
What is NLG?

Roger Evans and Paul Piwek and Lynne Cahill
Information Technology Research Institute

University of Brighton, UK
email: Firstname.Lastname@itri.brighton.ac.uk

Abstract

Giving an adequate general definition of
the input to natural language generation
(NLG), and hence toNLG itself, is a noto-
riously difficult problem, practically, the-
oretically and even methodologically. In
this paper, we describe our recent expe-
riences of implementing anNLG compo-
nent of a larger question-answering sys-
tem, and trying to understand and resolve
some of these problems in this context.
We examine the whole lifetime of an an-
swer, from internal data structure to fi-
nal expression as text, and look for char-
acteristics of the processing which might
help identify whereNLG really begins.
On the basis of this analysis we propose
some principles to inform discussions on
the scope ofNLG as an individuated enter-
prise.

1 Introduction

Standard definitions of what a natural language gen-
eration (NLG) module should do are remarkably
and notoriously asymmetrical. While there is broad
agreement on what anNLG module should produce1,
there is virtually no agreed view about what its start-
ing point should be. Existing implemented systems
vary enormously in the kind of input they expect,
what assumptions they make about it, and what they

1Essentially natural language, although incorporation of lay-
out and multi-media, and potential post-processing for the web
or for speech output complicate the picture somewhat. The pri-
mary focus of this paper is on the input side, however.

do with it before turning it into some kind of tex-
tual output. Historically, most implemented systems
have been associated with a particular class of ap-
plication (such as explanation, instruction or report
generation), each with its own particular kind of in-
put requirements (such as databases, logical forms
or semantic networks).

This is a significant problem at a number of lev-
els. For practical system-building, theNLG practi-
tioner negotiating to provide a component of a larger
system can find it difficult to address some very ba-
sic interface definition questions (and hence difficult
to cost and resource the project accurately). At the
theoretical level, it leads to a lack of detailed gen-
eral proposals about the early stages ofNLG process-
ing – high level notions ofcommunicative goalsmet
through a process ofcontent selectionby reference
to some kind of externally provided data seem to be
as specific as one can get. Most fundamentally per-
haps, at the methodological level it suggests a deep
lack of clarity about exactly whatNLG is or should
be.

This paper results from our attempts to wres-
tle with these issues in the context of developing
an NLG module as part of a larger legal advisory
question-answering system,CLIME2. In this system,
‘answers’ arise initially as the output of a logical in-
ference engine, in response to a user query, and are
successively transformed into text describing, justi-
fying and explaining the answer. Our initial perspec-
tive was primarily practical, as we attempted to de-
termine where in a sequence of data transformations
the processing should become the responsibility of

2“Computerised Legal Information Management and Expla-
nation” – seehttp://www.bmtech.co.uk/clime/ for
further details.



the NLG module. We gradually realised, however,
that answering this question was more than just a
practical issue of negotiation with project partners
– we really did not have a suitable theoretical posi-
tion on which to base our judgement. The result was
that the answer we came up with was rather arbi-
trary, and indeed not even consistent across the two
different scenarios the system supported.

This paper presents a reflection on this process
and an attempt to rationally reconstruct what we
might have done. In section 2, we briefly review
some relevant background from the literature, pri-
marily discussing McDonald’s early insightful con-
tribution to this debate (McDonald, 1993), two more
recent, and more practically oriented, positions (Re-
iter and Dale, 2000; Cahill et al., 1999), and some
typical examples of actual systems. In section 3 we
describe the two kinds of answer production in the
CLIME system, and in section 4 we analyse these
scenarios looking for aspects of the system’s be-
haviour which distinguishNLG from non-NLG.

2 Background

2.1 McDonald’s view

McDonald (1993) was one of the first authors to
discuss the issue of NLG input (or ‘source’ in Mc-
Donald’s terminology), with concerns very simi-
lar to our own: the lack of clear definition makes
it difficult to convey our work to other computa-
tional linguists, and difficult to compare and eval-
uate work within our own community. He looked
to Natural Language Understanding (NLU) research
to provide a possible “pivot point”, but found no
useable answers, the logical forms delivered by the
then current systems being too linguistically un-
derspecified and logically overspecified for gener-
ation. These arguments hold good, perhaps even
more forcefully, today: NLU is if anything more
shallow now than it was in 1993, and McDonald’s
view that ‘reasoning’ components in generators are
permeated with linguistic ‘NLG’ decisions is borne
out by more recent analyses of systems such as
Cahill and Reape (1998).

McDonald’s conclusion was thatNLG starts at
“the first point where a speaker must appeal to her
knowledge of language as she begins the process
of carrying out some action through the use of lan-

guage” (p.196). Aside from the procedural under-
tone, we find little to argue with in this definition –
but it is somewhat lacking in the practical utility we
aspire to here.

2.2 Reiter and Dale’s standard architecture

Reiter and Dale (2000) present a ‘standard’ archi-
tecture forNLG systems which broadly accords with
the actual architecture of many implemented sys-
tems (although see Cahill et al. (1999) for further
discussion of this claim). This architecture includes
(pp.42ff) a model ofNLG input comprising a four-
tuple< k, c, u, d >, wherek is a knowledge source,
c is a communicative goal,u is a user model andd
is a discourse history. This definition covers a wide
range of theoretical and practical systems, but pri-
marily because it is very underspecified. In particu-
lar, as Reiter and Dale acknowledge,k is necessarily
very application-dependent, and this makes it diffi-
cult to provide any more specific general characteri-
sation ofNLG input. We suggest that this point can
be taken one step further: with this definition ofNLG

input, it is impossible to provide any general charac-
terisationof NLG itself.

This input model is exemplified using the
WEATHERREPORTERsystem, an idealised design
study for anNLG system, similar to real weather-
reporting systems such as FOG (Kittredge and
Polgúere, 1991). From the present perspective, the
key points of interest relate tok andc. Reiter and
Dale say (p.45):

• k is a database of records that encode
a number of meteorological data val-
ues ...

• c is ... a communicative goal of type
SummariseMonth(m)

Here we see thatk is clearly completely non-
linguistic, andc is linguistic, but high level (and
application-specific). The consequences of this are
thatWEATHERREPORTERhas to undertake three ac-
tivities:

1. mapping non-linguistic into linguistic informa-
tion

2. summarising a month’s worth of information

3. producing text to communicate the summarised
information



Unequivocally, we maintain, (1) and (3) are pro-
cesses which anyNLG system must undertake in
some form. (2), however, is more controversial: it
may be non-linguistic manipulation (such as averag-
ing numbers) occurring before (1), it may be linguis-
tic manipulation (such as genuine summarisation)
occurring after (1), it may be both. Our question is
Is it NLG?. The analysis we present below suggests
that it is not (in either case), and that by taking this
kind of manipulation out of the loop,NLG becomes
a more coherent identifiable enterprise.

2.3 RAGS

The RAGS (Reference Architecture for Generation
Systems) project (Cahill et al., 1999; Cahill et al.,
2001a), also set out to define a reference architecture
for NLG systems. Nevertheless it has very little to
say about input – less, in fact, than Reiter and Dale.
Cahill et al. (2001a) (pp. 1-2 and 5ff) is very clear
about the kinds of information that anNLG system
needs to manipulate (conceptual, semantic, rhetori-
cal, document, syntactic and quote structures), but
provides no details about how such systems obtain
their input, or in what form. It does discuss ways
in which NLG systems may interface to knowledge
bases of conceptual facts, but does not explicitly
claim them to be part of theinput, indeed it allows
for systems whose input is semantic, or in fact any
other kind of RAGS representation. This flexibil-
ity was deemed necessary in order to account for
systems whose input can range from templates with
(conceptual or semantic) facts attached (Coch, 1996)
to full linguistic texts to be abbreviated or rephrased
for a particular reader (DiMarco et al., 1995).

2.4 Existing systems

The survey of appliedNLG systems undertaken in
the RAGS project (Cahill and Reape, 1998; Paiva,
1998) showed significant differences between sys-
tems that accept their input from a user and those
which take their input from databases or knowl-
edge bases. The former usually start with essen-
tially linguistic input, with the user choosing seman-
tic and rhetorical forms. In some cases (e.g. ModEx,
(Lavoie et al., 1996)) the user actually chooses the
nouns and verbs that will ultimately appear in the
output text. So characterising the input to these sys-
tems does not pose a significant problem, because

the user interacts more or less directly with thein-
ternal data structures of the generator, at some ap-
propriate level.

In systems that accept input from an external
source (such as database), however, the issue of in-
put and the starting point ofNLG is more difficult.
Most of the systems surveyed byRAGS employ sev-
eral initial modules that transform the input into a
form that can be directly manipulated linguistically.
A typical example of a system taking input from a
database is PlanDoc (McKeown et al., 1994). The
input to PlanDoc is a database of the activities per-
formed by telephone engineers. This is transformed
into a set of ‘messages’, and enriched with con-
ceptual/semantic domain knowledge, before being
passed to a content, rhetorical and syntactic planner
and then on to realisation. In such a system, the start
of NLG ‘proper’ is quite unclear – are the first two
processes to be included or not?

Systems whose input is some type of logical
form generally tend to undertake less processing be-
fore becoming obviously ‘linguistic’ (although the
CLIME example discussed in detail below is an ex-
ception to this). For example, the Proverb system
(Huang and Fiedler, 1997), which generates texts
presenting a verbalised description of a natural de-
duction proof, translates its input into a set of Proof
Communicative Acts (PCAs), each one of which
represents some content to be expressed together
with a communicative goal. However, even in a sys-
tem such as this, the actual start ofNLG is unclear,
as the ordering and vene the rhetorical structure of
the PCAs is implicit in the input proof.

3 A case study –CLIME

In this section we discuss the complete process of
the generation of answers as it takes place in the
CLIME system.CLIME is a web-based multilingual
legal advisory system, which answers queries relat-
ing to ship-building and ship-operating regulations.
The core knowledge source for the system is a set of
such regulations encoded as (a) a conceptual graph
and (b) a set of legal inference rules. Queries to the
system are constructed using aWYSIWYM (Power
et al., 1998) natural language interface and submit-
ted to alegal inference server(LIS), described more
fully in Winkels et al. (1998), Winkels et al. (2002).



The output of theLIS is the initial form of an ‘an-
swer’, which is transformed into natural language
(as HTML in English and French) and displayed to
the user.

The system can respond to two kinds of query,
corresponding to the two encodings of the reg-
ulations. Conceptual Retrieval (CR) queries
consist simply of a list of concepts: the sys-
tem searches the conceptual graph identifying in-
dividual regulations which relate to these con-
cepts, either directly or indirectly via ontolog-
ical links (such assubtype-of, part-of,
described-by, connected-to ). Norma-
tive Assessment(NA) queries consist of a descrip-
tion of a situation on a ship: the system applies the
legal inference rules (derived from the regulations)
to determine whether the situation described is legal
according to the regulations, and also whether small
changes to the situation would change this verdict.
The two types of query lead to two types of answer,
whose handling by the system illustrates two differ-
ent views of the ‘start’ ofNLG processing.

3.1 Conceptual Retrieval answers

For Conceptual Retrieval queries, the user enters a
list of concepts, and theLIS returns the following
information:

• an expanded set of concepts, found by follow-
ing ontological links (for example, ifoil-
tanker was in the query, its superclassship
would be included;

• for each concept, the legal rules which refer to
it;

• for each concept, a positive integer which rep-
resents thecentralityof the concept, a measure
of how many other concepts are related to it;

• for each of the referenced rules, the number of
concepts in the rule that were in the original
query.

This data structure undergoes the following trans-
formations to produce textual answers:

1. The rules are ranked according to relevance
to the user’s query. Ranking depends on how
many query concepts the rule refers to, and how
central those concepts are (more central con-
cepts are more common and so less relevant).

2. The top 30 rules in the ranked order are selected
and the rest discarded.

3. For each concept in both the expanded set and
these remaining 30 rules, a trace of how the
concept is linked to concepts in the query is cal-
culated – e.g., if the query containswater and
the expanded set containsliquid , the fact
thatwater is a subtype ofliquid would be
added.

4. Sentences describing each trace relation are
generated – these serve as explanations of why
the concept is included in the answer.

5. The answer is composed using a simple
template-based approach: the query is re-
peated, followed by a canned text introduction
to the answer, then each rule name is listed,
together with the concepts it contains. Rule
names are hypertext links to the correspond-
ing rule texts (from the original regulations),
concept names are hypertext links to the corre-
sponding explanatory trace relation sentences.

3.2 Normative Assessment answers

For Normative Assessment queries, the user enters a
set of facts describing a situation and theLIS returns
the following information:

• a list of inference rule applications which apply
to the situation, each consisting of (a) the rule
name (b) the facts in the situation which trig-
gered the rule and (c) the status which the rule
assigns to the situation – allowed, disallowed or
silent;

• a partial ordering over the rule applications ac-
cording to legal precedence – more specific, or
more recent, rules take precedence;

• a list of ‘continuations’: rule applications
which would be triggered by additional facts
and the status which the rule would assign to
the extended situation.

The mapping from this input toHTML is achieved in
the following stages:

1. Using the partial order for legal precedence,
the system determines whether the situation in
question is allowed or not (this is the actual



answer to the query) and which rules support,
contradict or say nothing about this conclusion.

2. A subset of rule applications is selected to be
expressed, namely those which contribute to
the conclusion (the highest precedence rules),
and those directly overruled by them.

3. Each of these selected rule applications and
each continuation is transformed into a textual
form describing the circumstance which caused
the rule to be applicable. This is the most sig-
nificant ‘real’ NLG the system undertakes, with
simple aggregation of predicates with the same
subject and referring expression generation.

4. Finally, the whole answer document is pieced
together and transformed intoHTML . The fi-
nal answer consists of the conclusion (one of
allowed, disallowed and silent), the rules sup-
porting the conclusion, the rules against but
overruled by those supporting, any rules which
apply but draw no conclusion (usually because
they include phrases like ‘Normally’), and con-
tinuations (of the form “If . . . were also the
case, the conclusion would have been. . .”).

4 Analysis

In this section, we use theCLIME examples to help
us try and articulate a possible ‘definition’ ofNLG.
Our approach is somewhat ‘by approximation’ from
above and below: we propose two principles which
we would like to think of as characterisingNLG but
which are too abstract to be directly useful, and then
we look at theCLIME system to identify concrete in-
stances of the principles in action, which are in turn
too specific to be generally applicable. Our aim is to
demonstrate that these upper and lower bounds are
a useful initial step in refining our intuitions about
whatNLG really is.

PRINCIPLE A: NLG is linguistic manipu-
lation of data.

This principle is similar in spirit to part of McDon-
ald’s conclusion, but slightly more restrictive: Mc-
Donald’s position allowsany processing that oc-
curs after the speaker first appeals to her knowledge
of language to count asNLG, whereas principleA
constrainsNLG to be only linguistic manipulations

(wherever they occur). We will attempt to charac-
teriselinguistic shortly, but two immediate observa-
tions here are that this principle (a) allows the data
manipulated to be non-linguistic and (b) excludes
non-linguistic manipulation, even of linguistic data.

Principle A alone is not specific togeneration,
and so a second principle is also required:

PRINCIPLE B: NLG manipulates (linguis-
tically) deeper information to produce
shallower information.

The intuition here is thatNLG does generation, not,
say, parsing, where manipulation is in the oppo-
site direction. However, the contrast is not only
with parsing. This principle also excludes situations
where the ‘depth’ of information is maintained, such
as summarisation or translation (viewed as a unit –
clearly if translation is achieved by parsing and re-
generation, then the system may include abone fide
NLG component).

With just these two principles, we can return to
the claim we made in section 2.2, that step (2) of
WEATHERREPORTERis not NLG. If step (2) is non-
linguistic, then it is ruled out by principleA; if it is
linguistic then it is ruled out by principleB – it is
summarisation, mapping from a more to a less de-
tailed linguistic representation at the same ‘depth’.
This supports the underlying intuition that a goal like
SummariseMonth(m) is surely not just a genera-
tion task – there must be more to it than that.

A significant issue still remains with these prin-
ciples in general of course: what do we mean by
linguistic manipulationsand linguistic depthof in-
formation. We do not have deep philosophical an-
swers to these questions, but we can propose some
practical observations. We consider linguistic depth
first, because we can give a quite straightforward an-
swer – theRAGS data hierarchy. As we have al-
ready noted,RAGS (Cahill et al., 1999; Cahill et
al., 2001a) defined a data model forNLG compris-
ing six types of information: conceptual seman-
tic, rhetorical, document, syntactic and quote. Al-
thoughRAGS makes no specific claims about pro-
cessing dependence, it seems a plausible first ap-
proximation, borne out by actual implementations
(e.g. Cahill et al. (2001b)), that this ordering cor-
responds to linguistic depth – that in the generation
process, levels further down the list are in general



derived from levels above them. So for the present
paper, we suggest theRAGS hierarchy as concrete
support for principleB.

Let us now turn to the definition oflinguistic ma-
nipulations. Our intuition is that a linguistic manip-
ulation is an operation on data that is motivated or
informed by linguistic considerations. We proceed
by proposing two conditions on operations which
classify them definitely linguistic or definitely not
linguistic. We contend that a significant class of op-
erations falls within the scope of these conditions
(as illustrated by theCLIME examples). However,
it is also true that a grey area of operations remains
which eludes our conditions3.

CONDITION I : An operation is linguistic
IF it is (potentially) language specific or
requires only language specific resources.

A resource or operation is language specific if it is
not valid for all languages, i.e., if there is a lan-
guage to which it does not apply. In bothCR and
NA, a non-trivial amount of work is undertaken be-
tween logical form and text. Some of it clearly
involves operations which are language specific or
require language specific resources. Step 4 ofCR

requires language specific templates and a lexicon.
Similarly, step 3 ofNA is language specific. It in-
volves rules which map conceptual representations
of rule applications to semantic representations. The
semantic representations are tailored to the gram-
matical templates which are available for the sup-
ported languages. Furthermore, it requires language
specific aggregation, referring expression generation
and surface realisation operations4.

Note that conditionI makes no reference to the
input of linguistic operations: an operation can be
linguistic even if its input is non-linguistic (e.g., the
transformation from conceptual to semantic repre-
sentations). What matters is whether the operation
itself or the resources it uses are language specific.
What is more, the fact that the input is linguistic does

3In particular, language universals in Chomsky’s sense are
not captured – our conditions cannot identify a boundary be-
tween universal linguistic and more general cognitive knowl-
edge.

4This condition also distinguishes some more classical
cases: determining whether to the bottom storey of a building is
thegroundor first floor is linguistic, while determining whether
a temperature is Celsius or Farenheit is not.

also not guarantee that the operations which operate
on it are linguistic. An example is step 4 ofNA. The
input is clearly linguistic (consisting of an annotated
text). In step 4. this annotated text is transformed
into an HTML document. This mapping toHTML

does, however, not fall within the scope of condition
I : it is not language specific and does not require
language specific resources.

CONDITION II : An operation isnot lin-
guistic IF it involves removing, adding
or changing information on non-linguistic
grounds.

This condition is, of course, dangerously circular.
However theCLIME system does provide several ex-
amples of the kind of ‘non-linguistic grounds’ that
may exist. Quite a lot of work inCR queries is con-
cerned with ranking of parts of the answer relative to
each other. Although the answer formulation in this
case is very simple, we feel this ranking behaviour is
symptomatic of a more general and important prop-
erty. Without this ranking, the answer would just be
a set of facts to be expressed arbitrarily. AnNLG

component should not have to (or be able to) deter-
mine the relative importance of input facts itself –
this is a non-linguistic judgement5. This puts step 1
of CR clearly outside ofNLG.

Step 1 ofNA is an even more extreme case. The
user’s query is really a yes/no question, but theLIS

output does not give an answer directly. The first
step, therefore is to derive the actual answer from
the data theLIS provides, a process of essentially
logical manipulation. We note that step 1 also or-
ganises information in what will eventually amount
to rhetorical structure in the answer. However, we
suggest that the rhetorical content is hardwired into
the later stages of the generator; step 1 is identify-
ing fillers for a potential rhetorical structure tree, but
it is not actually generating new rhetorical structure.
So we maintain that conditionII places step 1 ofNA

outside ofNLG.
An example of a potential grey area is step 3 of

CR. Its data manipulations are non-linguistic (just

5This is not to say that it cannot sometimes be achieved by
linguistic means. Indeed many system track the effect of previ-
ous utterances on salience and use this to determine linguistic
behaviour. But salience itself is not linguistic, and may arise,
for example, simply from the context.



building ontological chains) and it is not language-
dependent. However it is arguable that itis linguisti-
cally motivated – these structures are created to sup-
port generation of explanatory text fragments. How-
ever, theNLG system has notchosento produce an
explanation, say as a rhetorical strategy: including
explanatory text is as hard-wired as including the an-
swer forNA, as just discussed. So like step 1 ofNA,
we conclude that step 3 of CR is outside ofNLG.

Finally, it seems a reasonable property of an out-
put module that it should output what it is told to out-
put. In NLG terms, this particularly means it should
communicate everything it is asked to. This does not
mean it has to express everything, merely that if it
chooses not to express something, it must be able to
justify that on linguistic grounds. Turning this on its
head, any manipulation of an answer which throws
information awaywithout such justification should
therefore not count as part ofNLG. In the present
example step 2 of bothCR and NA undertake just
such a move, which again suggests that step 2 is not
linguistic in both cases.

In summary, conditionI classifiesCR 4 andNA 3
as linguistic. ConditionII tells us thatCR 1,2 and 3
andNA 1 are not linguistic. Finally,CR 5 andNA 4
are not purely linguistic. They draw togther the com-
ponents of the answer, but they deal also with ren-
dering the answer text inHTML and thereby change
and add information on non-linguistic grounds.

5 Conclusions

In this paper we have looked at the problem of defin-
ing a satisfactory notion ofNLG. The problem is in
some ways like trying to define ‘water’ by exam-
ple: most convenient examples of water include a
container which is not part of the water itself, but is
difficult to precisely distinguish from it. Most con-
crete examples ofNLG are similarly embedded in
their own ‘containers’ which crucially provide their
input, but also make drawing sharp distinctions of-
ten difficult. But as water is ‘the liquid part’, we
have attempted to put some substance on the notion
that NLG is ‘the linguistic part’ of a communicative
output system.

In pursuit of this goal, we have proposed two prin-
ciples which capture the intuition of ‘NLG’. Firstly,
principle A restricts NLG to linguistic manipula-

tions. The meat of principleA resides in the con-
ditions I and II which provide a partial character-
ization of the notion of alinguistic operation. Sec-
ondly, principleB distinguishesNLG from other pos-
sible linguistic functions in a system. In order to
give some concrete justification to these principles,
we showed how they can be used to analyse the
behaviour of theCLIME system answer generation
modules, in order to say more precisely which parts
of the system are doingNLG.

We do not present these as the final word on char-
acterisingNLG, but as the beginning of a discussion,
which we hope others will take forward with us. We
note that if even these conclusions are useful, some
parts of what traditionally has been viewed as con-
tent selection may come to be seen as outside ofNLG

proper. We do not intend this as an attack or criti-
cism of this valuable work in the field, but merely as
a realignment of boundaries in the hope that a little
more coherence might thereby accrue toNLG as a
maturing discipline.

Finally, the punchline: wherewerethe boundaries
of the NLG components in theCLIME system? An-
swer: forCR queries it was dead right, at least on the
input side: after step 3. ForNA queries it was dead
wrong: all the processing described was undertaken
by theNLG module!

Acknowledgements

The CLIME system was developed by British Mar-
itime Technology Ltd., Bureau Veritas, TXT E-
Solutions SPA, the University of Amsterdam and the
University of Brighton, supported by the European
CommissionESPRIT initiative, project numberEP

25.414. The authors also acknowledge the contri-
bution made by Neil Tipper to the development of
CLIME; discussions with colleagues at ITRI about
this paper, especially Kees van Deemter; and the
support and comments of the anonymous reviewers.

References

L. Cahill and M. Reape. 1998. Component tasks in
applied NLG systems. Technical Report ITRI-99-05,
ITRI, University of Brighton.

L. Cahill, C. Doran, R. Evans, C. Mellish, D. Paiva,
M. Reape, D. Scott, and N. Tipper. 1999. In Search of



a Reference Architecture for NLG Systems. InPro-
ceedings of the 7th European Workshop on Natural
Language Generation, pages 77–85, Toulouse, France.

L. Cahill, R. Evans, C. Mellish, D. Paiva, M. Reape, and
D. Scott. 2001a. The RAGS Reference Manual .
ITRI, University of Brighton.

Lynne Cahill, John Carroll, Roger Evans, Daniel Paiva,
Richard Power, Donia Scott, and Kees van Deemter.
2001b. From RAGS to RICHES: exploiting the po-
tential of a flexible generation architecture. InPro-
ceedings of ACL/EACL 2001, pages 98–105, Toulouse,
France.

J. Coch. 1996. Overview of AlethGen. InProceedings
of the Eighth International Workshop on Natural Lan-
guage Generation, pages 25–28, Herstmonceux, Sus-
sex, UK.

C. DiMarco, G. Hirst, L. Wanner, and J. Wilkinson.
1995. Healthdoc: Customizing patient information
and health education by medical condition and per-
sonal characteristics. InFirst International Workshop
on Artificial Intelligence in Patient Education, Glas-
gow, UK.

X. Huang and A. Fiedler. 1997. Proof verbalization as
an application of nlg. InProceedings of the 16th In-
ternational Joint Conference on Artificial Intelligence
(IJCAI’97), Nagoya, Japan.

R. Kittredge and A. Polgúere. 1991. Generating ex-
tended bilingual texts from application knowledge
bases. InProceedings on Fundamental Research for
the Future Generation of Natural Language Process-
ing, pages 147–160, Kyoto, Japan.

B. Lavoie, O. Rambow, and E. Reiter. 1996. The model-
explainer. InProceedings of the Eighth International
Workshop on Natural Language Generation, pages 9–
12, Herstmonceux, Sussex, UK.

D. McDonald. 1993. Issues in the choice of a source for
natural language generation.Computational Linguis-
tics, 19(1):191–197.

K. McKeown, K. Kukich, and J. Shaw. 1994. Practi-
cal issues in automatic documentation generation. In
Proceedings of the Fourth Conference on Applied Nat-
ural Language Processing, pages 7–14, Stuttgart, Ger-
many.

D. Paiva. 1998. A survey of applied natural language
generation systems. Technical Report ITRI-98-03,
ITRI, University of Brighton.

R. Power, D. Scott, and R. Evans. 1998. What You See Is
What You Meant: direct knowledge editing with natu-
ral language feedback. InProceedings of the 13th Bi-
ennial European Conference on Artificial Intelligence
(ECAI’98), Brighton, UK.

E. Reiter and R. Dale. 2000.Building Natural Lan-
guage Generation Systems. Cambridge University
Press, Cambridge, UK.

R. Winkels, A. Boer, J. Breuker, and D. Bosscher. 1998.
Assessment Based Legal Information Serving and Co-
operative Dialogue in CLIME. InProceedings of
JURIX-98, pages 131–146, GNI, Nijmegen, Nether-
lands.

R. Winkels, A. Boer, and R. Hoekstra. 2002. CLIME:
Lessons Learned in Legal Information Serving. In
F. van Harmelen, editor,ECAI-2002: Proceedings of
the 15th European Conference on Artificial Intelli-
gence, Amsterdam, NL. IOS Press.


