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Abstract 

In spoken language applications such as 
conversation systems where not only the 
speech waveforms but also the content of 
the speech (the text) need to be generated 
automatically, a Concept-to-Speech (CTS) 
system is needed. In this paper, we address 
several issues on designing a speech corpus 
to facilitate an instance-based integrated 
CTS framework. Both the instance-based 
CTS generation approach and the corpus 
design process have not been addressed 
systematically in previous researches. 

1 Introduction 

Instance-based (concatenation-based) Text-
to-Speech (TTS) synthesis in which pre-
recorded speech segments are reused and 
concatenated to generate new utterances 
becomes increasingly popular. So far, the best 
TTS systems available on the market are 
instance-based. In addition, instance-based 
approaches are particularly effective for domain-
specific applications in which large phrases, 
sometimes even entire spoken utterances can be 
reused for both waveform and prosody 
generation (Donovan, 1999, Pan, 2002). 

In many spoken language applications such 
as conversation systems where not only the 
speech waveforms but also the content of a 
speech (the text) need to be automatically 
generated, a TTS system is not sufficient 
because it requires online text as input. Instead, 
we need a Concept-to-Speech (CTS) system in 
which speech is generated directly from 
semantic representations. There are two 
separated stages in a traditional CTS framework, 
natural language generation (NLG), which 
constructs the content and produces grammatical 

text, and TTS, which synthesizes speech from 
the text. In this uncoupled framework, a TTS 
has to infer everything such as syntatic and 
discourse context from text, even though  this 
information is available during NLG. Since not 
only pre-recorded speech segments but also 
sentence structures and wording can be learned 
and reused based on pre-stored corpus instances 
(Varges 2001), we extend the same framework 
to cover the entire CTS process. Moreover, since 
instance-based approaches work well in domain-
specific applications, and almost all the existing 
CTS applications are domain-specific, we 
expect this approach to be effective for most 
CTS applications. Overall, instance-based 
learning provides a general platform for 
integrated text and speech generation. In such a 
CTS system, the decisions in text generation 
directly affect speech synthesis, which is 
difficult to achieve in traditional CTS systems.   

 To facilitate an instance-based CTS 
framework, we create a speech corpus from 
which our system learns both text generation 
and speech synthesis. Since all the linguistic and 
speech knowledge used by the system is 
encoded in the corpus, what is available and 
how information is represented in the corpus 
have direct impact on the capability of a CTS 
generator. Until now,  research issues on corpus 
design for empirical-based CTS generation have 
not been systematically addressed.   

Our work is part of a larger effort in 
developing multimodal conversation systems. 
To aid users in their information-seeking 
process, we are building an intelligent 
infrastructure, called Responsive Information 
Architect (RIA), which can engage users in a 
full-fledged multimodal conversation. A user 
interacts with RIA using multiple input 
channels, such as speech and gesture. Similarly, 
RIA acts/reacts to a user’s request/response with 



automatically generated speech and graphics 
presentations. Currently, RIA is embodied in a 
testbed, called Real Hunter, a real-estate 
application for helping users find residential 
properties. As part of the effort, we are building 
SEGUE (Spoken English Generation Using 
Examples), the CTS generator in RIA. SEGUE 
employs an instance-based framework to 
systematically generate both text and speech. 

The rest of the paper is organized into three 
sections. We first describe the principles and an 
algorithm used in collecting and generating 
corpus instances. Then we describe the 
annotation schemas represented in XML format, 
which capture typical language and speech 
features. Finally, we briefly discuss how this 
corpus is used in CTS generation. 

2 Designing Corpus Scr ipts 

When we prepare scripts to be read during 
recording, we pay attention to not only the 
content of the scripts but also the syntactic and 
surface properties of the text because they will 
affect the assignments of some critical spoken 
language features, such as prosody, when the 
text is read. Our design principles cover several 
aspects of the script design process.  

2.1 Design Pr inciples 

The general principle is to create a corpus to 
cover words and sentences that are most likely 
to be reused. In addition, a corpus should also 
cover sufficient variations to support flexible 
and natural spoken language generation. Thus, 
each instance in a corpus should fulfill at least 
one of the following purposes: improving the 
semantic coverage, improving the syntactic 
coverage, improving the prosodic coverage, and 
improving the word coverage. 

Semantic coverage: In the corpus, there 
should be at least one instance covering each 
domain concept and relation independently. For 
example, in RIA, we cover all the concepts and 
relations represented in RIA’s domain ontology.   

Syntactic coverage: The corpus should cover 
rich syntactic variations similar to those 
observed in natural language. Syntactic 
paraphrases not only create less repetitive but 
livelier sentences, but also provide rich 
substructures (such as noun or adjective phrases) 
to be reused in constructing new sentences.   

Prosodic coverage: A corpus should cover as 
many prosodic variations of the same words or 
phrases as possible because during speech 
synthesis, a CTS system looks for prosodically 
appropriate speech segments to reuse. Unlike in 
(Theune, 2001) where six different prosodic 
realizations are used for each variable based on 
combinations of accents and prosodic phrase 
boundaries, we use a different approach because 
only after the final scripts are read and recorded 
will the exact prosody of the corpus instances be 
determined, Thus, during our script preparation 
stage, prosodic variations are indirectly 
controlled by carefully varying the syntactic and 
surface properties of the corpus instances. 

Word coverage: A corpus should cover as 
many domain words as possible even though full 
word coverage is hard to achieve.  

Of all the four design principles, only the 
semantic coverage is required. For the other 
three principles, the better the coverage is, the 
better the generation quality is. Since word 
coverage is not mandatory, during generation, 
the system may not be able to find the 
appropriate words/phrase to use. In this case, the 
system will fall back to a general TTS to 
generate missing words/phrases.      

In the following, we focus on how to collect 
corpus instances to satisfy these requirements. 

2.2  Resources 

When we prepare scripts to be read, the 
scripts should be close to the utterances to be 
generated, both in term of content and style. 
Since RIA responses to a user with 
automatically generated speech and graphics 
presentations, ideally all the corpus scripts 
should come from multimodal conversations. In 
addition, the corpus should also cover the real 
estate domain. So far, there is only another 
multimodal conversation corpus known to us 
that covers the real estate domain (Yan, 2000).  
But its content is quite different from what we 
need. For example, it focuses on the floor plan 
and spatial description of a house, while we also 
need to cover town, school, and transportation 
information. Our final corpus material comes 
form several different resources.  

First, there is a large amount of real estate 
data available online. Online web sites are 
RIA’s main source of information. However, 
they contain primarily written texts and 
sometimes, the content may not be appropriate 



for speaking. In designing a corpus that is 
appropriate for speech, we gathered speech 
transcripts from real estate TV programs. We 
also collected both unimodal and multimodal 
conversation transcripts for RIA. So far, we 
have transcripts from our initial user study. We 
also added multimodal conversation scripts from 
both RIA’s test runs and mock-up demos.   
Thus, our initial corpus consists of scripts from 
several different resources. In the following, we 
describe how to transform such an initial corpus 
into one that is compatible with our previsouly 
mentioned design principles.  

2.3 Creating car r ier  sentences 

Carrier sentences were created to encode 
different sentence patterns. For example, the 
carrier sentence for “This colonial home is at 
Pleasantville ”  is “This $STYLE home is at 
$TOWN” , Where $STYLE and $TOWN are 
variables. Each variable may take one or more 
values. For example, the values for $STYLE 
includes colonial and contemporary.  The main 
reason for using carrier sentences instead of the 
instances themselves is that each variable in a 
carrier sentence can later be instantiated with 
different values to create new corpus instances.   
In the following, we first focus on constructing 
carrier sentences. Then, in the next section, we 
describe an algorithm for duplicating and 
instantiating carrier sentences.  

 For each sentence in the original corpus, we 
systematically use variables that represent 
domain concepts to replace those words 
realizing the concepts. In addition, we remove 
repetitive carrier sentences because later we 
systematically duplicate carrier sentences based 
on the design principles.  

  Since carrier sentences are collected from a 
variety of resources prepared by humans, they 
cover the general semantic concepts of the 
domain. In addition, they also encode natural 
syntactic variations in human language. But in 
some cases, some domain concepts are still 
missing in the corpus. To convey those 
uncovered domain concepts, we specifically 
construct new carrier sentences. In addition, 
whenever possible, we add new paraphrases for 
carrier sentences to increase syntactic variations. 

 
 

2.4 Instantiating car r ier  sentences 

During carrier sentence creation, we focus 
on semantic and syntactic coverage. During 
instantiation, however, our primary concerns are 
prosodic and word coverage. 

The instantiation process can be seperated 
into two  steps: enumerating possible values for 
each variable and duplicating/instantiating 
carrier sentences. we illustrate them one by one.  

Enumerating values : Before a carrier 
sentence can be instantiated, we need to know 
the possible values of each variable. Ideally, we 
should cover all the possible values for each 
variable to ensure proper coverage. In practice,  
the values of some variables are either 
impossible to enumerate or too large to 
enumerate effectively. Among them, proper 
names and numerical variables pose the biggest 
challenge. 

In terms of proper names,  such as person 
names, the possible values are too large to 
enumerate. Thus, one typical strategy is to cover 
the most common proper names and hopefully 
they will cover most names to be generated. 

For numeric variables, such as zip codes, 
and house prices, it is impossible to list all the 
values. However, word coverage is not difficult 
to achieve. For example, for zip codes, ten digits 
will be enough. For house prices, numbers from 
one to nineteen plus twenty, thirty, to ninety and 
plus million, thousand, hundred will be 
sufficient. In addition to word coverage, because 
the same digit may sound different in speech, 
prosodic coverage is also a concern. For 
example, the 1s in the zip code 10511 may all 
sound differently due to prosodic variations. 
Thus, it is a good idea to cover all the 1s in 
different positions in zip codes. A typical 
solution for generating critical values for 
numeric variables is to analyze the prosodic 
patterns of each variable and cover not only the 
digits but also each prosodic realization of the 
digits. In our zip code example,  the goal is to 
have all the digits appear in each position at 
least once because they may have different 
stress patterns. Only ten zip codes are needed for 
both word and prosodic converage : 12345, 
23456, 34567, 45678, 56789, 67890, 78901, 
89012, 90123, 01234. Simiar approaches were 
also used in (Yi, 1998 ). Ideally, we should also 
consider co-articulation. However, it will 
produce too many combinations. One way to 
alleviate the influence of co-articulation is by 



instructing the speaker who reads the scripts to 
put a pause between numbers. 

Duplicating and instantiating car r ier  
sentences: The main goal in duplication is to 
generate enough carrier sentences so that we 
have sufficient number of instances to cover all 
the essential values of each variable at least 
once. Moreover, because words in different 
positions may associate with different prosodic 
patterns, we also want to make sure that each 
value also appears in every position at least once 
in order to increase prosodic variations. For 
example, the word colonial in This colonial 
house is in Pleasantville may sound differently 
from the colonial in The style of the house is 
colonial. Thus, during instantiation, we want all 
possible house styles appear in each of the two 
places at least once. Currently, we categorize all 
the possible sentence positions into three 
classes : sentence initial, sentence middle and 
sentence final. The main reason for this 
generalization is to reduce the number of  
instances needed to cover position variations. 
However, fine-grained classifications may 
produce better results if the total number of 
instances is not a concern. In addition, we also 
want to duplicate as few carrier sentences as 
possible to control the overall corpus size 
because manual annotation is often needed for 
corpus-based CTS generation. Thus, we want 
each carrier sentence simultaneously serves as 
many purposes as possible.  

One way to instantiate carrier sentence is to 
use a Context Free Grammar (CFG)-based 
generation approach. But this may generate too 
many instances. For example, given two carrier 
sentences : This $STYLE house is in $TOWN 
and This $TOWN is the home of this $SYTLE 
house, and two values for each variable : 
colonial and contempory for $STYLE,  
Pleasantville and New Castle for $TOWN, the 
CFG-based approach generates eight 
instances while only four instances are enough 
to have both the position and word coverage  

 
 
 
 
 
 
 
 

The algorithm we proposed here 
accomplishes the desired word and position 
coverage with less carrier sentences than the 
CFG-based approach. Figure 1 show the pseudo 
code for duplicating and instantiating the carrier 
sentences : 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Figure 1, Vi is the current variable, Cj  and 

Ck  are the current carrier sentence, Nvi  and Nd 
are the number of possible values for variable Vi 
and the number of duplications needed for a 
carrier sentence. For each variable at each 
sentence position, we check whether there is 
sufficient number of carrier sentences to cover 
all the values of that variable. If the answer is 
yes, no duplication is needed. Otherwise, the 
system computes how many more carrier 
sentences are needed and duplicate carrier 
sentences evenly across all the related carrier 
sentences. In addition, each time new carrier 
sentences are created, they are put back to the 
corpus so that the computation for a different 
variable at a different position will take these 
new carrier sentences into consideration. This is 
one way to avoid generating too many carrier 
sentences. In step (2), the system replaces each 
variable with its values systematically.For 
SEGUE, so far we have collected and created 
over 300 carrier sentences. After duplication and 
instantiation, there are about 1000 instances in 
the final corpus. In the following, we describe 
how each corpus instance is annotated to 
facilitate instance-based CTS generation. 

 
 
 

Colonial+Pleasantville 
Colonial+New Castle 
Contemporary+Pleasantville 
Contemporary+New Castle 
Pleasantville+Colonial 
Pleasantville+Contemporary 
New Castle+Contemporary 
New Castle+Colonial 
 
         CFG output 

Colonial+Pleasantville 
Contemporary+New Castle 
Pleasantville+Colonial 
New Castle+Contemporay 
 
          Ideal output 

Duplication:
(1) For each variable Vi in the domain :

Nvi = the number of possible values of Vi

1.1 for all the carrier sentences Cj in the corpus
First(Vi) = the number of Cj where Vi is at the begining.

1.2 for all the carrier sentences Ck in the corpus
If  First(Vi) >= Nvi Then Nd=0

Else Nd=Round(Nvi/First(Vi))-1
If Vi appears first in Ck Then Duplicate Ck  for Nd times

Repeat Step 1.1 and 1.2 for Vi at sentence middle and final 
positions on the new corpus.
Repeat (1) for all the variables in the domain on the new corpus.
Instantiation:
(2) For each variable Vi in the domain 

2.1 LISTvi=the list of all the possible values of Vi

2.2 For all the carrier sentences Cj in the corpus
If Vi  is at the beginning of Cj Then Va=rotate( LISTvi)

Replace Vi in Cj with Va
Repeat step 2.2 for Vi at sentence middle and final position.

Repeat (2) for all the concepts in the corpus

Figure 1: An Algor ithm for Instantiating Carr ier  Sentence



3  Corpus  Annotation 

For simple applications, carrier sentences 
themselves have been used directly in corpus-
based NLG (Ratnaparkhi, 2000). However, they 
may not be comprehensive enough for more 
sophisticated applications. For example, unlike 
domain concepts, relations are not explicitly 
annotated in a carrier sentence. Thus, given two 
concepts like $HOUSE and $TOWN as input, in 
principle, without indicating their relations, it is 
hard if not impossible to decide which sentence 
to choose: $HOUSE is located in $TOWN or 
$HOUSE is close to $TOWN. In addition, carrier 
sentences do not encode discourse influence, 
which may affect a CTS system’s ability in 
generating coherent discourses. Moreover, 
carrier sentences do not encode the intentions of 
an utterance. Intentions are critical for 
conversation systems. 

In SEGUE, we employ a comprehensive 
representation of corpus instances. Each training 
instance is associated with two annotations: a 
semantic graph (SemGraph) that represents the 
meaning of a sentence and a Realization Tree 
(ReaTree) that represents the syntactic, lexical, 
prosodic and acoustic realizations of the 
meaning. Both annotations are represented in 
XML format. In the following, we describe the 
features represented in these annotations.  

3.1 Semantic Graph (SemGraph) 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 2 shows a SemGraph for the sentence 

This home has 4 bedrooms, 3 baths and 9000 
square feet. It encodes domain concepts, such as 
BEDROOM# and HOUSESIZE. In addition, it 
also encodes relations between concepts, such as 
HAS-ATT and HAS-VALUE. Overall, a 

SemGraph is an aggregation of domain relations 
and concepts. In addition, it also represents 
speech acts and semantic focus, which form the 
intention of a sentence. Currently, the speech 
acts covered in our annotation include request, 
describe, confirm, help, greet, goodbye, and 
acknowledge. Among them, describe and 
request are the most common speech acts in 
information-seeking applications. Semantic 
focus marks the attentional focus that a speaker 
wants to emphasize so that special syntactic 
constructions (e.g. preposing) or prosodic 
constructions (e.g. stress) can be used to realize 
the intention effectively. For example, if a 
speaker wants to emphasize that a house is huge, 
she may mark $HOUSESIZE the semantic 
focus.  

3.2 Realization tree (ReaTree) 

ReaTree encodes features related to how 
meanings are realized in speech. Since the same 
input can be realized in many different ways due 
to discourse, syntactic, lexical, prosodic, and 
acoustic variations, a ReaTree should cover all 
the relevant features. 

The biggest challenge in encoding all these 
information in a ReaTree is that overall there are 
three different structures to be represented in a 
ReaTree : a syntactic tree encoding the syntactic 
constituent structure, a semantic representation 
encoding a SemGraph equivalence, and a 
prosodic tree encoding a prosodic constituent 
structure. Moreover, there is no simple one-to-
one mapping between two different structures. 
For example, there is phonological evidence 
indicating that there is no direct mapping between 
a syntactic tree and a prosodic tree (Bechenko, 
1990). 

To solve this problem, the ReaTree 
representation is primarily based on a sentence’s 
syntactic structure. On top of the syntactic tree, 
we use a set of features to mark the underlying 
semantic and prosodic structures. In addition, we 
also include features that are essential for 
discourse generation and speech synthesis. Here 
are the main features annoated in a ReaTree : 

Discourse feature: It encodes whether a 
syntactic constituent is the topic of a sentence. It 
is useful in generating context-appropriate 
sentences. For example, one strategy to maintain 
discourse coherence is to keep the current 
sentence topic the same as the discourse focus. 

House

Bedroom#House Size

4 bedrooms 3 baths9000 sq. ft.

Bathroom#

[has-att]

[has-value] [has-value][has-value]

[SpeechAct=“DESCRIBE”]

[has-att] [has-att]

“This home has 4 bedrooms, 3 baths and 9000 square feet.”

Figure 2: A SemGraph

[SemFocus=YES]



Syntactic features: Main syntactic features 
annotated in a ReaTree include syntactic 
constituent structures, syntactic categories (cat), 
grammar roles (role), syntactic functions 
(syn_fun) and part-of-speech (pos). Syntactic 
features are used mainly for reconstructing new 
sentences. For example, syntactic structures are 
encoded as hierarchical syntactic trees. Each 
subtree or branch in a syntactic tree is a potential 
building block for new syntactic trees. In 
addition, syntactic categories (cat), such as 
whether a phrase is an NP, VP or ADJP, also help 
us decide whether two or more phrases can be 
combined to form a new phrase/sentence. 
Grammar roles, such as whether a constituent is a 
subject, object, or subject complement, provide 
more constraints on whether a syntactic 
constituent can be reused in a new sentence. 
Syntactic functions indicate whether a word or 
phrase is the head or modifier of a constituent. 
Finally, part-of-speech (pos) is the syntactic 
category of a word.   

Semantic features: For each syntactic 
constituent in a ReaTree, we also use the features 
like base_concept and rel_concept to encode the 
corresponding concept/relation realized by this 
constitute. Since the same concept/relation is also 
defined in the SemGraph, base_concept and 
rel_concept establish links between a 
concept/relation in a SemGraph and its 
realization in a ReaTree. Thus, it essentially 
defines a mapping between a SemGraph and the 
associated ReaTree. 

Lexcial feature : Right now, SEGUE only uses 
one feature called text, which is the exact 
wording used to convey a concept or relation. 

Prosodic features: The main prosodic features 
encoded in a ReaTree are the four main ToBI1 
features: break index, pitch accent, phrase 
accent, and boundary tone (Silverman 1996). 
Break index (index) describes the relative levels 
of disjuncture between two adjacent orthographic 
words. Five levels of disjuncture, form 0 to 4, are 
defined in ToBI, where 4 marks the end of an 
intonational phrase boundary, the most 
significant prosodic constituent boundary, and 3 
marks an intermediate phrase boundary, the 
second most significant prosodic phrase 
boundary. In addition, 1 is the default boundary 
and 0 means no juncture between two adjacent 

                                                      
1 ToBI is a prosody annotation convention for 
American English. 

words. Thus break index essentially encodes a 
hierarchical prosodic constituent structure. In 
addition to break index, pitch accent (accent) is 
associated with a significant excursion in a pitch 
contour. It often marks the lexical item with 
which it is associated as prominent. Both phrase 
accent (Pa) and boundary tone (Bt) control the 
shape of a pitch contour towards or at the end of 
an intonational or intermediate phrase. 

Acoustic features: They are encoded as 
pointers to a parametric segment database in 
which temporal sequences of vectors of 
parameters of speech segments are stored. 
Typical acoustic features encoded in the database 
include  waveforms and parameters related to 
pitch, duration, and amplitude. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 shows an example of the ReaTree of  

This colonial home has five bedrooms. In this 
representation, there are four basic elements : 
sentence, clause (not in the example), phrase, and 
word. A sentence element is associated with a 
unique  sentence id, pointing to the corresponding 
SemGraph. In addition,  phrase is associated with  
features such as base_concept, rel_concept, 
syntactic category, grammar role, and syntactic 
function. In addition, it also associates with 
discourse features such as whether a phrase is the 
topic of a sentence. A clause is an embeded 
sentence. It associates with features similar to 
those of a phrase. Finally, the main features 
associated with a word include the text itself, the 
part-of-speech, the syntactic function, the 
associated ToBI prosodic features and an unique 
word id, pointing to the acoustic parameters 
represented in the speech segment database.  

Finally, both the SemGraph and ReaTree are 
represented in XML because it is flexible enough 
to represent complicated structures, and at the 
same time, it also facilitates parsing and 

sentence

word

[id=3.4
base_concept=has-att
pos=vbz
text=has
index=0]

word word

[id=3.6
pos=nns
base-concept=unit
text=bedrooms
accent=H*
index=4
pa=L-
bt=L%]

[id=3.5
base-concept=num
pos=cd
text=five
accent=H*]

phrase

[cat=np
base-concept=Bedroom#
rel-concept=has-val
role=object]

phrase

[base-concept=house
rel-concept=has-att
cat np
role=subj
topic=yes]

word word word

[id=3.1
pos=dt
text=this]

[id=3.3
pos=nn
base-concept=house
text=home
syn_fun=head
accent=H*
index=3
pa=L-]

[id=3.2
pos=jj
base-concept=sytle
text=colonial
syn_fun=Premod
accent=L+H*]

phrase

[cat=np
base-oncept=house
rel-concept=has-att
syn_fun=head]

[id=3
base-concept=has-att
rel-concept=has-att]

Figure 3: A ReaTr ee



searching that are essential for instance-based 
learning.   

 

4 Using the corpus for  generation 

We now briefly describe how the annotated 
speech corpus can be used in CTS generation. 
Instance-based learning is lazy learning. It 
focuses on how to find similar instances in the 
training corpus and how to reconstruct new 
instances if a proper training instance is not 
found. There are three elements in the core of 
instance-based learning: similarity metrics, 
search algorithms, and reconstruction processes. 
Among them, the definitions of similarity 
metrics are based on the features annotated in 
the corpus. In addition, we employed a 
searching and matching algorithm that is also 
based on the structures of the annotated 
instances. Since the detailed descriptions of the 
similarity metrics as well as the searching and 
reconstruction algorithm are not the foci of this 
paper, we instead briefly describe how speech 
can be generated based on annotations in a 
SemGraph and ReaTree.  

Our generation algorithm starts with a diff 
function that measures the difference (or 
similarity) between the SemGraph of a new 
input and those of corpus instances.  To narrow 
down the search space, we focus on the top n 
matching corpus instances. If the result of diff 
for the top-matching training instance equals to 
zero, indicating an exact match, the entire 
matching instance is reused. In this case, 
SEGUE not only reuses the sentence structure 
and the wording but also the pronunciation, 
prosody, and waveforms. Thus, the resulting 
speech has high quality because the entire 
natural spoken utterance is reused. In general, 
for a domain-specific application, if a corpus is 
designed properly, there will be a significant 
number of cases falling in this category. 
However, if the result of diff is greater than zero, 
a set of revision operators are generated based 
on the difference. Typical revision operators 
include remove, insert, and replace. The remove 
operator deletes extra concepts or relations as 
well as their associated subtrees. The insert 
operator adds a new concept or relation. The 
replace operator only applies to has-value 
relations. It instantiates a variable with a 
different value. For example, if the input 

SemGraph is shown in Figure 5, and the closest 
matching training SemGraph is shown in Figure 
2, the resulting diff operators will be: 

1. remove has-att (House, HouseSize) 
2. remove has-value (HouseSize, 9000) 
3. insert has-att (House, HouseType) 
4. insert has-value (HouseType, attached) 
5. replace has-value (bedroom#, 4, 3) 
6. replace has-value (bathroom#,3,2) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Given a set of revision operators, the next 
step is to transform the corresponding ReaTree 
into one that can convey the meanings of the 
input SemGraph. In general, each operator is 
associated with a cost function. The overall cost 
function is a weighted combination of five 
subordinate cost functions: the discourse cost, 
syntactic cost, lexical cost, prosodic cost, and 
acoustic cost. All the cost functions measure the 
impact of applying an operator to a ReaTree. For 
example, syntactic cost measures how a revision 
operator affects the syntactic structure of a 
ReaTree. If an operator has little impact on the 
soundness of a syntactic structure, the syntactic 
cost will be low. In contrast, if applying an 
operator results in incomplete structures, the 
syntactic cost will be high. Similarly, in term of 
acoustic cost, if applying an operator, such as 
insertion, results in significant discontinuity 
between existing and new speech segments, the 
acoustic cost will be high.  

In order to apply a remove operator to a 
ReaTree, the system first searches for a subtree 
that conveys the specified concepts/relation. 
Breaking a link on the subtree removes a 
concept or relation from the ReaTree. Breaking 
different links on the tree results in different 
remove costs. Similarly, when an insert operator 
is applied, the system first searches for a 
tree/subtree that communicates the specified 
relation, then it decides where and how to 

House

Bedroom#House  Type

3 bedrooms 2 bathsattached.

Bathroom#

[has-att]

[has-value] [has-value][has-value]

[SpeechAct=“DESCRIBE”]

[has-att] [has-att]

Figure 5:  An Input  SemGraph

This attached house has 3 bedrooms and 2 baths.



append the tree/subtree to a ReaTree. The 
difference in selecting a subtree as well as the 
difference in choosing a location to append the 
subtree may result in different insert costs. The 
replace operator searches for all the occurrences 
of a variable and replaces the existing value with 
a specified value. A replace operator is also 
associated with a replace cost. Depending on 
which occurrence of the word/phrase is used as 
the replacement, the prosodic cost and acoustic 
cost will be different, which in turn results in 
different replace costs. After applying all the 
operators, the lower the overall cost, the better 
the overall generation quality. After we repeat 
the entire process to convert the top n matching 
ReaTrees, the one with the lowest cost is the one 
to be generated by SEGUE. Our current 
prototype system only covers one type of speech 
act, describe, and a sub-domain of our 
application, house descriptions. 

5 Related Work 

Instance-based domain-specific speech 
synthesis is quite common (Donovan, 1997, 
Taylor, 2000). In contrast, most NLG systems 
use grammar-based approaches (Elhadad, 1993, 
Lavoie, 1997). Recently, machine learning-
based NLG gains attentions (Ratnaparkhi, 2000, 
Walker, 2001, Oberlander, 2000, Varges, 2001, 
Langkilde, 2000). However, except for a few 
template-based systems (Yi, 1998), most CTS 
systems still use different platforms for NLG 
and speech synthesis. This uncoupled CTS 
architecture has inherent integration problems. 

In terms of corpus design for CTS 
generation, until now, designing a single speech 
corpus for both NLG and speech synthesis in 
integrated CTS generation has not been 
systematically addressed. In (Theune, 2001), a 
speech corpus is designed only for TTS. No 
corpus is needed for its template-based NLG.   

6 Conclusions   

In this paper, we present a new uniform 
framework for systematically generating both 
text and speech using a single speech corpus. 
One of our research foci is on the design of a 
speech corpus for both text and speech 
generation.  This framework facilitates the reuse 
of sentence structure, wording, prosody and 
speech waveforms simultaneously  
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