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Abstract

In this paper, we present a novel technique
to learn a tree-like structure for a con-
tent planner from an aligned corpus of se-
mantic inputs and corresponding, human-
produced, outputs. We apply a stochas-
tic search mechanism with a two-level fit-
ness function. As a first stage, we use high
level order constraints to quickly discard
unpromising planners. As a second stage,
alignments between regenerated text and
human output are employed. We evaluate
our approach by using the existing sym-
bolic planner in our system as a gold stan-
dard, obtaining a 66% improvement over
a random baseline in just 20 generations
of genetic search.

1 Introduction

In a standard generation pipeline (Reiter, 1994),
a content planner is responsible for the higher
level document structuring and information selec-
tion. Any non-trivial multi-sentential/multi-para-
graph generator will require a complex content plan-
ner, responsible for deciding, for instance, the distri-
bution of the information among the different para-
graphs, bulleted lists, and other textual elements.
Information-rich inputs require a thorough filtering,
resulting in a small amount of the available data be-
ing conveyed in the output. Furthermore, the task
of building a content planner is normally recognized
as tightly coupled with the semantics and idiosyn-
crasies of each particular domain.

The AI planning community is aware that ma-
chine learning techniques can bring a general solu-
tion to problems that require customization for ev-
ery particular instantiation (Minton, 1993). The au-
tomatic (or semi-automatic) construction of a com-
plete content planner for unrestricted domains is
a highly desirable goal. While there are general
tools and techniques to deal with surface realiza-
tion (Elhadad and Robin, 1996; Lavoie and Ram-
bow, 1997) and sentence planning (Shaw, 1998), the
inherent dependency on each domain makes the con-
tent planning problem difficult to deal with in a uni-
fied framework; it requires sophisticated planning
methodologies, for example, DPOCL (Young and
Moore, 1994). The main problem is that the space of
possible planners is so large. For example, in the ex-
periments reported here, it contains all the possible
orderings of 82 units of information.

In this paper, we present a technique for learning
the structure of tree-like planners, similar to the one
manually built for our MAGIC system (McKeown
et al., 1997). The overall architecture for our learn-
ing of content planners is shown in Figure 1. As in-
put we utilize an aligned corpus of semantic inputs
aligned with human-produced discourse. We also
take advantage of the definition of the atomic opera-
tors (messages) from our existing system. We learn
these tree-like planners by means of a genetic search
process. The plan produced as output by such plan-
ners is a sequence of semantic structures, defined by
the atomic operators. The learning technique is com-
plementary to approaches proposed for generation
in summarization (Kan and McKeown, 2002), that
utilize semantically annotated text to build content



planners.
Our domain is the generation of post cardiac-

surgery medical reports or briefings. MAGIC pro-
duces such a briefing given the output from infer-
ences computed over raw data collected in the op-
erating room (Jordan et al., 2001). Since we have
a fully operational system, it serves as a devel-
opment environment in which we can experiment
with the automatic reproduction of the existing plan-
ner. Once the learning system has been fully devel-
oped, we can move to other domains and learn new
planners. We will also eventually experiment with
learning improved versions of the MAGIC planner
through evaluation with health care providers.

1.1 Data

The corpus we are using in our experiments consists
of the data collected in the evaluation reported in
(McKeown et al., 2000). Normal work-flow in the
hospital requires a medical specialist to give brief-
ings when the patient arrives in the Intensive Care
Unit. In our past evaluation, 23 briefings were col-
lected and transcribed and these were used, along
with the admission note, another gold standard, to
quantify the quality of MAGIC output (100% preci-
sion, 78% recall).

In our work, we align the briefings with the se-
mantic input for the same patient; this input can be
used to produce MAGIC output for this patient. In
a later stage of the learning process we also align
system output with the briefings. An example of
the semantic input, system output and the briefing
is given in Figure 6. Note that there are quite a
few differences among them. In particular, the brief-
ings (c) are normally occurring speech. Aside from
being much more colorful than our system output,
they also include a considerable amount of informa-
tion not present in our semantic input. And there is
also some information present in our system that is
not being said by the doctors. This is because at the
time the briefing is given, data such as the name of
the patient is available in paper format to the target
audience.

1.2 The Current Planner

The planner currently used in the MAGIC system
was developed with efficiency in mind, but it lacks
flexibility and it is more appropriate for formal
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Figure 1: Overall learning architecture

speech or text. It has a total of 274 operators; 192
are structure-defining (discourse or topic levels) and
82 are data defining (atomic level) operators1 . An
atomic operator may select, for example, the age of
the patient, querying the semantic input for the pres-
ence of a given piece of information and instanti-
ating of some semantic structures. Those semantic
structures can be as complex as desired, referring to
constants, and function invocations. It is also possi-
ble for an atomic operator to span several nodes in
the output plan if its specified data is multi-valued.
During the execution of the planner, the input is then
checked for the existence of the datum specified by
the operator. If there is data available, the corre-
sponding semantic structures are inserted in the out-
put. The internal nodes, on the other hand, form a
tree representing the discourse plan; they provide a
structural frame for the placement of the atomic op-
erators. Thus, the execution of the planner involves
a traversal of the tree while querying the input and
instantiating the necessary nodes.

2 Our Approach

Our task is to learn a tree representing a planner that
performs as well as the planner developed manually
for MAGIC. We explore the large space of possible

1equivalent to the notion of messages (Reiter and Dale,
2000).
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Figure 2: A planner tree-like structure, in our plan-
ning formalism, together with an input/output exam-
ple.

trees by means of evolutionary algorithms. While
we use them to learn a content planner, they have
also proven useful in the past for implementing con-
tent planners (Mellish et al., 1998). Note that both
tasks are different in nature, as ours is done off-line,
only once through the life-time of a system, while
their use of the GA search will be performed on ev-
ery execution of the system.

In a genetic search, a population of putative solu-
tions, known as chromosomes, is kept. In our case,
each chromosome is a tree representing a possible
content planner. Figure 2 shows an example plan-
ner and how it realizes semantic input when data is
missing (B) or duplicated (D). In each cycle, chro-
mosomes are allowed to reproduce themselves, with
well-fitted chromosomes reproducing more often.
Normally two types of reproductive mechanisms are
provided: mutations (that produces a new chromo-
some by modifying an old one) and cross-over (that
produces a new chromosome by combining two ex-
isting ones, its ‘parents’).

Each chromosome has an associated fitness value,
that specifies how well or promising the chromo-
some looks. A main contribution of our work is the
use of two corpus-based fitness functions, FC and
FA. We use an approximate evaluation function, FC

that allows us to efficiently determine whether or-
der constraints over plan operators are met in the
current chromosome. We use the constraints we
acquired on this domain (Duboue and McKeown,
2001),2 Figure 4). These constraints relate sets of

2In particular, we set fitness = −1 ∗ N , where N is the
number of violated constraints over on the training set.

patterns by specifying strict restrictions on their rel-
ative placements. Note that a chromosome that vi-
olates any of these constraints ought to be consid-
ered invalid. However, instead of discarding it com-
pletely, we follow Richardson et al. (1989) and pro-
vide a penalty function, in order to allow the useful
information contained in it to be preserved in future
generations.

Once a tree has been evolved so that it conforms
to all order constraints, we switch to a computa-
tionally intensive fitness function, FA. In this last
stage, we use MAGIC to generate output text using
the current chromosome. We then compare that text
against the briefing produced by the physician for
the same patient. We use alignment to measure how
close the two texts are. This procedure is shown
in Figure 5. The fitness is then the average of the
alignment scores produced for a set of semantic in-
puts. This approach avoids some of the problems
typically found with gold standards. By averaging
the fitness function over different semantic inputs, it
evaluates the system against different subjects (since
each briefing was produced by a different person) in
one fell swoop. By capturing similarity in a scalar
value (the average itself), it avoids penalizing the
system for small discrepancies between system out-
put and gold standard.

For computing each pairwise alignment, we
use a global alignment3 with affine gap penalty,
the Needleman–Wunsch algorithm, as defined by
Durbin et al. (1998). These alignments do not allow
flipping (i.e., when aligning A–B–C and C–B–A

they will align both Bs but neither A nor C 4) and
capture the notion of ordering more appropriately
for our needs. We adapted their algorithm by using
the information content5 of words, as measured in
a 1M-token corpus of related discourse, to estimate
the goodness of substituting one word by another.

An important point to note here is that both FC

and FA are data-dependent, as they analyze the
goodness or badness of output plans, i.e., sequences
of instantiated atomic operators. They require run-
ning the planner multiple times in order to do the

3We employ global alignments because we are comparing
two discourses derived from identical semantic input.

4or they will align only the As or the Cs, depending on the
score of aligning correctly any of them.

5as computed by Pan and McKeown (1999).
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Figure 4: Fitness function: Constraints.

evaluation. We do this because, for one instance, as
the planning process may delete (because there is no
data available) or duplicate nodes (because of multi-
valued data).

An advantage of FC is that it can be tested on
a much wider range of semantic inputs than it is
trained on6.

2.1 Operations over chromosomes

We define three mutation operators and one cross-
over operation. The mutations include node inser-
tion, which picks an internal node at random and
moves a subset of its children to a newly created
subnode, and node deletion, which randomly picks
an internal node different from the root and removes
it by making its parent absorb its children. Both
operators are order-preserving. To include order
variations, a shuffle mutation is provided that ran-
domly picks an internal node and randomizes the
order of its children. The cross-over operation is
sketched in Figure 3. We choose an uniform cross-
over instead of a single or double point one follow-
ing Syswerda (1989).

3 Experiment results

The framework described in the paper was imple-
mented as follows: We employed a population of
2000 chromosomes, discarding 25% of the worse-
fitted ones in each cycle. The vacant places were
filled with 40% chromosomes generated by muta-
tion and 60% by cross-over. The mutation operator
was applied with a 40% probability of performing a
node insertion or deletion and 60% chance of choos-
ing a shuffle mutation. The population was started
from a chromosome with one root node connected
to a random ordering of the 82 operators and then

6not implemented in the current set of experiments.

nodes were inserted and shuffled 40 times.7

The search algorithm was executed by 20 gener-
ations in 8d 14h (total CPU time, using about 20
machines in parallel to compute the verbalizations8 ).
The best chromosome obtained was compared with
the current planner in an intrinsic evaluation, de-
scribed below.

Given the size of both planners, an automatic
evaluation process was needed. We use a met-
ric that captures the structural similarities between
the two planners. In our metric, we recorded for
each pair of atomic operators, the list of internal
nodes that dominates both of them. This infor-
mation was used to build a matrix of counts with
the size of such lists (for example, in the original
planner “age-node” and “name-node” are both dom-
inated by “demographics-node”, “overview-node”
and “discourse-node”; therefore, their entry in the
table is the size of that list, i.e., 3). Given the fact
that both the MAGIC planner and our learned plan-
ners have the same set of atomic operators, it is pos-
sible to score their similarity by subtracting the as-
sociated matrices and then computing the average of
the absolute values of this difference matrix. Lower
values will indicate closer similarity, with a perfect
match receiving the value of 0. Applying this metric
to the MAGIC planner and our best planner we ob-
tained the score 1.16. We compare this score against
2000 random planners from the initial population of
the genetic search. Taking the average of their scores
we obtain 3.08.

Finally, if we compare our learned planner against
the random ones we obtain 2.92. We clearly improve
over this baseline. An example of the learned plan-
ner is seen in Figure 6 (d).

4 Related work

In recent years, there has been a surge of in-
terest in empirical methods applied to natural
language generation (Columbia, 2001). Some
work on content planning also deals with con-
structing plans from semantically annotated input.
Kan and McKeown (2002) use an n-gram model for
ordering constraints. The approach is complemen-

7this figure was picked to obtain trees with height ≈ 4.
8each regeneration involves complex unification processes

timing 31’ on average in a PIII 1Ghz
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(patient-info-12865, c-patient, (a-age, age-12865), (a-name, name-12865), (a-gen-
der, gender-12865), (a-birth-date, ...), ..., (r-receive-blood-product, received-
BloodProduct1-12865), ...)
(age-12865, c-measurement, (a-value, 38), (a-unit, "year")) maps to sentence 1 (b)
(ht-12865, c-measurement, (a-value, 175), (a-unitm "centimeter")) maps to sentence 1 (b)
(name-12865, c-name, (a-first-name, "John"), (a-last-name, "Doe")) maps to sentence 1 (b)
. . .
(received-BloodProduct1-12865, c-receive-blood-product, (r-arg2, BloodProcut1-
12865), (a-dosage, Measure-BloodProduct1-12865))maps to sentence 5 to last (b)
(BloodProduct1-12865, c-blood-product, (a-name, ‘‘Cell Savers’’))maps to sentence 5 to last (b)
(Measure-BloodProduct1-12865, c-measurement, (a-value, 3.0), (a-unit, ‘‘unit’’)) maps
to sentence 5 to last (b)

. . .
(a)

John Doe is a 41 year-old male patient of Dr. Smith undergoing mitral valve repair. His weight is 92 kilograms and his height

175 centimeters. Drips in protocol concentrations include Dobutamine, Nitroglycerine and Levophed. He received 1000 mg of

Vancomycin and 160 mg of Gentamicin for antibiotics. Around induction, he was anesthetized with 130.0 mg of Rocuronium,

11.0 mg of Etomidate, 500.0 mcg of Fentanyl and 1.0 mg of Midazolam. Before start of bypass , he had hypotension, at start

of bypass, alkalosis, before coming off bypass, bradycardia and after coming off bypass, hypotension and relative-anemia. He

received three units of cell savers. His total cross clamp time was 2.0 hour 1.0 minute. His total bypass time was 2.0 hour 33.0

minutes. His pre-op cardiac output was 4.13. Cardiac output immediately off was 4.73 .
(b)

Approximately 175-cm gentleman. History of rheumatic fever and polio. He is nonambulatory but can move his legs. History of

acute renal insufficiency with a hematocrit of 1.4. History of mixed mr/ms lesion, tricuspid regurg and ai. Decreased right and

left sided function, 4 chamber dilatation. Tricuspid repair with the ringand mvr with a st. jude’s valve. History of pulmonary

hypertension with a baseline of 90/40 catheter. He was on heparin nph preop. No allergies. Feed and . . . . . . . . . lines were

extubated he was on bypass approximately 2.5 hours. His ischemic time was 2 hours and 2 minutes. No problems. He came off

on dobutamine because of poor function. No problems post-bypass. Maintained on levo, nitro and dobutamine at 4.5 mcg per

kilo. Got vancomycin and gentamicin at 9 o’clock, standard iv anesthetics. He received a liter of albumin, 3 units of cell saver,

no exogenous blood. Last po2 was 453, potassium of 4.6, hematocrit of 26, before getting any blood gas. His cardiac output

with his chest closed
(c)

The patient is male. He had an easy intubation. Before coming off bypass, he had bradycardia. Drips in protocol concentrations

include Dobutamine, Nitroglycerine and Levophed. At start of bypass, he had alkalosis. After coming off bypass, he had

relative-anemia. Around induction, he was anesthetized with 130.0 mg of Rocuronium, 11.0 mg of Etomidate, 500.0 mcg of

Fentanyl and 1.0 mg of Midazolam. His weight is 92 kilograms and his pre-op cardiac output 4.13.
(d)

Figure 6: Examples. (a) Semantic input excerpt. (b) MAGIC output. (c) Physician briefing. (d) Learned
planner output.



tary and suitable for scenarios where semantic an-
notation is an inexpensive task, such as in the auto-
matic summarization tasks presented in that paper.
Also working on order constraints for summariza-
tion, Barzilay et al. (2002) collect a corpus of order-
ing preferences among subjects and use them to es-
timate a preferred ordering.

Evolutionary algorithms were also employed be
Mellish et al. (1998) for content planning purposes.
While their intention was to push stochastic search
as a feasible method for implementing a content
planner and we pursue the automatic construction
of the planner itself, both systems produce a tree
as output. Our system, however, uses a corpus-
based fitness function, while they use a rhetorically-
motivated heuristic function with hand-tuned param-
eters.

Our approach is similar to techniques employed in
evolutionary algorithms to implement general pur-
pose planners,such as SYNERGY (Muslea, 1997); or
to induce grammars (Smith and Witten, 1996). In
general, all these approaches are deeply tied to Ge-
netic Programming (Koza, 1994), that deals with the
issue of how to let a computer program itself.

Our two-level fitness-function employs a lower-
order function for the initial approximation of so-
lutions in a process similar to the one taken by
Haupt (1995) in a very different domain. This tech-
nique is appropriate for dealing with expensive fit-
ness functions.

Finally, our approach with respect to human-
produced discourse as gold standard is similar to
Papinini et al. (2001) as it avoids adhering to the
particularities of one specific person or discourse.

5 Conclusions and Further Work

The task of learning a general content planner such
as Moore and Paris (1992) is well beyond the state
of the art. We have identified reduced content plan-
ning tasks that are feasible for learning. In learning
for traditional AI planning, e.g., learning of plan-
ning operators (Garcı́a-Martı́nez and Borrajo, 1997),
the focus is on reduced planning environments. The
kind of discourse targeted by our current techniques
has been identified in the past as rich in domain com-
munication knowledge (Kittredge et al., 1991). We
identify such discourse as non-trivial scenarios in

which investigation of learning in content planners
is feasible.

In searching for an appropriate solution, a func-
tion that enables the computer tell from one solution
to another is always needed. A second contribution
of this paper falls in our proposed fitness function,
motivated by generation issues behind the content
planning in generation. By means of a powerful 2-
level fitness function we obtain a 66% improvement
over a random baseline (the one we started from) in
just 20 generations.

The problem with costly functions is always exe-
cution time. By using FC , the constraint-based fit-
ness function, we speed up the process, computing
only 55K regenerations from a total of 187.5K. Our
proposed cross-over and mutation operators are also
well-suited for the task and are the result of our anal-
ysis of the generation domain.

Moreover, our technique achieves results without
the need of extensive semantic annotation nor large
sized input.

We are interested in extending this work by mi-
grating it to other domains. We also plan to inves-
tigate the quality of the obtained planners head to
head with our existing system. We want to see if it
is possible to improve the existing planner (exten-
sive evaluation with human subjects is required), as
the newly obtained output resembles more normally
occurring discourse in the domain.

Aside from the structure discovery, techniques
are required for automatically detecting and build-
ing messages (Reiter and Dale, 2000). This task has
been reported as extremely costly in the past (Ku-
kich, 1983). We believe there are good chances of
combining techniques such as (Duboue and McKe-
own, 2001) and (Barzilay and Lee, 2002) to semi-
automate its creation process.
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