mamginally) longer form, with sin-
gle sentencéAskOLLY’s address’., placedasthe
fourth sentence.

So the problemis one of documentstructuring
and microplanning. Documentstructuringis the
task of decidingin which order the items should
be presentedmicroplanninghatof settingsentence
boundariesand aggr@ating. However, thesetwo
tasksconflict, becausenicroplanningwhich aimsto
producesyntacticallyaggreyatedtext mustre-order
theitems.

3 Using an integrated architecture

Ourapproachusesasits primaryrepresentatiotree-
adjoininggrammarnTAG) (Joshi,1985)extendedo
include unification basedfeaturestructureyVijay-
Shanler andJoshi,1991).

TheTAG usedby our systems suchthatits string
setis exactly thoseparagraphsvhich are compre-
hensiblesummariesof subsetsof fields. That is,
for every possibleinput dataset, thereis a stringin
the grammarwhich expressest. It shouldbe noted
that sucha TAG not only modelssyntacticallycor
rect sentenceshut also integratessemanticcheck-
ing and,to someextentsupra-sentendevel features
(i.e. orderingandpronominalisation) We have de-
signeda prototypefor sucha TAG, which modelsa
limited numberof summaryparagraphs.

(Joshi,1986)describedhe advantagesTAG pos-
sesse@sa syntacticformalismfor NLG. TAG has
usuallybeenappliedto generatingclausesand sen-
tences(Webberetal., 1999)outlinedthe benefitsof
modellinglarger stringsof text by the samemeans.



Field Name= Value

Particularly
interesting?

DC.Type= lessorplan
GEM.Grade Grade=3
DC.Format- Content¥pe = text/html
DC.Publisher Role= onlinePrwider
DC.Publisher Name= AskOLLY

13244
DC.Rights- PriceCode= 0

GEM.Audience ToBenefit= students

DC.Publisher Postal= OLLY/IT, Delmott University Delmott, NY

DC.Title = "Wild World of WordsChallenges”
GEM.Audience ToolFor = teachingprofessionals

Figurel: A typical input dataset.

We alsousea scoringsystemwhich indicatesthe
extentto which its string obeys surfaceconstraints.
The scoringsystemis the subjectof sections4 and
5. At this point, it is sufficient to notethreepoints.
First, it mapsa TAG dervation structure(or frag-
mentof a deriation structure)o atuple of numeri-
cal numericalscores.Secondgachentryin this tu-
pleindicateshow well acompletederivation’s string
obeysonesurfaceconstraint Appliedto afragment,
it evaluateswhat contritution that fragmentis ex-
pectedto make to a completederivationin which it
might occur Henceit may be usedduring genera-
tion asan heuristicto guide the search. Third, the
relatve weightattachedo eachconstraintanbeset
asa parametebeforegeneratiorbegins.

Thegeneratioriaskmaybeviewedasa constraint
satishction problem. The systemmustfind a text
which

e is syntacticallycorrect

¢ is semanticallycorrect

e containsall theinputdata

e isshort

e isreadable

¢ hasthesalientitemsat prominentpositions

Thefirsttwo areincorporatednto thegrammaras
outlinedabove: the text modeledby ary derivation
in thegrammameetsthesetwo constraints.Thisis

achieved by the careful designof featurestructures
on elementarytreenodes.For example,in a partic-
ular sentencehe subjectandobjectmustagreewith
the personandnumberof the verb; also. they must
referto entitieswhich may standin the relationship
representethy theverh Featurestructuresmayim-
posetheseconstraints.

The otherconstraintareintegratedby the gener
atorin two stagesThefirst stages atransformation
of the grammay similar to that describedn (Eddy
etal., 2001). It is a bottom-upprocedureon the el-
ementarytreeswhich directly expressthe required
fields. Its inputis the original grammay G, together
with the input dataset, and the scoringtable (see
section4) associatedvith eachof G’s elementary
trees. The outputis a numberof sub-grammaref
G, Gy ...G,. EachG;'s string setis a subsetof
G’s; eachstring expresseonly fields in the input
data. Further the enumeratiorof eachG;’s string
setis feasible(althoughthis hasnot beenproved).
In addition,the transformatiorassociatesvith each
of theG; anindicationof thelikelihoodof thestring
which optimally meetsthe surfaceconstraintdeing
foundin G;’s string set. Thisindicationis informed
by the scoringsystem.

The secondstageselectssomeof the G; andenu-
merategheir string sets.It basests selectiononthe
indicationprovidedby thefirst stage.lt thenselects,
from thestringsfoundby theenumerationghebest,
asjudgedby the scoringsystem.



4 Context-sensitive scoring system

The scoringsystemwe now describeis similar to
the evaluationmetric usedby (ChengandMellish,
2000)in thatit relatessurface propertiesto deeper
structuresjn our caseTAG derivation trees. How-
ever, we hopethatit is moreflexible, and cansub-
sumethatmetric. We make two obserationsabout
the scoringsystem. First, the scoringsystemis in-
dependenof ary particulargeneratiorsystem.We
have implementedhe generationsystemdescribed
in the previoussection andit makesuseof the scor
ing systemto guide its search,but other perhaps
better usescould be madeof the scoring system.
Secondwe intendthatthe scoringsystembe suffi-
ciently parameterisablthatit is independenof ary
particularsurfaceconstraint. It is dependenbn its
parameterbeingsetup (or “trained”) appropriately
We describen this sectionhow it might be usedto
modelconcisenesggadabilityandsalience.ln sec-
tion 5 wedescribeandevaluatetheresultsof training
it to modelreadability

The scoringsystemoperateson TAG derivation
structures(whole or fragmentary). It mapseach
derwationto a tuple of numericalscores;oneentry
of thetupleis for eachconstrainbeingmodeled.For
example, supposehe scoring systemmodelscon-
cisenesssalienceandreadability and supposehat
somestring hasa correspondinglerivation whose
tuplethe scoringsystemcalculatesas(1,5,2). Then
the extentto whichthestringis concisemayberead
off as1, salientas5, andreadableas2. (Of course,
thesevaluesareonly meaningfulrelative to thosefor
otherstrings.)

Eachelementaryreein aderivationstructuresup-
pliesatuple of scoresThefirst elemenin thetuple
for the completestructureis calculatedasthe mean
of thefirst entriesin thetuplessuppliedby eachcon-
stituentelementarytree, and so on for the second
andsubsequergntries.

Thetuplesuppliedby anelementarytreeis based
on ascoringtable,andthe context in whichthe ele-
mentarytreefindsitself. Figure2 is anexampleof a
scoringtable. Eachelementarytreein agrammaris
associatedvith one. A contet is a dervation struc-
ture, or a fragmentof a derivation structure.Figure
2 evaluatesasa 3-tuple. The n** columnsupplies
the scorefor the n** entry in the tuple. Eachcol-

umn containsa default scoreanda sequencef tree
fragmentseachassociatedvith ascore.

The procedurefor selectinga scorefrom a col-
umnis asfollows. Eachfragmentin the columnis
comparedvith the context of which the elementary
treeis a constituent. If ary fragmentmatchesthe
contet, thatis, if the fragmentis a subtreeof the
contet, thenthe scoreassociateavith thatfragment
is chosen.If no fragmentmatcheghenthe default
scoreis chosenlf morethanonefragmentmatches,
then a conflict resolutionproceduredecideswhich
scoreshouldbe used(for example, the scorewith
the highestabsolutevaluemight be chosen).

We now illustratethe proceduralescribedabore.
We use an abbreiated linear notation for deriva-
tion fragments: elementarytrees are named by
Greekletters,atreeis representedly alisp-like list,
andcompositionalnformation(adjoinor substitute,
and address)is omitted. Supposefigure 2 is the
scoretablefor elementarytree(. In the derivation
(a (B v) ¢, it contritutesthe tuple (0,10,4).
It scoresO for concisenesgbecausd «) is a sub-
treeof thecontet), 10for saliencg(a (8 7)) is
a subtree)and 4 for readability (none of the listed
contexts match,sothe default valueis used).

To illustrate the use of the context mechanism,
considertwo problems: avoiding repetitionin syn-
tacticconstructused,andmarkingsalience We can
assignscoresfor (say) a relative clausewhich are
lower whenusedin the contet of anotherrelative
clause. We can also assignscoresfor a tree con-
taining a given dataitem that are higherwhenthat
item occursin the context of themainclause While
sucha local context mechanisnmo doubtmiss as-
pectsof theinteractionswvhich resultin quality text,
it is manageablendseemdo capturemary useful
features.

5 Evaluation

A small-scaleevaluationof the scoringsystemwith
respectto the readability of paraphrasesvas per
formed. We comparedhe systems assessmenif
texts’ readabilitywith that of humanjudges. Base-
lineswereestablishedy comparingotherreadabil-
ity measuresvith the judges’assessmentshere-
sultswereinconclusve, but provide a basisfor fu-
turework.



\ Constraint| Conci seness | Sal i ence | Readabi lity |
Valuesin context || ( «) =0 (a (B v))=10 | (¢)=0.2
(context=value) | (v §)=-1 (0)=2
(y 9)=-3
Defaultvalue || 5 1 4

Figure2: An exampleof a scoringtablefor someelementaryree.

17 setsof inputdatawerechosenanddividedran-
domly between‘training” and“test” portions,con-
taining 5 and 12 input setsrespeciiely. We then
“trained” the parameterof the scoring systemby
hand, by modifying the scoring tablesassociated
with theelementaryreesin thegrammar At theend
of thetraining procedurethe contet sensitve Scor
ing systems assessmertf the texts approximately
matchedur intuitionsabouttheir readability

Thetestphasaevascarriedoutin aproceduresim-
ilar to that usedby (Bangaloreet al., 2000). Hu-

man subjectswere asled to readshortparagraphs.

For each they answeredwo questionson a 7 point
scale.

e Understandability: “How easyis this para-
graphto understand?” The options were la-
belled “Difficult” (=1), “Fairly easy” (=4),
“Very easy” (=7). Intermediatevalueswere
possiblebut unlabelled.

e Quality: “How well-written is this para-
graph?”.The optionswerelabelled“Horrible”
(=1), “Alright” (=4), “Very well-written” (=7).
Again, intermediatevalueswere possiblebut
unlabelled.

Therewere 10 subjectswho were staf and stu-
dentsof the Departmentof Computingat Heriot-
Watt University 50 paragraphsvere used. These
were selectedaccordingto the following scheme.
For eachof the 12 testinputdatasets,acollectionof
paragraphsvasgenerated(Thetextsin eachcollec-
tion are paraphrasesf the sameinformation). For
eachcollectionof paraphraseshe best,worst, and
two (in two casesthree)intermediateaexts werese-
lected, the judgmentof quality being madeby the
(trained) scoring system. Each subjectjudged 20
paragraphsand henceeachparagraphwas judged
by 4 subjects.

Thedatawasnormalised to correctfor thevaria-
tion betweensubjects. The final scorefor a text’'s
understandabilitywas the meanof the normalised
judgmentdfor understandabilityor thattext. Simi-
larly, thefinal scorefor atext’s quality wasthemean
of thenormalisedudgmentdor quality for thattext.
It wasexpectedthattherewould be strongcorrela-
tion betweerthenormalisedjuality andunderstand-
ability judgments.The dataconfirmedthis: the cor-
relation co-eficient betweenthe meannormalised
understandabilityscoresand the meannormalised
quality scoresvas0.92(p < 0.05).

The subjects’ judgmentswere then compared
with variousreadabilitymetrics:

e Thescoresssignedy thetrainedcontet sen-
sitive scoringsystem

e (Baselinel) TheFlescheasyreadingindex?

e (Baseline2) Thelengthin charactersf thethe
paragraph.

Our main hypothesiswas that the scoring sys-
tem would correlatebetter with understandability
andquality thanour baselinemetrics. This wasnot
confirmed. The correlationsof the scoreswith nor
malisedreadabilityand quality were0.23 and0.21
respectiely. For bothp > 0.05. The correlations
of the Fleschindex with normalisedreadabilityand
quality were 0.43 and 0.39 respecirely. For both
p < 0.05. The correlationsof simple lengthwith
normalisedreadability and quality were 0.02 and
0.02 respectiely. For bothp > 0.05.

!Following the procedureof (Bangaloreetal., 2000),let s;;
be the scorethatsubject; gave to the j** paragraph.The nor

isati i sij—Mean of (si1---si20)
malisationof 8ij IS Standard deviation olfl (s41---8420) "

’Fleschindex = 206.835 — 84.6LL — 1.015 225 where
syll, wds andsent arethenumberof syllableswordsandsen-
tencegespectiely, in the paragraph.




Althoughthe non-confirmatiorof our hypothesis
is a blow for the context-sensitve scoringsystemijt
is nottheend. Thetrainingof the parameter$or the
presentevaluationwas unsatisactory This is pri-
marily duethelabouriousnessf handtraining. Be-
causeof this, only a small quantityof training data
could be usedand hencethe resultantparameters
lacked generality Of course,the following ques-
tion remainsopen.Couldanytrainingof the context
sensitve scoringsystemyield a metric sufiiciently
generato performwell in theevaluationabose?We
believe it could, but that the successfubrocedure
couldnotbe carriedout by hand.

6 Conclusion and further work

We have outlined the amument againstusing a
pipeline architecturefor generatingtexts in which
flexible control of surfacefeaturesis required. We
have indicatedthe needfor a computationabssess-
mentof thesesuriacephenomenaanddescribedhe
beaginningsof a systemfor supplyingthat: a system
of context-sensitve scores.

Devising contet sensitve scoresis not easyand
is atime consumingiask. However, we expectit to
bepossibleto for thesescoredo belearnedby arel-
atively simpleproceduregiventexts ranked by a hu-
manjudge. The judgmentssuppliedfor the above
evaluationwill initially provide the basisfor this.
Wewill theninvestigaterainingthe systemto other
surfacephenomena.

Succeswill provide two benefits. First, we will
have metricsfor certainsurfacephenomenin terms
of TAG dervations. Second,thesemetrics might
giveinsightinto othercharacterisationsf thesephe-
nomena.
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