
A Complete, Efficient Sentence-Realization
Algorithm for Unification Grammar

Robert C. Moore
Microsoft Research

bobmoore@microsoft.com

Abstract

This paper describes an efficient sentence-
realization algorithm that is complete for
a very general class of unification gram-
mars. Under fairly modest constraints on
the grammar, the algorithm is shown to
have polynomial time complexity for gen-
eration of sentences whose logical form
exactly matches the goal logical form.
The algorithm can be extended to han-
dle what is arguably the most important
subcase of the logical-form equivalence
problem, permutation of logical conjunc-
tion. With this extension the algorithm is
no longer polynomial, but it seems to be
about as efficient as the nature of the prob-
lem permits.

1 Introduction

We describe an efficient sentence-realization algo-
rithm that is complete for a very general class of
unification grammars. Given a goal consisting of
a category and a logical form (LF), our algorithm
will generate every string classified by the grammar
as having the goal category and goal LF. The only
constraint required for completeness is a weakened
version of Shieber’s (1988) semantic monotonicity
property. Under fairly modest constraints on the
grammar, the algorithm is shown to have polyno-
mial time complexity for strict generation; i.e., not
addressing LF equivalence. The exact polynomial
depends on details of the grammar, and we discuss
the likely order of the polynomial for English.

We extend the algorithm to be complete for the
generation of sentences whose LF is equivalent to
a goal LF under permutation of n-ary logical con-
junction. This is arguably the most important sub-
case of what has come to be called “the logical-form
equivalence problem” (Appelt, 1987; Shieber, 1988,
1993). Allowing permutation of conjunction makes
the generation problem inherently worst-case expo-
nential, but our algorithm seems to be about as effi-
cient as one could expect under the circumstances.

2 Grammatical Framework

We assume a grammar formalism having the expres-
sive power of definte clause grammar (Pereira and
Shieber, 1987) , or equivalently, the syntactically
sugared forms used in the Core Language Engine
(Alshawi, 1992) or Gemini (Dowding et al., 1993).
The following is an example of the sort of grammar
rule we assume:

s:[stype=decl] -->
np:[prsn=P,num=N]
vp:[vtype=tensed,prsn=P,num=N]

The notation is that of augmented phrase structure
rules, where nonterminals are complex category ex-
pressions having the form of a major category sym-
bol followed by a list of feature constraints. Atomic
values beginning with uppercase letters are vari-
ables; those beginning with lower case letters are
constants. Unification constraints are indicated by
shared variables. For instance, the sample rule above
would be interpreted to mean that a declarative sen-
tence can be a noun phrase followed by a tensed verb
phrase, such that the person and number of the noun



phrase are equal to the person and number of the
verb phrase, respectively.

To extend the formalism to incorporate semantic
specifications assigning an LF to each phrase, we
augment the nonterminals with an LF specification,
separated by the symbol “/”:

s:[stype=decl]/VP_sem -->
np:[prsn=P,num=N]/NP_sem
vp:[vtype=tensed,prsn=P,num=N,

sub=NP_sem]/VP_sem

The rule now says that the LF of the sentence is the
same as the LF of the verb phrase, and the LF of
the noun phrase is unified with the sub (“subject”)
feature of the verb phrase. We assume that the verb
phrase has an underspecified LF that is completed
by incorporating the LF of the noun phrase. Notice
this means that phrases not only have a distinguished
principal LF (following the “/”), indicating the over-
all meaning of the phrase, but they can also have
LF-valued features. We assume that all LF-valued
features are declared as such by the grammar writer.

Lexical items are introduced by rules such as

vp:[vtype=tensed,prsn=3,
num=sg,sub=S]/sleep(S) -->
sleeps

np:[prsn=3,num=sg]/sue -->
Sue

The first of these rules says that sleeps is a third-
person, singular, tensed verb phrase, whose LF is
of the form sleep(S), where S is the value of the
sub feature. The second rule says that Sue is a third-
person, singular noun phrase, whose LF is sue.
These lexical rules illuminate the way our sample
phrasal rule works. Suppose we unify the nontermi-
nal expression for Sue with the noun phrase daughter
of the sentence rule, and unify the nonterminal ex-
pression for sleeps with the verb phrase daughter of
the sentence rule. This will cause the principal LF
of the noun phrase, sue, to be unified with the sub
feature of the verb phrase, which will instantiate the
principal LF of the verb phrase to sleep(sue),
which will in turn become the LF of the entire sen-
tence.

3 The Basic Algorithm

The algorithm we have developed is most similar to
that of Shieber (1988). Shieber’s generation algo-

rithm is a reworking of Earley’s (1970) parsing algo-
rithm, in which all constraints on word selection and
word position are removed, and replaced by a filter
that discards any item whose principal LF does not
unify with some well-formed subexpression of the
goal LF. We discuss the differences between our ap-
proach and Shieber’s after presenting our algorithm.

3.1 Generation Data Structures

Our algorithm is a form of bottom-up chart gen-
eration. Like chart parsing, it builds a collection
(called a chart) of data structures (called edges) rep-
resenting the (partial) application of grammar rules
to previously analyzed phrases. We use the follow-
ing types of edges:

� A complete edge hXi means that a complete
analysis (including words) of the nonterminal
X has been generated.

� An incomplete edge hA ! �:X�i means that
the sequence of nonterminals and/or words �

has been generated, and if the sequence of non-
terminals and/or words X� is generated, then
nonterminal A will have been generated. (�
and/or � can be empty.)

� An incomplete edge is referred to as an initial
edge if � is empty; e.g., hA ! :X�i.

� A completed edge hA ! �:i means that the
sequence of nonterminals and/or words � has
been generated, which results in the nontermi-
nal A having been generated.

The main difference between these edge types and
those used in chart parsing is that there are no string
position indices, since as Shieber noted, they are not
needed to constrain generation. Instead, the nonter-
minals incorporate LF components to indicate what
LFs we have generated strings for, and this guides
the generation process the way string positions guide
parsing. Also note that, since in our formalism se-
mantic content is associated with nonterminals in
grammar rules rather than words, we do not need
any complete edges in the chart for lexical items
(which are used in some, but not all, chart parsing
implementations). Instead, we use lexical “scan-
ning” rules that allows us to hypothesize any word



wherever we need it, by “moving the dot” in an in-
complete edge past any word that occurs immedi-
ately to its right.

3.2 Filtering Edges

By eliminating constraints on word selection and
word position, any standard bottom-up chart parsing
algorithm would turn into a generator, but it would
be a completely unconstrained generator producing
semantic analyses of all grammatical strings in the
language. Following Shieber, then, we constrain
the generator to produce only edges whose semantic
components (generalized to include LF-valued fea-
tures) are compatible with well-formed subexpres-
sions of goal LFs. Our filtering process works as
follows:

� First enumerate all the well-formed subexpres-
sions of the goal LF components, including a
distinguished, semantically null token to ac-
count for semantically null words or phrases.
Assuming that LFs are tree structured, the num-
ber of well-formed subexpressions will be lin-
ear in the size of the LF.

� As initial incomplete edges are generated, in-
clude an edge only if it is possible to simulta-
neously unify all nonvariable LF components
of the edge with well-formed subexpressions of
the LF components of the goal.

� As completed edges are generated, instantiate
all nonvariable LF components of the left-hand
side nonterminals to be well-formed subexpres-
sions of the LF components of the goal, in all
possible ways. If it is impossible to instantiate a
completed edge in this way, it is not generated.

For example, suppose our goal is to generate all
strings for the goal

s:[]/restlessly(sleep(sue)).

The lexical rule

vp:[vtype=tensed,prsn=3,
num=sg,sub=S]/sleep(S) -->
sleeps

will generate the completed edge

vp:[vtype=tensed,prsn=3,
num=sg,sub=sue]/sleep(sue) -->
sleeps .

because the only goal LF subexpression that unifies
with sleep(S) is sleep(sue).

3.3 Schematic Specification of the Algorithm

We can express our bottom-up chart generation algo-
rithm as an edge derivation schema. In the follow-
ing schema, A, B, B0, and C represent nontermi-
nals; a represents a terminal; X represents either a
terminal or nonterminal; �, �, and 
 represent (pos-
sibly empty) sequences of terminals and nontermi-
nals; mgu(B;B0) represents the most general uni-
fier of B and B0; and I(E; �) represents the relation
that associates with any edge, grammar rule, or non-
terminal E every substitution function � that instan-
tiates every nonvariable LF component of E to be a
well-formed subexpression of an LF component of
the goal.

1a. A! �B�, 9�(I(A! �B�; �)) `

hA ! :�B�i

1b. A ! 
, :9�B�(
 = �B�), I(A; �) `
h�(A! 
:)i

2a. hA ! �:aX�i ` hA ! �a:X�i

2b. hA ! �:ai, I(A; �) ` h�(A! �a:)i

3a. hA ! �:BC�i, hB0i, � = mgu(B;B0) `
h�(A ! �B:C�)i

3b. hA ! �:Bi, hB0i, � = mgu(B;B0), I(A; �) `
h�(�(A ! �B:))i

4. hA ! �:i ` hAi

There are seven schema rules, the first six of
which are paired, with one of each pair producing an
incomplete edge and one, a completed edge. Rule 1a
produces an incomplete edge for each grammar rule
that has at least one nonterminal on the right-hand
side, checking to make sure that all nonvariable LF
components can be simultaneously instantiated to
goal LF subexpressions. Rule 1b immediately pro-
duces one or more completed edges for each gram-
mar rule that has no nonterminals on the right-hand
side, instantiating all nonvariable LF components
to goal LF subexpressions all possible ways. Note
that if each grammar rule is indexed by the least-
frequently occuring LF atom or functor it contains
(including the null LF token, for rules containing no
LF atoms or functors), it is not necessary to exam-
ine the entire grammar and lexicon to initialize the



generation process. It is only necessary to examine
phrasal and lexical rules that are indexed by a func-
tor or atom occurring in a goal LF component.

Rules 2a and 2b are lexical scanning rules, hy-
pothesizing a word a wherever we need one. Rule
2a produces incomplete edges, and rule 2b produces
completed edges, instantiating nonvariable LF com-
ponents to goal LF subexpressions. Rules 3a and 3b
combine incomplete and complete edges, unifying
a complete edge with the nonterminal immediately
to the right of the dot in the incomplete edge. Rule
3a produces incomplete edges, and rule 3b produces
completed edges, instantiating nonvariable LF com-
ponents to goal LF subexpressions. Rule 4 produces
complete edges from completed edges, by dropping
the information specifying the immediate constitu-
tents of the left-hand side nonterminal.

Generation is successful if a complete edge is de-
rived for the goal nonterminal, including both the
goal category and goal LF. All complete analyses
of the goal nonterminal can be recovered by tracing
back through the completed edges. Since each anal-
ysis tree has the corresponding word sequence as its
leaf nodes, the generated strings can be extracted in
this way.

Although string positions play no role in the gen-
eration algorithm, generation of each constituent
nevertheless proceeds by matching daughters left to
right, which makes it easy to keep track of the order
of constituents for extracting the generated strings.
The algorithm can be made more efficient in practice
(though theoretical worst-case complexity may be
unaffected), by matching first on the daughter con-
stituting the semantic head as defined by Shieber et
al. (1990). This is because the category and LF of
the semantic head usually constrain the LFs of the
other daughters, but not vice versa. Such a semantic-
head-based processing order requires some modi-
fication to the representation of edges, so that the
order of processing and constituent order are repre-
sented separately.

3.4 Comparison to Shieber’s Algorithm

Our algorithm differs from Shieber’s in two princi-
pal ways:

� Ours is based on bottom-up chart parsing rather
than Earley’s algorithm.

� Ours filters chart edges differently than
Shieber’s does.

We drop Earley-style prediction because it fre-
quently fails to pass along any semantic constraints.
For instance, if our goal is to generate a sentence
with a particular LF, and we apply Earley prediction
to the sentence rule in Section 2, we will predict a
noun phrase, but with no constraint on its LF, be-
cause there is no direct connection in the sentence
rule between the LF of the sentence and the LF of
the noun phrase. That connection is made only later,
when the verb phrase is realized.

The more important difference between Shieber’s
algorithm and ours is in the filtering of edges, how-
ever. At all stages of processing, Shieber checks the
principal LF of each edge to make sure it is unifi-
able with some goal LF subexpression, but he never
instantiates edges in this process. We, on the other
hand, instantiate every nonvariable LF component
of the left-hand side nonterminal of every completed
edge (and therefore every complete edge).

This has two significant advantages. First, it re-
duces the number of possible distinct completed and
complete edges, since for every possible instantia-
tion of an LF component of a completed or complete
edge, Shieber will also allow all possible generaliza-
tions of that instantiation. Second, it enables us to
reduce the number of LF expressions we have to ex-
amine to ensure compatibility with goal LF compo-
nents. Since an LF expression cannot change once it
is fully instantiated, if we tag each LF expression
that has been instantiated to be a goal LF subex-
pression, we never have to check that LF expression
again. If LF expressions remain partly instantiated,
as in Shieber’s algorithm, they must be rechecked
as they are percolated from edge to edge, since they
might become further instantiated in ways incom-
patible with any goal LF subexpression.

4 Semantic Monotonicity and
Completeness

Shieber realized that filtering out chart edges whose
LF was not unifiable with a subexpression of the
goal LF would not permit complete generation for
an arbitrary grammar, so he proposed the follow-
ing semantic monontonicity condition as a constraint
guaranteeing completeness:



“A grammar is semantically monotonic if,
for every phrase admitted by the grammar,
the semantic structure of each immediate
subphrase subsumes some portion of the
semantic structure of the entire phrase.”
(Shieber, 1988, p. 617)

In other words, the LF of every phrase has to in-
corporate the LFs of all its daughters. Some con-
straint of this sort seems reasonable, but this def-
inition of semantic monotonicity is stronger than it
needs to be in two ways. First, it makes no allowance
for semantically null constituents. In the sentence
“Oh my goodness, I didn’t realize you were here,”
we might wish to regard the exclamation “Oh my
goodness” as semantically null. We therefore des-
ignate a distinguished token representing the null
meaning, and stipulate that it constitutes a well-
formed subexpression (a “portion” to use Shieber’s
term) of every LF expression.1

The second problem with Shieber’s definition is
that it does not take account of LF-valued features,
in addition to the principal LF expressing the over-
all meaning of a phrase. These LF-valued features
could be used to carry semantic information that is
not used locally—for example, a the meaning of a
modifier extraposed from some other constituent—
which is passed up the analysis tree, but does not
form part of the principal LF of an immediate parent.
In this case Shieber’s semantic monotonicity test
would not be satisfied. We therefore revise Shieber’s
definition as follows:

A grammar is semantically monotonic if,
for every phrase admitted by the gram-
mar, each semantic component (princi-
pal LF, or LF-valued feature) of each im-
mediate subphrase subsumes some well-
formed subexpression (including the null
subexpression) of some semantic compo-
nent of the entire phrase.

Since the only way for a phrase to pass its semantic
contribution up to the goal is through the phrase’s
immediate parent, this condition seems to be the
weakest constraint one could ask for that does not

1Note the obvious analogy with the null string being re-
garded as a substring of every string.

allow grammars to simply throw semantically sig-
nificant information away.

Viewed abstractly, our generation algorithm is a
free bottom-up generator, with the addition of an
instantiation process that forces each nonvariable
LF component of a complete edge to be a goal LF
subexpression. The only derivations this eliminates,
however, are those that violate our revised definition
of semantic monontonicity. Our algorithm is there-
fore complete for any semantically monotonic gram-
mar.

5 Computational Complexity of the
Algorithm

How efficient is our algorithm? If we choose a dy-
namic programming implementation of the abstract
algorithm, then two or more identical edges will
never be added to the chart. With this assumption,
we can analyze the complexity of our algorithm as a
function of the total size of the goal LF components,
n, as being of the order of the sum of two terms:

Gnq +GCknr

G represents the number of grammar rules and
q represents the maximum number of partially or
fully instantiated LF components in any grammar
rule. Gnq is therefore a bound on the number
of steps (counting a unification as a single step)
needed to check these grammar rules against all goal
LF subexpressions according to generation schema
rules 1a and 1b.
C represents the number of possible complete

edges, k represents the maximum number of nonter-
minals on the right-hand side of a grammar rule, and
r represents the maximum number of instantiated
LF components in the left-hand side of a completed
edge that are not inherited fully instantiated from
one of the complete edges used in the derivation the
completed edge. So, each of at most G initial edges
can be combined with at most Ck combinations of
complete edges to produce a completed edge, which
can be further instantiated in at most nr steps (as-
suming that already fully-instantiated LF compo-
nents are tagged as such), which comes to GCknr.
The other two types of generation steps, scanning
lexical items and producing complete edges from
completed edges, at worst multiply these terms by



small constants, and thus do not increase the overall
complexity of the algorithm.

The first term of this complexity bound is clearly
polynomial, but to complete the analysis of the sec-
ond term, we need to further analyze C , the number
of possible complete edges. With an unrestricted
unification grammar, there may be no bound at all
on C; however, it is usually possible to put a bound
on C in practice. Our instantiation strategy ensures
that each LF component of a complete edge has at
most order n possible values. Suppose that there
are at most s maximal sets of strongly-dependent
LF components in any nonterminal.2 Suppose fur-
ther that for a given combination of LF components
of a nonterminal, the number of combinations of
non-LF-valued features (i.e., syntactic categories) is
bounded by a polynomial of order t. In this case,
C = nst, and the whole second term becomes
Gnstk+r, so the complexity of the entire algorithm
is polynomial.

Except for a handful of languages having cross-
serial dependencies, most natural languages seem to
be describable using grammars that have an absolute
upper bound on the number of distinct syntactic cat-
egories, which would limit t to be 1. (A sufficient
condition for this, which can be easily enforced in
practice, is to define all non-LF-valued features to
have only a finite set of values.) Moreover, in this
case, the number of independent LF components in
a given nonterminal must have a fixed upper bound,
since the finite set of distinct syntactic categories
provides only a fixed set of LF-valued “slots” for
LF components. In this case, then, the bound on the
second term of our complexity formula simplifies to
Gnsk+r. If the grammar is binary branching, this
becomes Gn2s+r. Furthermore, grammars are of-
ten written to be semantically lexicalized, so that ev-
ery nonvariable LF component of a nonlexical com-
pleted edge is inherited fully instantiated from one
of the complete edges used in its derivation. In this
case r = 0, and the second term is reduced to Gn2s.

2A set of LF components is strongly dependent, if there is a
member of the set such that selecting a value for that member
puts fixed bounds on the number of possible values for the other
members of the set. For example, choosing a particular instan-
tiation of the principal LF of a verb phrase might leave at most
three choices for the value of the subject feature (the subject,
direct object, and indirect object of the active form of the verb).

The value of s in this expression depends very
much on the details of the grammar. We conjec-
ture that for English, the best we can do may be
s = 3. The nonterminals seeming to require the
largest number of maximal strongly-dependent sets
of LF components we are aware of are those with
two syntactic gaps, as in the infinitive phrase in
the well-known example “Which violin are these
sonatas easy to play on ?”. It seems possible
to elaborate such phrases so that as the size of the
overall phrase (and its LF) increases, the number of
choices for the two gap fillers that are not strongly
dependent on the principal LF also increases lin-
early. Since no construction of English is known to
require more than two syntactic gaps, we conjecture
s = 3, for the principal LF and the LFs of the two
gap fillers. Plugging s = 3 into n2s, would give us
n6 generation steps for this term, which we presume
dominates the other term of the complexity formula.

The possible bounds we have been discussing up
to now are in terms of “generation steps”, that count
a unification as part of a single step. Unification
can be performed in linear time, and under the as-
sumption that the number of syntactic categories is
bounded, this would add at most another factor of
n to the overall time complexity of our algorithm.
However, by tagging all the well-formed subexpres-
sions of the goal LF,3 we can implement a restricted
form of unification that stops when it reaches a com-
parison of two well-formed LF subexpressions. In
the case where only a bounded number of syntac-
tically distinct nonterminals can arise, this results
in all unifications being depth-bounded, which can
(almost) be performed in constant time. The “al-
most” comes from the fact that we require on the
order of log2(n) symbols to tag n well-formed LF
subexpressions, and in principle comparing those re-
quires on the order of log2(n) time. However, on
any computer that has 32-bit equality comparison as
a single operation, we can handle such unifications
in bounded time with up to 4 billion such symbols.

6 Handling Logical-Form Equivalence

The bottom-up chart generation algorithm presented
above is both complete and efficient in theory, but it
is subject to what has been called “the logical-form

3These can be the same tags mentioned in Section 3.4.



equivalence problem” (Appelt, 1987; Shieber, 1988,
1993). The generator, as described, takes the associ-
ation of strings and LFs specified by the grammar as
being exact, with no accomodation for the fact that
some differences in LF notation might be semanti-
cally insignificant. For example, a grammar might
give “Sue sees Mary” the LF

[see(E),agt(E,sue),pat(E,mary)],

but give “Mary is seen by Sue” the LF

[see(E),pat(E,mary),agt(E,sue)].

If we interpret these expressions as simple con-
junctions of three atomic formulas, the order of the
conjuncts should be irrelevant. Our generator, how-
ever, would generate only “Sue sees Mary” from

[see(E),agt(E,sue),pat(E,mary)],

and only “Mary is seen by Sue” from

[see(E),pat(E,mary),agt(E,sue)].

because nothing indicates to the generator that the
order of the items in these implicit conjunctions is
semantically irrelevant.

Over the past decade a number of approaches to
generation have been developed that address this
form of logical equivalence (Brew, 1992; Kay, 1996;
Carrol et al., 1999). All of these approaches, how-
ever, place restrictions on the organization of the
grammar and/or the logical form notation. We ad-
dress this problem by providing a single special no-
tation in our LF language to indicate when elements
of an LF subexpression may be permuted without
changing the meaning of the LF. We use square-
bracketed lists for this purpose; e.g., [a,b,c],
[a,c,b], [b,a,c], etc. will all be treated equiv-
alently. We modify our algorithm to be complete
with respect to the new interpretation of our LF no-
tation.

The principal change we make to our generator
is to modify the unification algorithm so that lists
consisting of the same elements in different orders
will unify. We also need to add to our enumera-
tion of well-formed subexpressions of goal LFs all
subsets of each list subexpression, maintaining the
order of the original list. Thus if [a,b,c] is a
subexpression of the goal LF, then we also need to
treat [a,b] and [a,c] as well-formed subexpres-
sions (as well as all possible tail segments of the

list, which were already included), but not [b,a]
or [c,a].

Since every complete edge has all of its nonva-
riable LF components unified with goal LF subex-
pressions, which are always fully instantiated, we
can choose to represent the result of these unifica-
tions by the goal LF subexpressions involved. This
means these in effect become canonical forms for
equivalence classes of the LF expressions we need
to deal with. Thus, for complete edges, we not only
have no duplication of identical edges in the chart;
we also have no duplication of equivalent edges in
the chart.

No other changes to our framework or algorithm
are required. In particular, there is no requirement
that the grammar be semantically lexicalized, and
no limitations are placed on the LF notation as to
what other constructs can be used besides (square-
bracketed) lists. Some care in the design of the LF
notation can enhance efficiency, however. We treat
all subsets of lists that are goal LF subexpressions as
goal LF subexpressions to allow for the possibility
that the elements of the list may occur in all possible
orders. If this is not the case, then efficiency of gen-
eration can be improved by modifying the notation
to reflect this fact.

For example if we let

[see(E),pat(E,mary),agt(E,sue)]

be a possible LF for “Sue sees Mary,” then we must
treat [see(E),pat(E,mary)] as a possible
well-formed subexpression, in case agt(E,sue)
is later added to the front of the list to produce the
LF

[agt(E,sue),see(E),pat(E,mary)],

which would be equivalent. In the grammar-writing
style we have adopted, however, the LF element cor-
responding to the lexical head of a phrase (in this
case “sees”) always comes first in the list, no matter
what order the complements or adjuncts are in. If
we reflect this in the notation, by letting the LF for
“Sue sees Mary” be

see(E,[pat(E,mary),agt(E,sue)]),

or some other notation that fixes the position of
the head, then we can avoid generating a string for
[see(E),pat(E,mary)] that spuriously omits
required complements and adjuncts.



The fact that we have to admit as a well-formed
LF subexpression every subset of each list that is
a well-formed LF subexpression means that, in the
worst case, every factor of n in the analysis of the
number of generation steps in the original algorithm
would be replaced by a factor of 2n in the extended
algorithm.4 However, when list permutation is per-
mitted, it is easy to demonstrate grammars that re-
quire exponentially many chart edges to represent
all analyses of a given LF; so it is not clear that any
significantly more efficient algorithm is possible in
principle.

With the addition of list permutation, our method
turns out to resemble the approaches of Kay (1996)
and Carrol et al. (1999) in a many respects. The
greatest advantage of our approach, however, is its
almost complete freedom of choice as to LF nota-
tion, whereas these other approaches require “flat”
LFs. While our approach does require some care
in choice of notation for maximum efficiency, it re-
mains less restrictive than the others, and the algo-
rithm still functions correctly with no restrictions on
LF notation.

7 Conclusions

We have implemented our algorithm in both a strict
and list-permuting version, and verified that it per-
forms as expected on a small test grammar. It
is complete for a wider class of grammars than
Shieber’s algorithm, and seems to be more effi-
cient. Its generalization to handle a subset of the LF-
equivalence problem requires only minor changes to
the approach, places no restrictions on the form of
the grammar or LF notation, and seems about as ef-
ficient as the nature of the problem permits.

References

Hiyan Alshawi, ed. 1992. The Core Language En-
gine. The MIT Press, Cambridge, Massachusetts.

Douglas Appelt. 1987. Bidirectional grammars
and the design of natural language generation
systems. In Theoretical Issues in Natural Lan-
guage Processing—3, pages 185–191, New Mex-
ico State University, Las Cruces, New Mexico.

4Unification also becomes at least quadratic.

Chris Brew. 1992. Letting the cat out of the
bag: generation for shake-and-bake MT. In Pro-
ceedings of the 14th International Conference
on Computational Linguistics, pages 610–616,
Nantes, France.

John Carroll, Ann Copestake, Dan Flickinger and
Victor Poznański. 1999. An efficient chart gener-
ator for (semi-)lexicalist grammars. In Proceed-
ings of the 7th European Workshop on Natural
Language Generation (EWNLG’99), pages 86–
95, Toulouse, France.

John Dowding, J. Mark Gawron, Douglas Appelt,
John Bear, Lynn Cherny, Robert Moore, and Dou-
glas Moran. 1993. Gemini: a natural lan-
guage system for spoken-language understand-
ing. In Proceedings of the 31st Annual Meeting
of the Association for Computational Linguistics,
pages 54–61, Columbus, Ohio.

Jay Earley. 1970. An efficient context-free pars-
ing algorithm. Communications of the ACM,
13(2):94–102.

Martin Kay. 1996. Chart generation. In Proceedings
of the 34th Annual Meeting of the Association for
Computational Linguistics, pages 200–204, Santa
Cruz, California.

Fernando Pereira and Stuart Shieber. 1987. Pro-
log and Natural-Language Analysis. Center for
the Study of Language and Information, Stanford
University, Stanford, California.

Stuart Shieber. 1988. A uniform architecture for
parsing and generation. In Proceedings of the
14th International Conference on Computational
Linguistics, pages 614–619, Budapest, Hungary.

Stuart Shieber, Gertjan van Nord, Fernando Pereira,
and Robert Moore. 1990. Semantic-head-driven
generation. Computational Linguistics, 16(1):30–
42.

Stuart Shieber. 1993. The problem of logical-
form equivalence. Computational Linguistics,
19(1):179–190.


