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Abstract

We describesome of the complications
involved in expressingthe techniqueof
induction when automaticallygenerating
textual versionsof formal mathematical
proofs producedby a theorem proving
system,anddescribeour approactto this
problem. The penasivenessof induc-
tion within mathematicalproofs makes
its effective generationvital to readable
proof texts. Our focus is on planning
texts involving induction. Our efforts are
driven by a corpus of human-produced
prooftexts,incorporatingoothregularities
within this corpusandtheformal structure
of inductioninto coherentext plans.

1 Introduction

The goal of having natural languageversions of
formal, computergeneratednathematicatexts has
beendriven by the increasingquantity of formal
mathematickeingproducedy avarietyof projects.
Thepurposedor thesecollectionsvariesover peda-
gogicalpurposegConstable1996),proving sophis-
ticatedtheoremgCederquisetal., 1997),formaliz-
ing foundationaltheories(Huanget al., 1994),and
usingtheoremproving to verify codeandhardware
(O’Leary etal., 1994; Liu et al., 1999). For all of
thesepurposessomeof the individualswishing to
understandhe proofswill not be familiar with the
systenusedo produceheproofsandits specialized
syntax. The domainof formal mathematicshasa

definiteneedfor naturallanguagerersionsof its ob-
jects. Thenecessityf automatiayeneratiorof these
texts is clearnot only from the large numberof for-
mal proofs beingproducedput alsofrom the tech-
nical expertiserequiredto understandheproofsand
transformthemto naturallanguageeliably. We fo-
cusonproducingfull, staticproofs,suchaswouldbe
foundin textbooksor researchpublications.Though
this preventsthe degreeof customizationavailable
from interactive systemgsuchas(Fiedlet 2001)),it
allows the applicationof existing naturallanguage
searchand summarizatiortools over the collected
prooftexts of aformallibrary.

One of the most penasive and complex proof
techniquescommon to almost every domain of
mathematicss proofbyinduction Inductionis used
in proofsfrom numbertheoryto codeverification. It
is oftenthefirst sophisticateghrooftechniquegaught
in introductorylogic coursesut is usedin the most
complicatedproofsin both mathematicsand com-
puterscience An ability to expressnductionclearly
is centralto ary effective tool for generatingtexts
from formal proofs.

In this paper we will lay out someof the com-
plicationsinvolvedin expressinginductionin texts
and our proposedsolutions. Our focuswill be on
planningthetexts to expressthis wide-rangingech-
nique. Our examinationof inductionwill be driven
by a corpusof human-producegroof texts which
employinduction,aswell asa commitmentto en-
suring the validity of the formal proof within the
informal proof text. We will describean approach
currently being usedto generateexts from formal
proofs and how this systemis expandedto handle



induction.Finally, we will discusshow ourobsena-
tions aboutinductionmay apply to producingtexts
employingothersophisticateghrooftechniquesuch
asdiagonalization.

2 Background

2.1 Previous Work

Mary of the systemsactively in useproducingfor-
mal proofs employ high-level stratajies, or tactics
to encodeproof stratgies, guiding reasoningwith
proof heuristics(Huanget al., 1994; Gordonand
Melham,1993).Thisis in contrasto systemswvhich
produceand presenttheir proofsvia the low-level
logical rules which establishthe systems logical
framavork. Therecanbe from 10’sto 100's of low-
level rulesneededo performthe sameinferenceas
doneby asinglehigh-level rule. Onecanliken this
distinctionto the gap betweenhigh-level program-
ming languagegshat peopleprogramwith andlow-
level assemblylanguageswith a fixed number of
simplecommandsln mary tacticprovers,userscan
definetheir own tacticsor combinetactics, some-
timesnondeterministically

Choosinga representatioimvolvesa tradeof be-
tween thesetwo views of formal inferences,one
which is limited in form but producesvery large
proofswith inferencestepsmuchsmallerthanpeo-
ple naturally think in, and one which is arbitrarily
comple andheuristicbut producegproofsatamore
natural level of detail. Previous approachedave
concludedhattacticproofs,becausef theirbreadth
of applicationand nondeterminismgcan be unreli-
ableasinputto a generatiorsystem(Chester1976;
Coscoy 1997; Coscoyet al., 1995). Working only
from a low-level proof, though,requiresretuilding
thehigh-level structureof the prooffrom thebottom
up. The planningprocessequiresextensive math-
ematicalknowledgeto deducehow the small steps
shouldbereassemblethto naturalinferenceblocks.

It is clearfrom this work, and our own obsena-
tions,thatatacticproof aloneis not sufficient input
to ageneratiorsystem(Huang,1994).Our solution,
though,is to usethetacticproofto guidethe prelim-
inary planandthenusethelow level proofto supple-
mentthe planwith ary missingdetailsandverify its
accurag (Holland-Minkley et al., 1999). Because,
in thetheoremproving systemwe areworking with,
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Figure1l: SampleNuprl proof, aspresentedn cor
puscollectionstudy, proving the StampsTheorem

it is requiredthattacticinferencese expandableo
a sequencef primitive inferenceswhich are static
within the system,we candirect our searchof the
low-level proofby anchoringt with referencegpoints
in thetacticproof.

2.2 Description of Nuprl proofs

Our generationprocessusesproofs produced,in-
dependentlyof ary natural language generation
schemeby theNuprl theorenproving systemCon-
stableet al., 1986). The structureof Nuprl proofs
and the tactics available to prove them were de-
signedwith an eye towardsconsisteng with men-
tal modelsof mathematicswhile still maintaining
the systems type-theoretidoundation. The formal
proofsarestructuredn trees,whereeachnodecon-



tainsthe currentgoalto be proved, ary currenthy-

pothesesandthe tactic to be appliedto prove the
goal; the directededgesrepresentthe application
of tacticsto producesubgoals. Leaves storegoals
which areentirely establishedy the applicationof

the correspondingactics, and the root node con-
tainsa null hypothesidist andthe proof's theorem
asagoal. Thebegginning portionof a Nuprl proofis

showvnin figurel.

Tacticsmakeprogresson proving the goalsof a
prooflargelythroughheuristicapproaches search-
ing for proofs or building justificationsof specific
forms. For example,theAr i t h tactic performsba-
sic arithmeticsimplificationswhile the Deci de x
tacticperformsa casesplit over whetherthe expres-
siongivenin paramete is true or not. Thereare
somestandardNuprl tactics, but userscan define
their own tactics;in generaltacticsbuild proofsby
combiningmary primitive proofrules.

Primitive proofrulesareinherento theNuprl sys-
temandits logic. A tacticnodecanbe decomposed
into collectionof primitive proof stepsorderedin a
proof treeof its own, rootedat the goal of the tactic
node,andwith its leavesbeingthegoalsof thetactic
nodeschildren. A singletacticnodecanexpandto a
primitive proof containingasmary as100 primitive
proof nodes.

2.3 Planning from Tactic Proofs

We have obsenred in previous work (Holland-

Minkley et al., 1999) basedon evaluationof proof
texts aboutelementannumbertheorythatthe struc-
tureof atacticproof canbelinearizednto thestruc-
ture of a contentplan througha direct mappingof

tactic proof nodesto sentencesprderingthe nodes
in the prooftreevia depthfirst search Furthermore,
determiningwhatcontentfrom eachnodeshouldbe

communicated@¢anbedoneby analyzingwhatproof

techniquewvasusedin thecurrentinference.The set
of commoninferencetypesobsenedin our corpus
comprisemuchthe samesetof basicinferencetech-
niquesdescribedby mathematicianss fundamen-
tal for creatingandwriting effective proofs(Solow,

1982; Constableet al., 1984), such as caseanal-
ysis, lemmaapplication,and arithmetic simplifica-

tion. We call theseinferencetechniqueswith their

sharedmodesof expressionMathematicalCommu-
nicationConventions(MCCs)

Basedon theseobsenations,we have built a pro-
totypesystemwhich hasverifiedthatplausibleproof
texts can be automatically generatedusing these
techniques. Our systemfollows traditional gener
ation systemarchitecture(Reiter and Dale, 2000),
with our primary focus beinga plannerbuilt based
ontheregularitiesnotedabove. Thelexical chooser
washand-codedh FUF andusesthe SURGEgram-
mar (Elhadad, 1993), generalizingthe sentences
from our corpuscorrespondingo eachof the infer-
encetechniguesdentified.

3 Planning Induction

Having establishedthe ability to build a content
planneraround mathematicacommunicationcon-
ventions (MCCs) associatedwith common proof
techniquesit wasclearthat,in extendingthe system
to handlemore complex proofs, the ability to pro-
cessnductionwouldbekey. Giventhesystemnstruc-
ture as presentedhbove, we would like this exten-
sionto only involve detectingthis new proof tech-
niqueanddeterminingits contentandverbalization
in isolation. However, unlike mostotherprooftech-
niqueswhichonly impacttheprooflocally, applying
inductioncanimpactnodesin the proof treeremote
from its initial application.We evaluatea corpusof
proof texts to determineif a localizedapproachto
generationcanbe usedor if a more comple plan-
ning processsuchasusedin restructuringow-level
proofsin other generationsystemswill be neces-
sary 21 subjectswith varying degreesof familiar-
ity with theNuprl systemandformalrepresentations
wereaskedo write textual versionsof four different
formal proofsinvolving inductionover integers. In
total, 77 proof texts werecollected.

3.1 Isolating Induction

Ourfirst goalis to identify whateffect, if ary, aproof
nodecorrespondingo inductionhason the content
plan’s structure. We needto determineif the dis-
tributed effects of the inductive processcanbe lo-
calizedwithin the proof plan, allowing us to insert
inductionMCCsinto our pre-«isting system.
Justascasesplitting mimics branchingin a pro-

gram, introducing non-linearity induction mimics
looping, introducinga more complex non-linearity
Thereis concernthat our simple linearizationpro-



cesswill nolongerhold, or that, giventhe looping
natureof induction, it will be reflectedthroughout
the entiresubproofbelow it ratherthanonly locally,
thus requiring ary generationsystemhandling in-
ductionto processroof stepsdifferentlyin the con-
text of aninductive proofversusout of it.

Fortunately we find that induction requiresa
more comple, but still compatible,set of MCCs
thanotherprooftechniquesxaminedto date.Hand
analysisof the corpusidentifiedthosesentencesx-
pressingcontentnot predictedby the regularitiesof
thepreviouscorpusasencodedy ourMCCs. In all
of the 77 proofsanalyzedthe unpredictedentences
communicateadontentabouttheinductive aspecbf
the proof. Furthermorefor all of the proof steps
which did not involve an inductive inferenceor the
usageof an inductive hypothesisthe sameMCCs
aspreviously identified were adequatdo represent
thecorrespondingentences/Ve concludethen,not
only thatthealterationsn thetext weredueto induc-
tion, but alsothat placingothertypesof inferencen
thecontet of aninductiveproofdid notchangeheir
treatment.This allowsinductionto be incorporated
into thelargergeneratiorstructureas-is.

3.2

Following this obsenation, we identify induction
MCCs by collecting all sentencesn the corpus
which communicateéhe samenductive content.We
find the sametight correlation among sentences
about induction as was found betweensentences
about the application of other proof techniques,
allowing matchingsentencego be generalizedto
MCCs.

Inductionis communicatedn threeways:thein-
vocationof induction, the setup of ary basecases
andstep(or inductive) casesandthe applicationof
the inductive hypothesiswithin a step case,defin-
ing the set of induction MCCs: InductionState-
ment, BaseCaseStepCaseand IHInvocation (see
figure 2). 70% of the proofsin the corpusexhibited
all of theseMCCs,with IHInvocationbeingomitted
mostoften; 94% of the proofsexhibitedbothInduc-
tionStatemenandBase/StepCaddCCs. Theques-
tion of when IHInvocationshould be usedwill be
consideredn moredetailbelow.

GiventheseMCC's, the formal proof canbe pro-
cessedwith the existing contentplanner adjusted

Induction Communication Content

InductionStatement{InductionValue}
“We proceedby inductiononi.”

BaseCase{InductionValue, BaseAssumption}
“‘BaseCasei = 8"

StepCase{I nductionValue, StepBasis, Induction-
Hypothesis}

“AssumeR < 7 andtherearem,n suchthat3 x
m+5xn=1—1.

IHInvocation{InductionValue,
InductionHypothesis, | nstantiations,
Conclusion}

“[...] sinceby theinductionhypothesighereare
m andn suchthat3 «m +5«n=17—1"

Figure2: The MCCs usedfor inductioninferences
asa functionof the proof contentthey requirefrom
the Nuprl proof, with exampleverbalizations

only to (1) detectthe applicationof inductionand
(2) checkwhethera hypothesiseingappliedis the
markedinductionhypothesis.As the contentplan-
ner currently mustcheckthe type of inferenceand
find all invoked hypothesesthesealterationsare
easilyincorporatednto the existing system. Upon
detectiorof induction,thelnductionStatemen1CC
is addedo theplanin progressandthesubcaseare
processeth adepth-firstmanneraswith casesplit-
ting), eachintroducedby the BaseCaser StepCase
MCC. All othernodesin the proof canbe planned
as before,with the single exceptionof thoseproof
nodeswithin a stepcasewhichinvoketheinduction
hypothesiswhich will substitutethe IHInvocation
MCC for ageneraHyplnvocationMCC.

Our final problemis to determinewhich proof
nodecontentthe plannerneedsto passon for real-
ization. Analyzingthe corpustexts, we obsenre two
stylesof texts usedto expressinduction,which we
labelformal inductionandinformal induction For-
mal induction presentdnductionin a regular, styl-
ized manner suchasis taughtin logic coursesor
is shawn in introductorytextbooks. The Induction-
Statemenverbalizationclearly stateshatinduction
is beingused andidentifiesthe quantityover which
induction is being performed. BaseCase’ are al-
waysidentifiedassuch,asis the StepCasewhich
includesa statemenof theinductionhypothesisFi-



Formalinduction:

Informal induction:

Proceedy inductiononn. For thebasecase,
n =0, fib(n) = 1 andfib(n+1) =1, andthe
GCDof 1and1lis 1. For theinductive case,
assumehatthe GCD of fib(n-1) andfib(n) is 1.

Now, by theinductionhypothesisthe GCD of
fib(n) andfib(n) + fib(n-1) is also1, by
"gcd_p_shift”. ...

Proceedy inductiononn. For n =0, the GCD of
fib(n) andfib(n+1)is 1. Now considem>0 and
assumeheresultis truefor n-1.

Notethatsincethe GCD of fib(n) andfib(n-1)is 1,
the GCD of fib(n) andfib(n) + fib(n-1)is also
1, by "gcd_p_shift”. ...

Figure3: Sampletexts shaving the sameinductive reasoningisingboththe formal andinformal proof text

styles

nally, IHInvocationalwaysstateshatthehypothesis 4 Future Work

beingappliedis theinductionhypothesis.

In contrast, informal induction is abbreriated.
The InductionStatemerntemainsthe sameasin for-
mal induction. However, the BaseCaseand Step-
Caseaarenolongernecessarilyabeledassuch.Most
significantly, the InductionHypothesiis not explic-
itly statedin the StepCaseRather it is implied by
the quantityover which inductionis performedand
thenstatedlater in the IHInvocation. Examplesof
both stylesof inductionareshown in figure 3.2.

Acrossthe corpus,48% of the texts usedformal
induction,and40%usednformalinduction. There-
maining12%of the proofsaccountor othercombi-
nationsof thesefour MCCs, mary of themin proofs
with major inaccuracies. Consideringindividuals’
backgroundswe found a correlationbetweenthe
styleusedandthefamiliarity of theindividualswith
formal proofs. Only subjectswith Nuprl expertise
showved a preferencdor informal induction, using
this stylein 69% of their proofs,whereaghenovice
subjectsusedboth formal and informal induction
equally each43% of thetime. Giventhatevenour
"novice” subjectsreportedhigh expertisein math-
ematicsand moderatefamiliarity with formal lan-
guageswe conjecturaghattheinformal styleis more
naturalif oneis moreconfidentwith the proof con-
tent, and the formal style helpslend structureand
anchorpointsto comple< proofswhich may be dif-
ficult to understandUnfortunately anecdotakxpe-
riencesuggestshattruly novice subjectannotun-
derstandh formal mathematicaproof sufficiently to
involvethemin a similar corpuscollectionstudy

Induction is the first proof technique we have
workedwith in which multiple stylesof expression
occurredin corpustexts. With simplerproof tech-
niguesthereappearso begreatconsensuasto the
normsfor expressingtheir content. Work is under
way on extendingour systento incorporatehefor-
mal style of induction, but our resultssuggesthat
for somepotentialreadersproofsemployingthein-
formal inductionstyle would be preferred.We hope
to beableto usedifferentMCCsto expresshesdalif-
ferencessuchas FormallnductionStatementersus
InformallnductionStatemengndadjustthe planner
to accountfor the currentusermodelasthe formal
proof tree is traversedand planned,avoiding hav-
ing to entirelyrecodeheplanningandlexical choice
componentgor eachmodel.

We would also like to use our experiencein
handling a comple proof techniqueto process
more new techniquesProof by diagonalizationof-
fers mary of the samechallengesasinduction, po-
tentially combining information from mary points
in the proof, while still beingeasilyidentifiablefor-
mally. As a significantchallenge,we would also
like to be ableto extendthe systemto identify and
communicateoroof by analogy whereinonebranch
of a casesplit hasits proof truncatedandreplaced
by a citation that the reasoningis analogousto a
previously communicatedbranch. This technique
presentsnot just a significant challengein choos-
ing how to communicatewvhat aspectscorrespond,
but identifying whatdegreeof similarity, to areader
would appeamnalogouss unclear



5 Conclusions

Throughour analysiswe have showvn how the proof
techniqueof induction, centralto ary mathemati-
cal text generatiorsystem,canbe isolatedwithin a
proof andincorporatednto a proof planwithoutre-
quiring majorchangeso the handlingof otherproof
techniques.The expansionto handleinduction not
only significantlyimprovesthetext rangeof our sys-
tem,but indicatesaneaseof expansiorto othertech-
niqueswithin themathematicglomain.
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