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Abstract

We added a sentence planning component
to an existing ITS that teaches students
how to troubleshoot mechanical systems.
We evaluated the original version of the
system and the enhanced one via a user
study in which we collected performance,
learning and usability metrics. We show
that on the whole the enhanced system is
better than the original one. We discuss
how to use the binomial cumulative distri-
bution to assess cumulative effects.

1 Introduction

Intelligent Tutoring Systems (ITSs) help students
master a certain topic. Research on the next genera-
tion of ITSs (Evens et al., 1993; Ros´e and Freedman,
2000; Aleven, 2001; Graesser et al., 2001) explores
NL as one of the keys to bridge the gap between cur-
rent ITSs and human tutors (Anderson et al., 1995).

Our work is the first to show that it is the NL in-
teraction that improves students’ learning or at least
the students’ experience with the system. We added
NLG capabilities to an existing ITS. We focused on
sentence planning, and specifically, on aggregation.
We then conducted a systematic evaluation that pit-
ted the original version of the system against the
enhanced one. We show that on the whole the en-
hanced system outperforms the original one.

Our work is also relevant to evaluating NLG sys-
tems in general, as we show how to use the binomial
cumulative distribution function to assess cumula-
tive effects.

We will first discuss DIAG, the ITS we are using,
and the sentence planning component we added to
DIAG. We will then describe the formal evaluation
we conducted. We will conclude by discussing re-
lated work and our current work.

2 Language Generation for DIAG

DIAG (Towne, 1997) is a shell to build ITSs that
teach students to troubleshoot complex systems such
as home heating and circuitry. Authors build interac-
tive graphical models of systems, and build lessons
based on these graphical models (see Figure 1).

A DIAG application presents a student with a se-
ries of troubleshooting problems of increasing diffi-
culty. The student tests indicators and tries to infer
which faulty part (RU) may cause the detected ab-
normal states. RU stands forreplaceable unit, be-
cause the only course of action for the student to
fix the problem is to replace faulty components in
the graphical simulation. Figure 1 shows the fur-
nace system, one subsystem of the home heating
system in our DIAG application. Figure 1 includes
indicators such as the gauge labeled Water Temper-
ature, replaceable units, and other complex modules
(Oil Burner) that contain indicators and replaceable
units. Complex components are zoomable.

At any point, the student can consult the built-in
tutor via the Consult menu (cf. the Consult button
in Figure 1). For example, if an indicator shows an
abnormal reading, s/he can ask the tutor for a hint
regarding which RUs may cause the problem. After
deciding which content to communicate, the original
DIAG system (DIAG-orig) uses very simple tem-
plates to assemble the text to present to the student.



Figure 1: A screen from a DIAG application on home heating

As a result, the feedback provided byDIAG-orig is
repetitive, both inter- and intra-turn. In many cases,
the feedback presents a long list of parts. The top
part of Figure 2 shows the reply provided byDIAG-
orig to a request of information regarding the indi-
cator named “Visual Combustion Check”.

2.1 The sentence planner

We set out to rapidly improve DIAG’s feedback
mechanism. Our main goals were to to assess
whether simple NLG techniques would lead to mea-
surable improvements in the system’s output, and to
conduct a systematic evaluation that would focus on
language only. Thus, we did not change the tutoring
strategy, or alter the interaction between student and
system in any way. Rather, we concentrated on im-
proving each turn by avoiding excessive repetitions.
We chose to achieve this by: introducing syntac-
tic aggregation (Dalianis, 1996; Huang and Fiedler,
1996; Shaw, 1998; Reape and Mellish, 1998) and
what we callfunctional aggregation, namely, group-
ing parts according to the structure of the system;
and improving the format of the output. The bot-
tom part of Figure 2 shows the revised output pro-
duced byDIAG-NLP. The RUs under discussion are
grouped by the system modules that contain them
(Oil Burner and Furnace System), and by the like-
lihood that a certain RU causes the observed symp-

toms. In contrast to the original answer, the revised
answer singles out theIgnitor Assembly, the only
RU that cannot cause the symptom.

As our sentence planner, we use EXEMPLARS
(White and Caldwell, 1998), an object-oriented, rule
based generator. It mixes template-style and more
sophisticated types of text planning. The rules
(called exemplars) are meant to capture an exem-
plary way of achieving a communicative goal in
a given communicative context. The text planner
selects rules by traversing the exemplar specializa-
tion hierarchy, and evaluating the applicability con-
ditions associated with each exemplar.

In DIAG-NLP, exemplars are of two main types,
description and aggregation / layout. The four de-
scription exemplars are used when the full descrip-
tion of a part is required, such as whether the part is
in a normal state, its current reading, and, if abnor-
mal, what the normal state should be. The eight ag-
gregation exemplars are used to group large lists of
parts into smaller lists. They allow composite aggre-
gation, so that nested lists are created. The topmost
aggregation exemplar isAggByType, which controls
nesting of embedded lists.AggByTypehas 6 daugh-
ters, among them:AggByTypethat groups parts by
part type, i.e., separates indicators from RUs;Ag-
gByContainerthat accepts a list of parts, classifies



The visual combustion check is igniting which is abnormal in this startup mode (normal
is combusting)
Oil Nozzle always

produces this abnormality when it fails.
Oil Supply Valve always

produces this abnormality when it fails.
Oil pump always

produces this abnormality when it fails.
Oil Filter always

produces this abnormality when it fails.
System Control Module sometimes

produces this abnormality when it fails.
Ignitor Assembly never

produces this abnormality when it fails.
Burner Motor always

produces this abnormality when it fails.
and, maybe others affect this test.

The visual combustion check indicator is igniting which is abnormal in startup mode.
Normal in this mode is combusting.

Within the Oil Burner
These replaceable units always produce this abnormal indication when they fail:

Oil Nozzle;
Oil Supply Valve;
Oil pump;
Oil Filter;
Burner Motor.

The Ignitor assembly replaceable unit never produces this abnormal indication
when it fails.

Within the furnace system,
The System Control Module replaceable unit sometimes produces this abnormal

indication when it fails.

Also, other parts may affect this indicator.

Figure 2: Original (top) and enhanced (bottom) answers to the sameConsult Indicatorquery

each part by the system module that contains it, and
then creates a set of lists by module;AggByFufer
that groups RUs according to the likelihood of being
at fault for a specific symptom. The eighth aggrega-
tion exemplar deals with formatting, namely, creat-
ing vertical lists, spacing, etc.

The most frequent application of the aggregation
rules is to group parts according to the system mod-
ule they belong to, and within each module, to group
RUs by how likely it is they may cause the observed
symptom, cf. Figure 2.

Figure 3 illustrates a simple exemplar for describ-
ing one indicator within a list of items.1 An exem-
plar is a Java class with anevalConstraints()

1An exemplar that performs aggregation would be more rel-
evant. However, for expository purposes and because of space
constraints we chose a much simpler description exemplar.

method as its applicability condition, and an
apply() method, responsible for generating an
XML representation of the desired text. Portions de-
limited by <<+ and+>> are annotated XML state-
ments; braces invoke subsidiary exemplars for gen-
erating included text.

The implementation took a graduate student six
months. Most of the effort was devoted not to writ-
ing exemplars, but to making DIAG and EXEM-
PLARS communicate.

After a student query, DIAG collects all the infor-
mation it needs to communicate to the student, and
writes it to a text file that is then passed to EXEM-
PLARS. A portion of the text file that DIAG passes
to EXEMPLARS for the example in Figure 2 is as
follows (ConsultIndicator is the type of query
asked by the student):



exemplar DescribeIndicator(Vector lists, int index, String tense)
extends DescribePart

{
boolean evalConstraints() {

return ((Part)lists.elementAt(index) instanceof Indicator);}

void apply() {
Indicator ind = (Indicator)lists.elementAt(index);
<<+The {ind.getName()} indicator {tense} {ind.getState()}+>>
if ((ind.getState()).equals(ind.getNormalState()))

<<+ which is normal in {ind.getMode()} mode.+>>
else

<<+ which is abnormal in {ind.getMode()} mode.ˆNormal in this
mode is {ind.getNormalState()}.+>>}}

Figure 3: Exemplar for describing an indicator

ConsultIndicator Indicator

name Visual combustion check

state igniting

modeName startup

normalState combusting

-- --

ConsultIndicator ReplUnit

name Oil Nozzle

fufer always

-- --

ConsultIndicator ReplUnit

name System Control Module

fufer sometimes

-- --

ConsultIndicator ReplUnit

name Ignitor assembly

fufer no effect

The attributefufer 2 represents the strength of
the causal connection between the failure of an RU
and an observed symptom.3 The order of the in-
formation in the text file mirrors the order in which
DIAG assembles the information, which is also di-
rectly mirrored in the feedback provided byDIAG-
orig (see top of Figure 2).

EXEMPLARS performs essentially three tasks:
1) it determines the specific exemplars needed; 2)
it adds the chosen exemplars to the sentence planner
as a goal; 3) it linearizes and lexicalizes the feedback
in its final form, writing it to a file which is passed
back to DIAG for display in the appropriate window.

In this version ofDIAG-NLP, morphology, lex-
ical realization and referring expression generation

2The name comes from DIAG.
3These strenghts are entered at development time via the

specialized editors that the DIAG authoring system provides.

were all directly encoded in the appropriate exem-
plars. We already have a third version of the sys-
tem in which referring expressions are generated in
a principled way, see Section 5.

3 Evaluation

Our empirical evaluation is a between-subject study:
one group interacts withDIAG-orig and the other
with DIAG-NLP. The 34 subjects (17 per group)
were all science or engineering majors affiliated
with our university. Each subject read some short
material about home heating, went through the first
problem as a trial run, then continued through the
curriculum on his/her own. The curriculum consists
of three problems of increasing difficulty. As there
was no time limit, every student solved every prob-
lem. At the end of the experiment, each subject was
administered a questionnaire.

A log was collected for each subject including, for
each problem: whether the problem was solved; to-
tal time, and time spent reading feedback; how many
and which indicators and RUs the subject consults
DIAG about; how many, and which RUs the subject
replaces.

The questionnaire is divided into three parts. The
first part tests the subject’s understanding of the do-
main. Because the questions are open ended, this
part was scored as if grading an essay. The second
part asks the subject to rate the system’s feedback
along four dimensions on a scale from 1 to 5 (see
Table 3). The third part concerns whether subjects
remember their actions, specifically, the RUs they
replaced. We quantify the subjects’ recollections in
terms of precision and recall with respect to the log



that the system collects. In Table 2, we report the F-

measure ((�
2+1)PR
�2P+R , with � = 1) that smooths pre-

cision and recall.

3.1 Results

Tables 1, 2, and 3 show the results for the cumula-
tive measures across the three problems (individual
problems show the same trends).

DIAG-orig DIAG-NLP
Total Time 29.8’ 28.0’
Feedback Time 6.9’ 5.4’
Indicator consultations 11.4 5.9
RU consultations 19.2 18.1
Parts replaced 3.85 3.33

Table 1: Performance measures

DIAG-orig DIAG-NLP
Essay score 81/100 83/100
RU recollection .72 .63

Table 2: Learning and recollection measures

DIAG-orig DIAG-NLP
Usefulness 4.35 4.47
Helped stay on right track 4.35 4.35
Not misleading 4.00 4.12
Conciseness 3.47 3.76

Table 3: Usability measures

Although individually all but one or two measures
favor DIAG-NLP, differences are not statistically
significant.Indicator consultationscomes closest to
significance with a non-significant trend in favor of
DIAG-NLP(Mann-Whitney test,U=98, p=0.11).

We therefore apply the binomial cumulative dis-
tribution function (BCDF) —the one-tailed Sign
Test (Siegel and Castellan, 1988) —to assess
whetherDIAG-NLP is better thanDIAG-orig. This
test measures the likelihood thatDIAG-NLP could
have beatDIAG-orig on m or more out ofn inde-
pendent measures under the null hypothesis that the
two systems are equal. This test is insensitive to the
magnitude of differences in each measure, noticing
only which condition represents a win ((Di Eugenio
et al., 2002) discusses the BCDF further).

Table 4 combines the independent measures from
Tables 1, 2, and 3, showing which condition was

DIAG-orig DIAG-NLP
Total Time

p

Indicator consultations
p

RU consultations
p

Parts replaced
p

Essay score
p

RU recollection
p

Usefulness
p

Helped stay on right track
p p

Not misleading
p

Conciseness
p

Table 4: Successes for each system

more successful. The result shows 9/10 (or 8/10)
wins for DIAG-NLP. Since one measure was tied,
we report two sets of probabilities assuming that the
tied measure favoredDIAG-orig or DIAG-NLP re-
spectively.

The probability of 9/10 (or 8/10) successes for
DIAG-NLP under the null hypothesis isp = 0:01

(or 0:054), showing a significant (or marginally
significant) win for DIAG-NLP. If we question
whetherTotal Timeis independent of the other mea-
sures, thenp = 0:02 (or 0:09) for 8/9 (or 7/9) wins,
which is at best a statistically significant and at worst
a marginally significant win forDIAG-NLP.

Had we followed the customary practice of dis-
carding the tied measure (Siegel and Castellan,
1988),4 DIAG-NLP would win 8/9, p = 0:02, or
7/8,p = 0:035 (depending on the inclusion ofTotal
Time), which are both significant.

We can then conclude that the better measures for
DIAG-NLP, albeit individually not statistically sig-
nificant, cumulatively show thatDIAG-NLP outper-
formsDIAG-orig.

3.2 Discussion

Our work contributes to both evaluating NLG for
ITSs, and evaluating NLG in general.

We developed the set of metrics we collected
partly based on the literature (e.g., time on task),
partly because of their significance for troubleshoot-
ing (e.g., parts replaced).RU recollection, which
measures what students remember of their own ac-
tions, was suggested to us by a colleague in psychol-
ogy as a possible correlate of learning. Among the

4Discarding tied measures appears to be discarding support
for the null hypothesis, so we do not argue for this approach (Di
Eugenio et al., 2002).



measures we collected, onlyEssay score(and possi-
bly RU recollection) directly addresses learning, the
others pertain to task performance or user satisfac-
tion. ITSs are frequently evaluated in terms of pre-
/post-test scores, where the same test is given to the
student before and after using the ITS. In our case,
the most appropriate pre-/post-test would have been
a troubleshooting problem. However, we felt the bi-
nary measure “problem solved/ not solved” would
be too rough an assessment to be useful, not to men-
tion that this choice would have meant one fewer
problem in the curriculum.

We contend that performance and usability mea-
sures are important for an ITS, as they provide indi-
rect evidence of its effectiveness. For example, the
lower number of indicator and RU consultations in
DIAG-NLP is evidence in favor of the effectiveness
of the aggregated feedback: because the feedback
highlights what is important, subjects can focus their
troubleshooting without asking as many questions of
the system. Equally important is the lower number
of RU replacements. This metric includes the mis-
takes a student makes, i.e., the parts replaced that
are not responsible for the problem. When repairing
a real system, replacing parts that are actually work-
ing should clearly be kept to a minimum. We claim
that an ITS whose NL feedback leads the student
more effectively towards the solution of a problem
is a better ITS, even if students learn as much in ei-
ther version of the ITS. This holds for usability as
well. In a real setting, students should be more will-
ing to sit down with a system that they perceive as
more friendly and usable than a system that engen-
ders similar learning gains, but is harder to use.

Concerning evaluation of NLG in general, a com-
mon way of assessing whether system B is better
than system A is to collect a number of measures,
hoping that there will be at least one statistically sig-
nificant measure in favor of system B and no signif-
icant measure in favor of system A. However, real-
ity is often murkier than this ideal result. A typi-
cal result of an evaluation may be that out of twelve
measures ten favor B and two favor A, but only two
show statistical significance and those two point to
opposite conclusions. The BCDF is an appropriate
way of assessing whether B outperforms Aon the
whole. Using the BCDF addresses a different type
of cumulative effectthan e.g. PARADISE (Walker

et al., 1997). This comprehensive framework for
dialogue evaluation combines various measures to
yield a cumulative score for each of the systems be-
ing evaluated. However, the cumulative scores are
then arranged in pairs, and their difference tested for
statistical significance. The BCDF is used not to ob-
tain a single score, but to assess what the measures
collectively say on the performance of the system.

4 Related work

Our work touches on three issues: aggregation; eval-
uation of NLG systems; and work on evaluating NL
interfaces for ITSs.

Part of our rules implement standard types of ag-
gregation such as simple conjunction and conjunc-
tion via shared participants (Reiter and Dale, 2000).
We also introduced what we callfunctional aggre-
gation (perhaps a type ofconceptual aggregation
(Reape and Mellish, 1998)). Although it introduces
semantic elements that are outside the purview of
syntactic aggregation, it appears to be preferred by
humans over syntactic aggregation (see Section 5).

Evaluation is of great interest for the language
generation community (Dale and Mellish, 1998),
and much progress has been made in the last few
years. Language generation systems have been eval-
uated e.g. by using human judges to assess the qual-
ity of the texts produced (Coch, 1996; Lester and
Porter, 1997; Harvey and Carberry, 1998); by com-
paring the system’s performance to that of humans
(Yeh and Mellish, 1997); or through task efficacy
measures (Young, 1997; Carenini and Moore, 2000;
Reiter et al., 2001). We have shown how different
measures can be combined to assess what they col-
lectively say on the performance of a system.

Regarding evaluation of NL interfaces for ITSs,
no experiment like ours has been published that
compares two versions of the same system, one
of which uses a NL interface.5 For example, the
CIRCSIM-Tutor system (Evens et al., 1993) which
teaches medical physiology has been used with med-
ical students, but it was never evaluated vs. a less-
sophisticated version; the ANDES system which
teaches physics, and its NL version ATLAS (Van-
Lehn et al., 2000) have been evaluated, but only in a

5One relevant experiment is (Trafton et al., 1997), but their
system does not really qualify as an ITS.



very small pilot study (Graesser et al., 2001).

5 Current and future work

We are currently pursuing two lines of research.
First, we added some sophistication to our sen-

tence planner.DIAG-NLP2 is a third fully imple-
mented version of the system (Haller et al., 2002).
DIAG-NLP2 incorporates the GNOME algorithm
(Kibble and Power, 2000) to generate referring ex-
pressions, including references to whole proposi-
tions such asThis is caused ..., and models a few
rhetorical relations such ascontrastandconcession.
DIAG-NLP2 couples EXEMPLARS to a knowl-
edge base built via the SNePS representation sys-
tem (Shapiro and Rapaport, 1992). SNePS makes
it easy to represent and reason about entire proposi-
tions, not just about objects.

Second, we have conducted a constrained data
collection to uncover empirical evidence for the
rules we implemented in EXEMPLARS. Doing the
implementation first and then looking for empiri-
cal evidence may appear backwards. As one of our
goals was to rapidly improveDIAG-orig’s output
and evaluate the improvement, we could not wait
for the result of an empirical investigation. In this,
our work follows much work on aggregation (Dalia-
nis, 1996; Huang and Fiedler, 1996; Shaw, 1998), in
which aggregation rules and heuristics are plausible,
but are not based on any hard evidence. Even when
corpus studies are used (Dalianis, 1996; Harvey and
Carberry, 1998), they are not completely convinc-
ing. Aggregation rules could be posited from a cor-
pus only if we knew the underlying representation
the text had been aggregated from, which is usually
not the case. The data collection we conducted was
meant to address this last issue as well.

To understand how a human tutor may verbalize
a collection of facts, we collected 23 tutoring dia-
logues (for a total of 270 tutor turns) between a stu-
dent interacting with the DIAG application on home
heating and a human tutor. The tutor and the stu-
dent are in different rooms, sharing images of the
same DIAG tutoring screen. When the student con-
sults DIAG, the tutor sees the information that DIAG
would use in generating its advice — exactly the
same information that DIAG gives to EXEMPLARS
in DIAG-NLP. The tutor then types a response that

substitutes for DIAG’s response. Although we can-
not constrain the tutor to mention all and only the
facts that DIAG would have communicated, we can
still analyze how the tutor uses the information pro-
vided by DIAG.

We have recently developed a coding scheme and
started annotating the data. As a preliminary obser-
vation, the most striking pattern is that the humans
eschew syntactic aggregation of part lists and instead
describe functional aggregations of parts. This lends
support to our rule that groups parts according to the
system hierarchical structure. For example, the same
assemblage of parts, i.e., oil nozzle, supply valve,
pump, filter, etc, can be described asthe other items
on the fuel lineor asthe path of the oil flow.
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