
An Empirical Verification of Coverage and Correctness for a
General-Purpose Sentence Generator

Irene Langkilde-Geary
Information Sciences Institute

University of Southern California
ilangkil@isi.edu

Abstract

This paper describes a general-purpose
sentence generation system that can
achieve both broad scale coverage and
high quality while aiming to be suitable
for a variety of generation tasks. We mea-
sure the coverage and correctness empir-
ically using a section of the Penn Tree-
bank corpus as a test set. We also describe
novel features that help make the gener-
ator flexible and easier to use for a vari-
ety of tasks. To our knowledge, this is the
first empirical measurement of coverage
reported in the literature, and the highest
reported measurements of correctness.

1 Introduction

Natural language generation (NLG) is a subtask of
a wide variety of applications. Such applications
include machine translation, human-computer di-
alogue, summarization, report creation, automatic
technical documentation, proof/decision explana-
tion, customized instructions, item and event de-
scriptions, question answering, tutorials, stories, and
more. While many applications use a custom-built
generator, a general-purpose system can facilitate
reuse of resources and reduce the costs of building
applications.

Research into general-purpose generation has
tended to focus on sentence realization, which is one
of the most common recurring subtasks of genera-
tion. Sentence realization is the process of trans-

forming a syntactic sentence plan into a linearly-
ordered, grammatical string of morphologically in-
flected words. To be generally useful, a realizer
needs to be able to handle a wide array of syntactic
phenomena. It also needs to produce grammatically
correct output.

Prominent general-purpose realization systems
developed to date include FUF/Surge (Elhadad,
1993) and (Elhadad and Robin, 1998), RealPro
(Lavoie and Rambow, 1997), Penman/KPML (Bate-
man, 1996), and Nitrogen (Langkilde and Knight,
1998a), (Knight and Hatzivassiloglou, 1995). These
systems have demonstrated their general usefulness
by being deployed in a variety of different applica-
tions. However, it is still difficult ascertain the de-
gree to which they have achieved broad coverage of
natural language or high quality output because no
empirical evaluation has been performed.

At best, suites of example inputs have been used
for regression testing. However, such regression
suites are biased towards the capabilities of their re-
spective systems and consist of relatively few inputs
compared to the variety of input classes that are pos-
sible. For example, there are currently 500 test in-
puts distributed with Surge, and about 210 for En-
glish with KPML. At any rate, no matter how large
the regression suite may be, the inherent irregularity
of natural language makes regression testing inade-
quate as a means of assessing coverage or quality.

In practice, there is a seemingly irreconcilable
conflict between broad coverage and high quality
output. It is usually the case that the rules and class
features are simultaneously too general to rule out
undesirable combinations, and yet too restrictive to



“battalion assigned to go on defense/offense”
“defending battalion”
“offending battalion”
(Meteer, 1990)

“won/lost three straight/consecutive X”
“won/lost three straight”
“won/lost three consecutive”
(J.Robin, 1994)

“finger” vs “digit” vs “phalange”

“in the end zone” vs * “on the end zone”

“tell her hi” vs * “say her hi”

“the vase broke” vs * “the food ate”

(Knight et al., 1995)

Figure 1: Expressibility problems

allow some combinations that are valid. Figure 1
shows some examples of this expressibility prob-
lem. High quality output is thus much easier to
achieve with smaller-scale applications or in limited
domains.

In this paper we introduce HALogen, a general-
purpose sentence generator that achieves both broad
coverage of English and high quality output as mea-
sured against an unseen section of the Penn Tree-
bank (Marcus et al., 1993). We compare it to the
only other generation system that has performed
such an evaluation, a limited-purpose system named
Fergus (Bangalore et al., 2000). HALogen’s de-
velopment has been guided in part by the question,
“What is the simplest input notation that suffices to
represent and correctly generate all valid sentences,
and yet at the same time is easy for applications to
use?” We describe novel aspects that help make the
generator flexible and easier to use for a variety of
applications. Section 2 gives a brief overview of
the HALogen sentence generation system. Section 3
describes the setup of the empirical evaluation, and
Section 4 discusses the results. Finally, Section 5
concludes.

2 HALogen

HALogen is a successor to Nitrogen (Langkilde and
Knight, 1998a), (Langkilde and Knight, 1998b) and
(Langkilde, 2000). It is a hybrid symbolic and sta-
tistical system, with a two-stage architecture. In the
first stage, symbolic knowledge is used to transform
an input into a forest of possible expressions. In the

second stage a statistical ranker computes the most
likely expression using a corpus-based probabilistic
model. This section describes HALogen’s input and
processing stages. It also compares HALogen to its
predecessor.

2.1 Input

The input to HALogen is a labeled feature-value
structure. There are two main types of features: re-
lations and properties. Relation features describe
the relationship between the instance (or head value)
and other values. A value can be a word, a concept,
or a compound value composed of nested feature-
value structures. Relations can be syntactic, seman-
tic, or even non-linguistic. Two example inputs are
shown in Figure 2.

As seen in the examples, multiple relations can
appear at each nesting level in the the input. Most re-
lations can only occur once each at any given nesting
level. The main exceptions are modifier and adver-
bial relations, which can occur any number of times.
Relations are order-independent, which means that
the order in which relations occur in the input does
not affect the order in which their values occur in
the output. An exception is when the same relation
occurs more than once at the same nesting level. In
this situation, the values with the same relation will
occur adjacent to each other in the output in same
order that they appeared in the input, unless a Per-
muteNodes flag is set. If this flag is set, all possible
adjacent permutations will be tried.

HALogen’s input also makes use of atomic-
valued property features. These features describe
linguistic properties of an instance or a clause.
HALogen does not require them to be specified in
the input, but they may be specified in order to over-

(e1 / eat
:subject (d1 / dog)
:object (b1 / bone

:premod (m1 / meaty))
:adjunct (t1 / today))

(e2 / eat
:agent (d2 / dog)
:patient (b2 / bone

:premod (m2 / meaty))
:temporal-locating (t2 / today))

Figure 2: Example Inputs



VERB
-----
:MOOD infinitive, infinitive-to,

imperative, present-participle,
past-participle, indicative

:TENSE present, past
:PERSON s (3s), p (1s 1p 2s 2p 3p), all
:MODAL should, would, could, may, might,

must, can, will
:TAXIS perfect, none
:ASPECT continuous, simple
:VOICE active, passive
:SUBJECT-POSITION default, post-aux,

post-vp
:PASSIVE-SUBJECT-ROLE logical-object

logical-dative logical-postmod
:DATIVE-POSITION shifted, unshifted

NOUN
----
:CAT1 common, proper, pronoun, cardinal
:NUMBER singular, plural

ADJECTIVE OR ADVERB
-------------------
:CAT1 comparative, superlative,

negative ("not")

GENERAL
--------
:LEX (root form of a word as a string)
:CAT open class: vv, nn, jj, rb

closed class: cc, dt, pdt, in, to,
rp, sym, wdt, wp, wrb, uh

punctuation: same as Penn Treebank

Figure 3: Property features used in HALogen

ride the defaults the system provides. The main
properties that HALogen recognizes are listed in
Figure 3, together with their possible values.

2.2 Symbolic Generator

An input is first processed by the symbolic gener-
ator. The symbolic generator consists of a set of
about 255 mapping rules that transform an input into
a packed set of possible expressions, referred to as a
forest. A forest is a non-recursive context-free gram-
mar. The left-hand-side of a mapping rule specifies
the conditions for matching, such as the presence of
a particular feature at the top-level of the input. The
right-hand-side lists one or more outcomes. There
are four kinds of mapping rules, recasting, ordering,
filling, and morphing.

Recasting rules map one relation to another. They
are used to map semantic relations into syntactic
ones, such as :agent into :subject or :object, for ex-

ample. They make it possible to localize constraints.
As a result, the rule set as a whole is more mod-
ular and concise. Recasting rules facilitate a con-
tinuum of abstraction levels from which an applica-
tion can choose to express an input. Recasting rules
are also a tool that an application can use to cus-
tomize HALogen, if desired. Recasting can be used
to map non-linguistic or domain-specific relations
into those already recognized by HALogen. Langk-
ilde and Knight (1998a) describe the recasting tech-
nique in greater detail.

Ordering rules assign a linear order to the val-
ues whose features matched with the rule. Order-
ing rules typically match with syntactic features at
the lowest level of abstraction. An ordering rule
splits an input apart into several pieces. The val-
ues of the features that matched with the rule are
extracted from the input and independently recir-
culated through the mapping rules. The remaining
portion of the original input continues to circulate
through the rules where it left off. When each of the
pieces finishes circulating through the rules, a new
forest node is created that composes the results in
the designated linear order.

A filling rule adds missing information to under-
specified inputs. This type of rule tests whether a
particular feature is absent. If so, it will generate
one or more copies of the input, one for each pos-
sible value of the feature, and add the feature-value
pair to the copy. Each copy is then independently
circulated through the mapping rules.

A morph rule produces a morphological inflection
of a base lexeme, based on the property features as-
sociated with it.

The symbolic generator proceeds by comparing
the top level of an input with each of the map-
ping rules in turn. The mapping rules decompose
the input and recursively process the nested levels.
Base input fragments are converted into elementary
forests and then recombined according to the map-
ping rules. The final resulting forest is then pro-
cessed by the statistical ranker.

HALogen’s mapping rules are hand-written, but
developed in part by using thetgrep tree grep pro-
gram distributed with the Treebank. The tgrep pro-
gram indexes all sections of Treebank, including
section 23, the section used for testing in the exper-
iments described later. However, the tgrep program



does not indicate the section number of any trees that
are retrieved, and appears to display matching trees
in sectional order (ie., those from section 1 first). So
the use of the test section in development of the map-
ping rules has been at most indirect.

2.3 Statistical Ranker

The forest ranker applies a bottom-up dynamic pro-
gramming algorithm to extract the N most likely
phrases from a forest. It uses an ngram language
model built using Version 2 of the CMU Statistical
Language Modeling Toolkit (Clarkson and Rosen-
feld, 1997). Unigram, bigram and trigram models
are all available. They are trained on 250 million
words of Wall Street Journal newspaper text, exclud-
ing text from 1989 (from which the Penn Treebank
is derived). The ranker finds an optimal solution
with respect to the language model. It is described
in greater detail in (Langkilde, 2000).

2.4 Comparison to Nitrogen

While Nitrogen recognizes a few syntactic relations,
its focus is on semantic and other more abstract re-
lations. HALogen, on the other hand, adds a full
set of deep and shallow syntactic features intended
to achieve extensive coverage of English syntax. Se-
mantic rules from Nitrogen were modified in HALo-
gen to map to syntactic ones rather than directly
specifying an order on constituents. The syntac-
tic features not only facilitate methodical, thorough
coverage of English syntax, they also enable an ap-
plication to precisely control the desired output, if
desired.

HALogen handles adjunct relations, both se-
mantic and syntactic, much better than Nitrogen.
In HALogen, semantic adjuncts such as :spatial-
locating and :temporal-locating can occur multiple
times at a given level of nesting in an input, rather
than being artificially restricted to just one each per
node. HALogen also offers both the capability to try
all possible order permutations of adjuncts, as well
as the ability to impose partial order constraints on
them. Applications concerned with rhetorical struc-
ture or coherence across sentences in multi-sentence
generation need to have this kind of control. In con-
trast, Nitrogen arbitrarily assigns a single fixed order
to adjuncts according to the order of the respective
semantic relations in the set of mapping rules.

Nitrogen uses categorial grammar notations in
the mapping rules to constrain generation output.
However, HALogen abandons this because it has
proved overly restrictive in scaling up to broad cov-
erage. HALogen relies more heavily on the statis-
tical ranker to implement grammatical preferences.
When constraints are imposed, it is done by adding
features to an input using the recasting mechanism.
HALogen uses a feature named :type to impose
three gross category constraints on phrases: verbal,
nominal, or other. The symbolic processing engine
checks the consistency and soundness of each input
after recasting.

Other improvements over Nitrogen, though there
is not space here to fully describe them, include:
� In input:

– meta *OR* nodes possible at every level
of nesting, not just top level, to specify
disjunctions of values

– compound values permitted for instance
relation, to represent scope or influence
constituent ordering

– template-like capability using :template
and :filler roles with labels

� Efficiency: improved cache and rule matching
procedure

� Weights possible in grammar rules, input, and
for concept-to-word mappings

� Polished output

3 Experimental Setup

The goal of an empirical evaluation of coverage and
quality is to measure the extent to which any and
every valid English sentence can be represented and
generated. Generation is usually notoriously diffi-
cult to evaluate because grammaticality is difficult
to measure automatically, and more than one out-
put can be acceptable. However, although variations
in output are usually acceptable in the context of
specific applications, different applications can have
different constraints on the kinds of variation in out-
put that they accept. By demonstrating the capabil-
ity to produce any desired sentence exactly, a system
can assure that all possible application constraints on
the output can be met. Thus, these experiments fo-
cus on whether a desired sentence can be produced
exactly, though this kind of measurement is harsher
than necessary.



Section 23 of the Penn Treebank is used to eval-
uate coverage and quality. Inputs to HALogen were
automatically constructed from the Treebank anno-
tation and then regenerated by the system. The out-
put was then compared to the original sentence.

The Penn Treebank offers several advantages as a
test set. It contains real-world sentences, it is large,
and can be assumed to exhibit a very broad array
of syntactic phenomena. It is not biased towards
system-specific capabilities, since it was collected
independently. It also acts as a standard for linguis-
tic representation, offering the potential of interoper-
ability with other natural language programs based
on it, such as parsers. At the same time, there are
limits to its usefulness. It only represents the do-
main of newspaper text, and thus does not test the
stylistic, structural, and content variations that can
occur in other domains such as question answering
or dialogue. It also does not evaluate how the system
handles nonsensical inputs or inputs that might not
be expressible in grammatical English.

The input construction process involved finding
the root forms of words, factoring Treebank cat-
egories of open class words into more basic fea-
tures, heuristically designating constituent heads, in-
ferring syntactic and logical roles for each node,
making coordination bracketing more explicit, reor-
ganizing compound prepositions into a single con-
stituent, associating punctuation with a content-
bearing constituent, flattening VP’s, flattening nodes
with only one child, removing null elements, and
dropping some function words (ex: simple dative
’to’, ’of’; benefactive ’for’; logical-subject ’by’,
auxiliary verbs, and some punctuation). The result-
ing structure is a hierarchical functional dependency
tree.

The generator’s primary tasks in this evaluation
are to determine the linear order of constituents, per-
form morphological inflections, and insert needed
function words. Six experiments were run to eval-
uate HALogen’s performance with inputs that were
underspecified in different ways. The ability to han-
dle underspecification eases the information burden
on client applications. It also makes the generator
more flexible in meeting the varying needs and con-
straints of different types of applications.

The experiments use only a subset of the rela-
tions that HALogen actually recognizes. Specifi-

:LOGICAL-SUBJECT :INSTANCE :ANCHOR
:LOGICAL-OBJECT :POLARITY :TOPIC
:LOGICAL-DATIVE :ADJUNCT :PREMOD
:CLOSELY-RELATED :WITHINMOD :POSTMOD
:BENEFACTIVE :INTROCONJ :CONJ
:PREDICATE :LEFTPUNC :PUNC
:DETERMINER :RIGHTPUNC :PREDET

Figure 4: Relations used in experiments

cally, they use the mix of deep and shallow syntac-
tic relations shown in Figure 4. No semantic rela-
tions are used, since they either can not be straight-
forwardly derived from the Penn treebank annota-
tion, or are too ambiguous to be adequately handled
on the scale of the experiments in this paper.

In the first experiment, labeled “Almost fully
spec” in Figure 7, the inputs contain nearly enough
detail to fully determine a unique output. The in-
puts contain as much detail as it was possible to
straight-forwardly obtain from the Treebank anno-
tation. An example is shown in Figure 5. In this ex-
periment, adjuncts are represented either as premod-
ifiers, postmodifiers or within-modifiers. (Within-
modifiers are verbal modifiers that come between
the subject and the object). A flag in the generator is
set so that constituents with the same role occurring
at the same level of nesting (such as modifiers) will
be ordered in the output in the same relative order in
which they appear in the input (and adjacent to each
other). This order flag allows applications that plan
discourse structure before doing sentence realization
to control the coherence across sentences. For exam-
ple, dialogue systems often want old or background
information to appear before new information. (Par-
tial order constraints can also be specified by using
extra levels of nesting in the input. However, this
capability is not exercised in these experiments.)

In the second experiment, “Permute same-roles,”
the permutation flag set in the first experiment is
reversed. Constituents with the same role are per-
muted in place, and the statistical ranker is expected
to choose the most likely order. An exception occurs
if there happen to be more than five constituents with
the same role. For computational reasons, the con-
stituents are not permuted in this case. Instead, they
are placed in reverse order in the output (to avoid
unfairly inflating the accuracy results). Everything
else remains the same as in the first experiment.



(H34911
:MOOD INDICATIVE
:PREMOD (H34876 :CAT RB :CAT1 COMPARATIVE :LEX "earlier")
:LOGICAL-SUBJECT (H34879 :DET (H34877 :CAT DT :LEX "the")

/ (H34878 :DET NONE :CAT NN :CAT1 COMMON :NUMBER SING
:LEX "company"))

/ (H34880 :CAT VV :TENSE PAST :LEX "announce")
:POSTMOD . . .
:PUNC PERIOD)

BIGRAM and TRIGRAM: Earlier the company announced it would sell its aging fleet of Boeing Co. 707s because of increasing
maintenance costs.
ORIGINAL: same as above

Figure 5: Fragment of an almost fully specified input, and its output

(H37 :ADJUNCT "earlier"
:LOGICAL-SUBJECT (H5 / "company")
/ "announce"
:ADJUNCT . . .
:PUNC PERIOD)

BIGRAM: It would sell its fleet age of Boeing Co. 707s because of maintenance costs increase the company announced earlier.
TRIGRAM: The company earlier announced it would sell its fleet age of Boeing Co. 707s because of the increase maintenance
costs.
ORIGINAL: see Figure 5

Figure 6: Fragment of a minimally specified input, and its output

The third experiment, “Permute, no dir” is like the
second, but in addition, all modifiers are mapped to
the :adjunct relation, thus increasing the number of
constituents that get permuted. The statistical ranker
must not only determine the order of the modifiers
with respect to each other, but must determine the
direction of each one with respect to the head.

The fourth experiment, “Underspec det”, is like
the first except that common determiners are left
unspecified. Specifically, “the”, “a”, “an”, “any”,
and “some” are dropped from the input. The null-
determiner feature is also dropped from all nominal
phrases that had no determiner in the original Tree-
bank annotation. This experiment tests the ability of
the generator to supply the appropriate determiner,
or figure out that none is needed.

The fifth experiment, “No leaf, clause feats”, is
also like the first experiment except that all the leaf
and clause properties listed in Figure 3 are dropped
from the input. Only the value of the :lex feature is
retained for the input.

The sixth experiment, “Min spec,” represents the
opposite extreme from the first experiment. All
the information dropped in experiments 2-5 is also
dropped in this experiment. An example of such an
input and its output is shown in Figure 6.

For computational reasons, a bigram model, not
trigram, was applied by the ranker for these exper-
iments. However, for the sake of comparison, Fig-
ures 5 and 6 show the output from both the bigram
and trigram models.

4 Results

Results of the experiments are shown in Figure 7.
Section 23 of the Penn Treebank contains 2416 sen-
tences. The average Penn sentence consisted of 23.5
tokens–the shortest had two, and the longest 66. The
input construction tool produced inputs from 98% of
the Penn sentences, or 2377 inputs. HALogen pro-
duced output for approximately 80% of the inputs.
Assuming the test set is representative of English,
and coverage is defined as the percent of syntactic
constructions (ie., inputs) for which the generator
produces correlative output, then we can estimate
HALogen’s coverage of English at about 80%.

We applied three different metrics to evaluate
quality, the IBM Bleu score (Papineni et al., 2001),
the average NIST simple string accuracy, and exact
match. The IBM Bleu score is a geometric aver-
age of n-gram accuracy with respect to the original
Penn sentence, adjusted by a length penalty factor
LP. Namely, BLEU= exp(

P
N

n=1 wn log pn) � LP.



Almost Permute Permute, Under- No leaf, Min
Input characteristics: fully same- no dir spec clause spec

spec roles det feats
Median num of sen gen by an input: 72 576 2e+5 7e+6 9e+9 4e+16
Smallest num of sen gen by an input: 1 1 1 2 2 4
Max num of sen gen by an input: 2e+10 1e+14 8e+19 9e+25 2e+32 2e+53
Average ranking time per input (secs): 0.013 0.023 0.226 0.036 0.207 18.3
Average total time per input (secs): 28.9 27.1 29.8 28.4 30.2 55.5
Average length of gen sentences: 22.4 22.4 22.4 21.9 21.7 21.0
Average length of exact matches: 20.9 18.8 17.0 16.4 16.0 11.5
Num of inputs that produced output: 1968 1968 1966 1981 1812 1884
Num of exact matches: 1132 807 555 391 299 98
Percent inputs that produced output: 82.8% 82.8% 82.7% 83.3% 76.2% 79.3%
Percent exact matches in output: 57.5% 41.0% 28.2% 19.7% 16.5% 5.2%
Ave. NIST simple string accuracy: 94.5% 81.6% 69.6% 85.1% 81.1% 55.3%
IBM Bleu score: 0.924 0.826 0.757 0.776 0.717 0.514

Figure 7: Experimental Results

LP = exp(1 � r=c) if c � r, and LP= 1 if c > r,
wherewn = 1=N , N = 4, c is the system output
length, andr is the reference length.

The average NIST simple string accuracy score
reflects the average number of insertion (I), deletion
(D), and substitution (S) errors between the output
sentence and the original Penn sentence. Formally,
SSA= 1� (I +D+ S)=R, where R is the number
of tokens in the original sentence.

The Bleu and NIST metrics agree fairly closely
with each other in all the experiments. Using these
metrics, HALogen’s output ranged from about 93%
correct when inputs were almost fully specified, to
53% correct with minimally specified inputs. Al-
most 58% of the outputs were exact matches in the
first experiment, dropping to 5% in the sixth. Al-
though the quality in the sixth experiment is substan-
tially worse than that of the first, it requires much
less information in the input, and thus is much easier
for a client application to produce. For applications
like machine translation that can tolerate imperfect
output but have difficulty supplying detailed inputs,
HALogen can be an appealing tool.

The second and third experiments show that per-
muting same-role nodes does not have as big an im-
pact on quality as one might expect. This proba-
bly reflects the ngram model’s strength in capturing
order information, especially for single-word modi-

fiers. It may also reflect the relative infrequence of
nodes having multiple modifiers. In the fourth ex-
periment, HALogen doesn’t do as well at selecting
determiners as one might expect. The divergence in
this experiment between the exact match metric and
the other metrics probably results from the need to
choose determiners in nearly every sentence, while
determiners constituteonly a fraction of the words in
a sentence. The fifth experiment shows the largest
drop in accuracy compared to the second through
fourth, suggesting that this problem is harder than
the others. However, HALogen still achieves about
75% correct on this very frequent problem.

One topic of interest is the causes of generation
failure, and the causes of inexact matches in the first
experiment. One such cause is syntactic phenom-
ena that are known to not be handled appropriately
yet. This includes right-node-raising, dislocated
constituents, discontinuous constituents, and head-
less constituents. Another important cause is errors
and inconsistencies in the original Treebank annota-
tion. The automatic input construction process also
introduces some errors, particularly in heuristically
selecting constituent heads. At other times, HALo-
gen deliberately fails to generate an input because
the phrase itself is malformed.

The only other system to have done a similar em-
pirical evaluation is FERGUS. FERGUS applied a



statistical tree model, TAG grammar, and ngram lan-
guage model to 100 inputs consisting of a complete
dependency tree labeled with fully inflected words
but no roles. The realization problem was limited to
determining constituent order. FERGUS achieved
58% correct using the NIST metric, a result compa-
rable to that of the “Min spec” experiment just de-
scribed. In contrast to HALogen, FERGUS offers
no means for controlling the generation of a specific
output exactly. On the other hand, it seems likely
that a tree model such as the one used by FERGUS
could improve HALogen’s accuracy. See (Daume et
al., 2002) for evidence of this. Such work is cur-
rently under way for HALogen.

5 Summary

In conclusion, we empirically verified HALogen’s
coverage and accuracy using section 23 of the
Penn Treebank as a test set. On a set of 2400
automatically-derived inputs, 80% produced output
that was about 94% correct when the input was al-
most fully specified. Accuracy was measured us-
ing IBM Bleu scores and NIST simple string accu-
racy scores which compared outputs to the original
sentences. About 57% of the outputs were exact
matches with the original. Using minimally speci-
fied inputs, accuracy was still more than 51%, 5%
of which were exact matches. The flexibility that
HALogen offers in the degree of specification of the
input adds to its general-purposeness. Tasks like di-
alogue that require high quality output and need to
exert significant control over the output can do so if
they wish, while tasks like translation, that generally
suffer from an inability to provide much information
but that can accept lower quality output, still obtain
output without providing many specification details.

In future work, we plan to apply a statistical
model of syntax, continue to broaden syntactic cov-
erage, extend the system to handle additional sub-
tasks of realization such as pronomialization and el-
lipsis, and evaluate the system in the context of dif-
ferent applications.

References

S. Bangalore, O. Rambow, and S. Whittaker. 2000. Eval-
uation metrics for generation. InProc. of 1st INLG.

J. Bateman. 1996. KPML development environment —

multilingual linguistic resource development and sen-
tence generation. Technical report, German Centre for
Information Technology (GMD).

P.R. Clarkson and R. Rosenfeld. 1997. Statistical lan-
guage modeling using the cmu-cambridge toolkit. In
Proc. ESCA Eurospeech.

H. Daume, K. Knight, I. Langkilde-Geary, D. Marcu, and
K. Yamada. 2002. Experiments using a statistical
model of syntax. Insubmitted.

M. Elhadad and J. Robin. 1998. Surge: a comprehensive
plug-in syntactic realization component for text gen-
eration. Inhttp://www.cs.bgu.ac.il/ elhadad/pub.html,
submitted.

M. Elhadad. 1993. FUF: The universal unifier—user
manual, version 5.2. Technical Report CUCS-038-91,
Columbia University.

J.Robin. 1994. Revision-based generation of natural
language summaries providing historical background:
corpus-based analysis, design, implementation and
evaluation.Ph.D. thesis, Columbia University.

K. Knight and V. Hatzivassiloglou. 1995. Two-level,
many-paths generation. InProc. ACL.

K. Knight, I. Chander, M. Haines, V. Hatzivassiloglou,
E. Hovy, M. Iida, S. K. Luk, R. Whitney, and K. Ya-
mada. 1995. Filling knowledge gaps in a broad-
coverage MT system. InProc. IJCAI.

I. Langkilde and K. Knight. 1998a. Generation that
exploits corpus-based statistical knowledge. InProc.
COLING-ACL.

I. Langkilde and K. Knight. 1998b. The practical value
of n-grams in generation. InProc. International Natu-
ral Language Generation Workshop.

I. Langkilde. 2000. Forest-based statistical sentence gen-
eration. InProc. NAACL.

B. Lavoie and O. Rambow. 1997. RealPro – a fast,
portable sentence realizer. InANLP’97.

M. Marcus, B. Santorini, and M. Marcinkiewicz. 1993.
Building a large annotated corpus of english: the Penn
treebank.Computational Linguistics, 19(2).

M. Meteer. 1990. The Generation Gap - the problem
of expressibility in text planning. Ph.D. thesis, U. of
Massachusetts.

K. Papineni, S. Roukos, T. Ward, and W-J. Zhu. 2001.
Bleu: a method for automatic evaluation of machine
translation. Technical Report RC22176, IBM Re-
search Division.


