
 Designing a Speech Corpus for Instance-based Spoken Language
Generation

Shimei Pan
IBM T.J. Watson Research Center

19 Skyline Drive
Hawthorne, NY 10532
shimei@us.ibm.com

Wubin Weng
 Department of Computer Science

Columbia University
1214 Amsterdam Ave. Mail Code 0401

New York, NY 10027
wubin@cs.columbia.edu

Abstract

In spoken language applications such as
conversation systems where not only the
speech waveforms but also the content of
the speech (the text) need to be generated
automatically, a Concept-to-Speech (CTS)
system is needed. In this paper, we address
several issues on designing a speech corpus
to facilitate an instance-based integrated
CTS framework. Both the instance-based
CTS generation approach and the corpus
design process have not been addressed
systematically in previous researches.

1 Introduction

Instance-based (concatenation-based) Text-
to-Speech (TTS) synthesis in which pre-
recorded speech segments are reused and
concatenated to generate new utterances
becomes increasingly popular. So far, the best
TTS systems available on the market are
instance-based. In addition, instance-based
approaches are particularly effective for domain-
specific applications in which large phrases,
sometimes even entire spoken utterances can be
reused for both waveform and prosody
generation (Donovan, 1999, Pan, 2002).

In many spoken language applications such
as conversation systems where not only the
speech waveforms but also the content of a
speech (the text) need to be automatically
generated, a TTS system is not sufficient
because it requires online text as input. Instead,
we need a Concept-to-Speech (CTS) system in
which speech is generated directly from
semantic representations. There are two
separated stages in a traditional CTS framework,
natural language generation (NLG), which
constructs the content and produces grammatical

text, and TTS, which synthesizes speech from
the text. In this uncoupled framework, a TTS
has to infer everything such as syntatic and
discourse context from text, even though this
information is available during NLG. Since not
only pre-recorded speech segments but also
sentence structures and wording can be learned
and reused based on pre-stored corpus instances
(Varges 2001), we extend the same framework
to cover the entire CTS process. Moreover, since
instance-based approaches work well in domain-
specific applications, and almost all the existing
CTS applications are domain-specific, we
expect this approach to be effective for most
CTS applications. Overall, instance-based
learning provides a general platform for
integrated text and speech generation. In such a
CTS system, the decisions in text generation
directly affect speech synthesis, which is
difficult to achieve in traditional CTS systems.

 To facilitate an instance-based CTS
framework, we create a speech corpus from
which our system learns both text generation
and speech synthesis. Since all the linguistic and
speech knowledge used by the system is
encoded in the corpus, what is available and
how information is represented in the corpus
have direct impact on the capability of a CTS
generator. Until now, research issues on corpus
design for empirical-based CTS generation have
not been systematically addressed.

Our work is part of a larger effort in
developing multimodal conversation systems.
To aid users in their information-seeking
process, we are building an intelligent
infrastructure, called Responsive Information
Architect (RIA), which can engage users in a
full-fledged multimodal conversation. A user
interacts with RIA using multiple input
channels, such as speech and gesture. Similarly,
RIA acts/reacts to a user’s request/response with

automatically generated speech and graphics
presentations. Currently, RIA is embodied in a
testbed, called Real Hunter, a real-estate
application for helping users find residential
properties. As part of the effort, we are building
SEGUE (Spoken English Generation Using
Examples), the CTS generator in RIA. SEGUE
employs an instance-based framework to
systematically generate both text and speech.

The rest of the paper is organized into three
sections. We first describe the principles and an
algorithm used in collecting and generating
corpus instances. Then we describe the
annotation schemas represented in XML format,
which capture typical language and speech
features. Finally, we briefly discuss how this
corpus is used in CTS generation.

2 Designing Corpus Scr ipts

When we prepare scripts to be read during
recording, we pay attention to not only the
content of the scripts but also the syntactic and
surface properties of the text because they will
affect the assignments of some critical spoken
language features, such as prosody, when the
text is read. Our design principles cover several
aspects of the script design process.

2.1 Design Pr inciples

The general principle is to create a corpus to
cover words and sentences that are most likely
to be reused. In addition, a corpus should also
cover sufficient variations to support flexible
and natural spoken language generation. Thus,
each instance in a corpus should fulfill at least
one of the following purposes: improving the
semantic coverage, improving the syntactic
coverage, improving the prosodic coverage, and
improving the word coverage.

Semantic coverage: In the corpus, there
should be at least one instance covering each
domain concept and relation independently. For
example, in RIA, we cover all the concepts and
relations represented in RIA’s domain ontology.

Syntactic coverage: The corpus should cover
rich syntactic variations similar to those
observed in natural language. Syntactic
paraphrases not only create less repetitive but
livelier sentences, but also provide rich
substructures (such as noun or adjective phrases)
to be reused in constructing new sentences.

Prosodic coverage: A corpus should cover as
many prosodic variations of the same words or
phrases as possible because during speech
synthesis, a CTS system looks for prosodically
appropriate speech segments to reuse. Unlike in
(Theune, 2001) where six different prosodic
realizations are used for each variable based on
combinations of accents and prosodic phrase
boundaries, we use a different approach because
only after the final scripts are read and recorded
will the exact prosody of the corpus instances be
determined, Thus, during our script preparation
stage, prosodic variations are indirectly
controlled by carefully varying the syntactic and
surface properties of the corpus instances.

Word coverage: A corpus should cover as
many domain words as possible even though full
word coverage is hard to achieve.

Of all the four design principles, only the
semantic coverage is required. For the other
three principles, the better the coverage is, the
better the generation quality is. Since word
coverage is not mandatory, during generation,
the system may not be able to find the
appropriate words/phrase to use. In this case, the
system will fall back to a general TTS to
generate missing words/phrases.

In the following, we focus on how to collect
corpus instances to satisfy these requirements.

2.2 Resources

When we prepare scripts to be read, the
scripts should be close to the utterances to be
generated, both in term of content and style.
Since RIA responses to a user with
automatically generated speech and graphics
presentations, ideally all the corpus scripts
should come from multimodal conversations. In
addition, the corpus should also cover the real
estate domain. So far, there is only another
multimodal conversation corpus known to us
that covers the real estate domain (Yan, 2000).
But its content is quite different from what we
need. For example, it focuses on the floor plan
and spatial description of a house, while we also
need to cover town, school, and transportation
information. Our final corpus material comes
form several different resources.

First, there is a large amount of real estate
data available online. Online web sites are
RIA’s main source of information. However,
they contain primarily written texts and
sometimes, the content may not be appropriate

for speaking. In designing a corpus that is
appropriate for speech, we gathered speech
transcripts from real estate TV programs. We
also collected both unimodal and multimodal
conversation transcripts for RIA. So far, we
have transcripts from our initial user study. We
also added multimodal conversation scripts from
both RIA’s test runs and mock-up demos.
Thus, our initial corpus consists of scripts from
several different resources. In the following, we
describe how to transform such an initial corpus
into one that is compatible with our previsouly
mentioned design principles.

2.3 Creating car r ier sentences

Carrier sentences were created to encode
different sentence patterns. For example, the
carrier sentence for “This colonial home is at
Pleasantville ” is “This $STYLE home is at
$TOWN” , Where $STYLE and $TOWN are
variables. Each variable may take one or more
values. For example, the values for $STYLE
includes colonial and contemporary. The main
reason for using carrier sentences instead of the
instances themselves is that each variable in a
carrier sentence can later be instantiated with
different values to create new corpus instances.
In the following, we first focus on constructing
carrier sentences. Then, in the next section, we
describe an algorithm for duplicating and
instantiating carrier sentences.

 For each sentence in the original corpus, we
systematically use variables that represent
domain concepts to replace those words
realizing the concepts. In addition, we remove
repetitive carrier sentences because later we
systematically duplicate carrier sentences based
on the design principles.

 Since carrier sentences are collected from a
variety of resources prepared by humans, they
cover the general semantic concepts of the
domain. In addition, they also encode natural
syntactic variations in human language. But in
some cases, some domain concepts are still
missing in the corpus. To convey those
uncovered domain concepts, we specifically
construct new carrier sentences. In addition,
whenever possible, we add new paraphrases for
carrier sentences to increase syntactic variations.

2.4 Instantiating car r ier sentences

During carrier sentence creation, we focus
on semantic and syntactic coverage. During
instantiation, however, our primary concerns are
prosodic and word coverage.

The instantiation process can be seperated
into two steps: enumerating possible values for
each variable and duplicating/instantiating
carrier sentences. we illustrate them one by one.

Enumerating values : Before a carrier
sentence can be instantiated, we need to know
the possible values of each variable. Ideally, we
should cover all the possible values for each
variable to ensure proper coverage. In practice,
the values of some variables are either
impossible to enumerate or too large to
enumerate effectively. Among them, proper
names and numerical variables pose the biggest
challenge.

In terms of proper names, such as person
names, the possible values are too large to
enumerate. Thus, one typical strategy is to cover
the most common proper names and hopefully
they will cover most names to be generated.

For numeric variables, such as zip codes,
and house prices, it is impossible to list all the
values. However, word coverage is not difficult
to achieve. For example, for zip codes, ten digits
will be enough. For house prices, numbers from
one to nineteen plus twenty, thirty, to ninety and
plus million, thousand, hundred will be
sufficient. In addition to word coverage, because
the same digit may sound different in speech,
prosodic coverage is also a concern. For
example, the 1s in the zip code 10511 may all
sound differently due to prosodic variations.
Thus, it is a good idea to cover all the 1s in
different positions in zip codes. A typical
solution for generating critical values for
numeric variables is to analyze the prosodic
patterns of each variable and cover not only the
digits but also each prosodic realization of the
digits. In our zip code example, the goal is to
have all the digits appear in each position at
least once because they may have different
stress patterns. Only ten zip codes are needed for
both word and prosodic converage : 12345,
23456, 34567, 45678, 56789, 67890, 78901,
89012, 90123, 01234. Simiar approaches were
also used in (Yi, 1998). Ideally, we should also
consider co-articulation. However, it will
produce too many combinations. One way to
alleviate the influence of co-articulation is by

instructing the speaker who reads the scripts to
put a pause between numbers.

Duplicating and instantiating car r ier
sentences: The main goal in duplication is to
generate enough carrier sentences so that we
have sufficient number of instances to cover all
the essential values of each variable at least
once. Moreover, because words in different
positions may associate with different prosodic
patterns, we also want to make sure that each
value also appears in every position at least once
in order to increase prosodic variations. For
example, the word colonial in This colonial
house is in Pleasantville may sound differently
from the colonial in The style of the house is
colonial. Thus, during instantiation, we want all
possible house styles appear in each of the two
places at least once. Currently, we categorize all
the possible sentence positions into three
classes : sentence initial, sentence middle and
sentence final. The main reason for this
generalization is to reduce the number of
instances needed to cover position variations.
However, fine-grained classifications may
produce better results if the total number of
instances is not a concern. In addition, we also
want to duplicate as few carrier sentences as
possible to control the overall corpus size
because manual annotation is often needed for
corpus-based CTS generation. Thus, we want
each carrier sentence simultaneously serves as
many purposes as possible.

One way to instantiate carrier sentence is to
use a Context Free Grammar (CFG)-based
generation approach. But this may generate too
many instances. For example, given two carrier
sentences : This $STYLE house is in $TOWN
and This $TOWN is the home of this $SYTLE
house, and two values for each variable :
colonial and contempory for $STYLE,
Pleasantville and New Castle for $TOWN, the
CFG-based approach generates eight
instances while only four instances are enough
to have both the position and word coverage

The algorithm we proposed here
accomplishes the desired word and position
coverage with less carrier sentences than the
CFG-based approach. Figure 1 show the pseudo
code for duplicating and instantiating the carrier
sentences :

In Figure 1, Vi is the current variable, Cj and

Ck are the current carrier sentence, Nvi and Nd
are the number of possible values for variable Vi
and the number of duplications needed for a
carrier sentence. For each variable at each
sentence position, we check whether there is
sufficient number of carrier sentences to cover
all the values of that variable. If the answer is
yes, no duplication is needed. Otherwise, the
system computes how many more carrier
sentences are needed and duplicate carrier
sentences evenly across all the related carrier
sentences. In addition, each time new carrier
sentences are created, they are put back to the
corpus so that the computation for a different
variable at a different position will take these
new carrier sentences into consideration. This is
one way to avoid generating too many carrier
sentences. In step (2), the system replaces each
variable with its values systematically.For
SEGUE, so far we have collected and created
over 300 carrier sentences. After duplication and
instantiation, there are about 1000 instances in
the final corpus. In the following, we describe
how each corpus instance is annotated to
facilitate instance-based CTS generation.

Colonial+Pleasantville
Colonial+New Castle
Contemporary+Pleasantville
Contemporary+New Castle
Pleasantville+Colonial
Pleasantville+Contemporary
New Castle+Contemporary
New Castle+Colonial

 CFG output

Colonial+Pleasantville
Contemporary+New Castle
Pleasantville+Colonial
New Castle+Contemporay

 Ideal output

Duplication:
(1) For each variable Vi in the domain :

Nvi = the number of possible values of Vi

1.1 for all the carrier sentences Cj in the corpus
First(Vi) = the number of Cj where Vi is at the begining.

1.2 for all the carrier sentences Ck in the corpus
If First(Vi) >= Nvi Then Nd=0

Else Nd=Round(Nvi/First(Vi))-1
If Vi appears first in Ck Then Duplicate Ck for Nd times

Repeat Step 1.1 and 1.2 for Vi at sentence middle and final
positions on the new corpus.
Repeat (1) for all the variables in the domain on the new corpus.
Instantiation:
(2) For each variable Vi in the domain

2.1 LISTvi=the list of all the possible values of Vi

2.2 For all the carrier sentences Cj in the corpus
If Vi is at the beginning of Cj Then Va=rotate(LISTvi)

Replace Vi in Cj with Va
Repeat step 2.2 for Vi at sentence middle and final position.

Repeat (2) for all the concepts in the corpus

Figure 1: An Algor ithm for Instantiating Carr ier Sentence

3 Corpus Annotation

For simple applications, carrier sentences
themselves have been used directly in corpus-
based NLG (Ratnaparkhi, 2000). However, they
may not be comprehensive enough for more
sophisticated applications. For example, unlike
domain concepts, relations are not explicitly
annotated in a carrier sentence. Thus, given two
concepts like $HOUSE and $TOWN as input, in
principle, without indicating their relations, it is
hard if not impossible to decide which sentence
to choose: $HOUSE is located in $TOWN or
$HOUSE is close to $TOWN. In addition, carrier
sentences do not encode discourse influence,
which may affect a CTS system’s ability in
generating coherent discourses. Moreover,
carrier sentences do not encode the intentions of
an utterance. Intentions are critical for
conversation systems.

In SEGUE, we employ a comprehensive
representation of corpus instances. Each training
instance is associated with two annotations: a
semantic graph (SemGraph) that represents the
meaning of a sentence and a Realization Tree
(ReaTree) that represents the syntactic, lexical,
prosodic and acoustic realizations of the
meaning. Both annotations are represented in
XML format. In the following, we describe the
features represented in these annotations.

3.1 Semantic Graph (SemGraph)

Figure 2 shows a SemGraph for the sentence

This home has 4 bedrooms, 3 baths and 9000
square feet. It encodes domain concepts, such as
BEDROOM# and HOUSESIZE. In addition, it
also encodes relations between concepts, such as
HAS-ATT and HAS-VALUE. Overall, a

SemGraph is an aggregation of domain relations
and concepts. In addition, it also represents
speech acts and semantic focus, which form the
intention of a sentence. Currently, the speech
acts covered in our annotation include request,
describe, confirm, help, greet, goodbye, and
acknowledge. Among them, describe and
request are the most common speech acts in
information-seeking applications. Semantic
focus marks the attentional focus that a speaker
wants to emphasize so that special syntactic
constructions (e.g. preposing) or prosodic
constructions (e.g. stress) can be used to realize
the intention effectively. For example, if a
speaker wants to emphasize that a house is huge,
she may mark $HOUSESIZE the semantic
focus.

3.2 Realization tree (ReaTree)

ReaTree encodes features related to how
meanings are realized in speech. Since the same
input can be realized in many different ways due
to discourse, syntactic, lexical, prosodic, and
acoustic variations, a ReaTree should cover all
the relevant features.

The biggest challenge in encoding all these
information in a ReaTree is that overall there are
three different structures to be represented in a
ReaTree : a syntactic tree encoding the syntactic
constituent structure, a semantic representation
encoding a SemGraph equivalence, and a
prosodic tree encoding a prosodic constituent
structure. Moreover, there is no simple one-to-
one mapping between two different structures.
For example, there is phonological evidence
indicating that there is no direct mapping between
a syntactic tree and a prosodic tree (Bechenko,
1990).

To solve this problem, the ReaTree
representation is primarily based on a sentence’s
syntactic structure. On top of the syntactic tree,
we use a set of features to mark the underlying
semantic and prosodic structures. In addition, we
also include features that are essential for
discourse generation and speech synthesis. Here
are the main features annoated in a ReaTree :

Discourse feature: It encodes whether a
syntactic constituent is the topic of a sentence. It
is useful in generating context-appropriate
sentences. For example, one strategy to maintain
discourse coherence is to keep the current
sentence topic the same as the discourse focus.

House

Bedroom#House Size

4 bedrooms 3 baths9000 sq. ft.

Bathroom#

[has-att]

[has-value] [has-value][has-value]

[SpeechAct=“DESCRIBE”]

[has-att] [has-att]

“This home has 4 bedrooms, 3 baths and 9000 square feet.”

Figure 2: A SemGraph

[SemFocus=YES]

Syntactic features: Main syntactic features
annotated in a ReaTree include syntactic
constituent structures, syntactic categories (cat),
grammar roles (role), syntactic functions
(syn_fun) and part-of-speech (pos). Syntactic
features are used mainly for reconstructing new
sentences. For example, syntactic structures are
encoded as hierarchical syntactic trees. Each
subtree or branch in a syntactic tree is a potential
building block for new syntactic trees. In
addition, syntactic categories (cat), such as
whether a phrase is an NP, VP or ADJP, also help
us decide whether two or more phrases can be
combined to form a new phrase/sentence.
Grammar roles, such as whether a constituent is a
subject, object, or subject complement, provide
more constraints on whether a syntactic
constituent can be reused in a new sentence.
Syntactic functions indicate whether a word or
phrase is the head or modifier of a constituent.
Finally, part-of-speech (pos) is the syntactic
category of a word.

Semantic features: For each syntactic
constituent in a ReaTree, we also use the features
like base_concept and rel_concept to encode the
corresponding concept/relation realized by this
constitute. Since the same concept/relation is also
defined in the SemGraph, base_concept and
rel_concept establish links between a
concept/relation in a SemGraph and its
realization in a ReaTree. Thus, it essentially
defines a mapping between a SemGraph and the
associated ReaTree.

Lexcial feature : Right now, SEGUE only uses
one feature called text, which is the exact
wording used to convey a concept or relation.

Prosodic features: The main prosodic features
encoded in a ReaTree are the four main ToBI1
features: break index, pitch accent, phrase
accent, and boundary tone (Silverman 1996).
Break index (index) describes the relative levels
of disjuncture between two adjacent orthographic
words. Five levels of disjuncture, form 0 to 4, are
defined in ToBI, where 4 marks the end of an
intonational phrase boundary, the most
significant prosodic constituent boundary, and 3
marks an intermediate phrase boundary, the
second most significant prosodic phrase
boundary. In addition, 1 is the default boundary
and 0 means no juncture between two adjacent

1 ToBI is a prosody annotation convention for
American English.

words. Thus break index essentially encodes a
hierarchical prosodic constituent structure. In
addition to break index, pitch accent (accent) is
associated with a significant excursion in a pitch
contour. It often marks the lexical item with
which it is associated as prominent. Both phrase
accent (Pa) and boundary tone (Bt) control the
shape of a pitch contour towards or at the end of
an intonational or intermediate phrase.

Acoustic features: They are encoded as
pointers to a parametric segment database in
which temporal sequences of vectors of
parameters of speech segments are stored.
Typical acoustic features encoded in the database
include waveforms and parameters related to
pitch, duration, and amplitude.

Figure 3 shows an example of the ReaTree of

This colonial home has five bedrooms. In this
representation, there are four basic elements :
sentence, clause (not in the example), phrase, and
word. A sentence element is associated with a
unique sentence id, pointing to the corresponding
SemGraph. In addition, phrase is associated with
features such as base_concept, rel_concept,
syntactic category, grammar role, and syntactic
function. In addition, it also associates with
discourse features such as whether a phrase is the
topic of a sentence. A clause is an embeded
sentence. It associates with features similar to
those of a phrase. Finally, the main features
associated with a word include the text itself, the
part-of-speech, the syntactic function, the
associated ToBI prosodic features and an unique
word id, pointing to the acoustic parameters
represented in the speech segment database.

Finally, both the SemGraph and ReaTree are
represented in XML because it is flexible enough
to represent complicated structures, and at the
same time, it also facilitates parsing and

sentence

word

[id=3.4
base_concept=has-att
pos=vbz
text=has
index=0]

word word

[id=3.6
pos=nns
base-concept=unit
text=bedrooms
accent=H*
index=4
pa=L-
bt=L%]

[id=3.5
base-concept=num
pos=cd
text=five
accent=H*]

phrase

[cat=np
base-concept=Bedroom#
rel-concept=has-val
role=object]

phrase

[base-concept=house
rel-concept=has-att
cat np
role=subj
topic=yes]

word word word

[id=3.1
pos=dt
text=this]

[id=3.3
pos=nn
base-concept=house
text=home
syn_fun=head
accent=H*
index=3
pa=L-]

[id=3.2
pos=jj
base-concept=sytle
text=colonial
syn_fun=Premod
accent=L+H*]

phrase

[cat=np
base-oncept=house
rel-concept=has-att
syn_fun=head]

[id=3
base-concept=has-att
rel-concept=has-att]

Figure 3: A ReaTr ee

searching that are essential for instance-based
learning.

4 Using the corpus for generation

We now briefly describe how the annotated
speech corpus can be used in CTS generation.
Instance-based learning is lazy learning. It
focuses on how to find similar instances in the
training corpus and how to reconstruct new
instances if a proper training instance is not
found. There are three elements in the core of
instance-based learning: similarity metrics,
search algorithms, and reconstruction processes.
Among them, the definitions of similarity
metrics are based on the features annotated in
the corpus. In addition, we employed a
searching and matching algorithm that is also
based on the structures of the annotated
instances. Since the detailed descriptions of the
similarity metrics as well as the searching and
reconstruction algorithm are not the foci of this
paper, we instead briefly describe how speech
can be generated based on annotations in a
SemGraph and ReaTree.

Our generation algorithm starts with a diff
function that measures the difference (or
similarity) between the SemGraph of a new
input and those of corpus instances. To narrow
down the search space, we focus on the top n
matching corpus instances. If the result of diff
for the top-matching training instance equals to
zero, indicating an exact match, the entire
matching instance is reused. In this case,
SEGUE not only reuses the sentence structure
and the wording but also the pronunciation,
prosody, and waveforms. Thus, the resulting
speech has high quality because the entire
natural spoken utterance is reused. In general,
for a domain-specific application, if a corpus is
designed properly, there will be a significant
number of cases falling in this category.
However, if the result of diff is greater than zero,
a set of revision operators are generated based
on the difference. Typical revision operators
include remove, insert, and replace. The remove
operator deletes extra concepts or relations as
well as their associated subtrees. The insert
operator adds a new concept or relation. The
replace operator only applies to has-value
relations. It instantiates a variable with a
different value. For example, if the input

SemGraph is shown in Figure 5, and the closest
matching training SemGraph is shown in Figure
2, the resulting diff operators will be:

1. remove has-att (House, HouseSize)
2. remove has-value (HouseSize, 9000)
3. insert has-att (House, HouseType)
4. insert has-value (HouseType, attached)
5. replace has-value (bedroom#, 4, 3)
6. replace has-value (bathroom#,3,2)

Given a set of revision operators, the next
step is to transform the corresponding ReaTree
into one that can convey the meanings of the
input SemGraph. In general, each operator is
associated with a cost function. The overall cost
function is a weighted combination of five
subordinate cost functions: the discourse cost,
syntactic cost, lexical cost, prosodic cost, and
acoustic cost. All the cost functions measure the
impact of applying an operator to a ReaTree. For
example, syntactic cost measures how a revision
operator affects the syntactic structure of a
ReaTree. If an operator has little impact on the
soundness of a syntactic structure, the syntactic
cost will be low. In contrast, if applying an
operator results in incomplete structures, the
syntactic cost will be high. Similarly, in term of
acoustic cost, if applying an operator, such as
insertion, results in significant discontinuity
between existing and new speech segments, the
acoustic cost will be high.

In order to apply a remove operator to a
ReaTree, the system first searches for a subtree
that conveys the specified concepts/relation.
Breaking a link on the subtree removes a
concept or relation from the ReaTree. Breaking
different links on the tree results in different
remove costs. Similarly, when an insert operator
is applied, the system first searches for a
tree/subtree that communicates the specified
relation, then it decides where and how to

House

Bedroom#House Type

3 bedrooms 2 bathsattached.

Bathroom#

[has-att]

[has-value] [has-value][has-value]

[SpeechAct=“DESCRIBE”]

[has-att] [has-att]

Figure 5: An Input SemGraph

This attached house has 3 bedrooms and 2 baths.

append the tree/subtree to a ReaTree. The
difference in selecting a subtree as well as the
difference in choosing a location to append the
subtree may result in different insert costs. The
replace operator searches for all the occurrences
of a variable and replaces the existing value with
a specified value. A replace operator is also
associated with a replace cost. Depending on
which occurrence of the word/phrase is used as
the replacement, the prosodic cost and acoustic
cost will be different, which in turn results in
different replace costs. After applying all the
operators, the lower the overall cost, the better
the overall generation quality. After we repeat
the entire process to convert the top n matching
ReaTrees, the one with the lowest cost is the one
to be generated by SEGUE. Our current
prototype system only covers one type of speech
act, describe, and a sub-domain of our
application, house descriptions.

5 Related Work

Instance-based domain-specific speech
synthesis is quite common (Donovan, 1997,
Taylor, 2000). In contrast, most NLG systems
use grammar-based approaches (Elhadad, 1993,
Lavoie, 1997). Recently, machine learning-
based NLG gains attentions (Ratnaparkhi, 2000,
Walker, 2001, Oberlander, 2000, Varges, 2001,
Langkilde, 2000). However, except for a few
template-based systems (Yi, 1998), most CTS
systems still use different platforms for NLG
and speech synthesis. This uncoupled CTS
architecture has inherent integration problems.

In terms of corpus design for CTS
generation, until now, designing a single speech
corpus for both NLG and speech synthesis in
integrated CTS generation has not been
systematically addressed. In (Theune, 2001), a
speech corpus is designed only for TTS. No
corpus is needed for its template-based NLG.

6 Conclusions

In this paper, we present a new uniform
framework for systematically generating both
text and speech using a single speech corpus.
One of our research foci is on the design of a
speech corpus for both text and speech
generation. This framework facilitates the reuse
of sentence structure, wording, prosody and
speech waveforms simultaneously

References

J. Bachenko and E. Fitzpatrick. A
computational grammar of discourse-neutral
prosodic phrasing in English. Computational
Linguistics, 16(3): 155-170, 1990.

R. Donovan, M. Franz, J. Sorensen and S.
Roukos. 1999. Phrase Splicing and Variable
Substitution Using the IBM Trainable Speech
synthesis System. Proceedings of ICASSP99.
Phoenix, AZ.

Michael Elhadad. 1993. Using Argumentation
to Control Lexical Choice: A Functional
Unification Implementation. PhD Thesis.
Columbia University.

I. Langkilde 2000. Forest-Based Statistical
Sentence Generation. Proceedings of ANLP-
NAACL00. 170-177, Seattle, WA.

B. Lavoie and O. Rambow. 1997. A Fast and
Portable Realizer for Text Generation Systems.
Proceedings of ANLP’97. Washington, DC.

J. Oberlander and C. Brew. 2000. Stochastic
text generation. Philosophical Transactions of the
Royal Society, Series A,(358) 1373--1385.

Shimei Pan. 2002. Prosody Modeling in
Concept-to-Speech Generation. PhD thesis.
Columbia University.

Adwait Ratnaparkhi. 2000. Trainable Methods
for Surface Natural Language Generation.
Proceedings of ANLP/NAACL’00. 194-201.
Seattle, WA.

K. Silverman, M. Beckman, J. Petrelli, M.
Ostendorf, C. Wightman, P. Price, J.
Pierrehumbert, & J. Hirschberg. 1996. ToBI: A
standard for labeling English prosody.
Proceedings of ICSLP 92, (2) 867-870.

P. Taylor. 2000. Concept-to-Speech by
Phonological Structure Matching. Philosophical
Transactions of the Royal Society, Series A.

M. Theune and E. Klabbers. 2001. From
Data-to-Speech: A General Approach. Natural
Language Engineering. 7 (1): 47-86.

Sebastian Varges and Chris Mellish. 2001.
Instance_Based Natural Language Generation.
Proceedings of NAACL’01. Pittsburgh, PA.

Marilyn Walker and Owen Rambow. 2001
SPoT: A Trainable Sentence Planner. Proceedings
of NAACL01. Pittsburgh, PA.

Hao Yan. 2000. Paired Speech and Gesture
Generation in Embodied Conversation Agents.
Master’s thesis, MIT.

Jon Yi. 1998. Natural-sounding speech
synthesis using variable-length units. Master’s
thesis, MIT.

