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Abstract
This paper examines feature selection for log linear
models over rich constraint-based grammar (HPSG)
representations by building decision trees over fea-
tures in corresponding probabilistic context free
grammars (PCFGs). We show that single decision
trees do not make optimal use of the available in-
formation; constructed ensembles of decision trees
based on different feature subspaces show signifi-
cant performance gains (14% parse selection error
reduction). We compare the performance of the
learned PCFG grammars and log linear models over
the same features.

1 Introduction
Hand-built NLP grammars frequently have a depth
of linguistic representation and constraints not
present in current treebanks, giving them poten-
tial importance for tasks requiring deeper process-
ing. On the other hand, these manually built gram-
mars need to solve the disambiguation problem to
be practically usable.

This paper presents work on the problem of prob-
abilistic parse selection from among a set of al-
ternatives licensed by a hand-built grammar in the
context of the newly developed RedwoodsHPSG

treebank (Oepen et al., 2002).HPSG (Head-driven
Phrase Structure Grammar) is a modern constraint-
based lexicalist (unification) grammar, described in
Pollard and Sag (1994).

The Redwoods treebank makes available syntac-
tic and semantic analyses of much greater depth
than, for example, the Penn Treebank. Therefore
there are a large number of features available that
could be used by stochastic models for disambigua-
tion. Other researchers have worked on extracting
features useful for disambiguation from unification
grammar analyses and have built log linear mod-
els a.k.a. Stochastic Unification Based Grammars
(Johnson et al., 1999; Riezler et al., 2000). Here

we also use log linear models to estimate condi-
tional probabilities of sentence analyses. Since fea-
ture selection is almost prohibitive for these mod-
els, because of high computational costs, we use
PCFG models to select features for log linear mod-
els. Even though this method may be expected to be
suboptimal, it proves to be useful. We select fea-
tures for PCFGs using decision trees and use the
same features in a conditional log linear model. We
compare the performance of the two models using
equivalent features.

Our PCFG models are comparable to branching
process models for parsing the Penn Treebank, in
which the next state of the model depends on a his-
tory of features. In most recent parsing work the his-
tory consists of a small number of manually selected
features (Charniak, 1997; Collins, 1997). Other
researchers have proposed automatically selecting
the conditioning information for various states of
the model, thus potentially increasing greatly the
space of possible features and selectively choosing
the best predictors for each situation. Decision trees
have been applied for feature selection for statistical
parsing models by Magerman (1995) and Haruno et
al. (1998). Another example of automatic feature
selection for parsing is in the context of a determin-
istic parsing model that chooses parse actions based
on automatically induced decision structures over
a very rich feature set (Hermjakob and Mooney,
1997).

Our experiments in feature selection using deci-
sion trees suggest that single decision trees may not
be able to make optimal use of a large number of rel-
evant features. This may be due to the greedy search
procedures or to the fact that trees combine informa-
tion from different features only through partition-
ing of the space. For example they have difficulty in
weighing evidence from different features without
fully partitioning the space.

A common approach to overcoming some of the



problems with decision trees – such as reducing
their variance or increasing their representational
power – has been building ensembles of decision
trees by, for example, bagging (Breiman, 1996) or
boosting (Freund and Schapire, 1996). Haruno et
al. (1998) have experimented with boosting deci-
sion trees, reporting significant gains. Our approach
is to build separate decision trees using different (al-
though not disjoint) subsets of the feature space and
then to combine their estimates by using the aver-
age of their predictions. A similar method based
on random feature subspaces has been proposed by
Ho (1998), who found that the random feature sub-
space method outperformed bagging and boosting
for datasets with a large number of relevant features
where there is redundancy in the features. Other ex-
amples of ensemble combination based on different
feature subspaces include Zheng (1998) who learns
combinations of Naive Bayes classifiers and Zenobi
and Cunningham (2001) who create ensembles of
kNN classifiers.

We begin by describing the information ourHPSG

corpus makes available and the subset we have at-
tempted to use in our models. Next we describe our
ensembles of decision trees for learning parameter-
izations of branching process models. Finally, we
report parse disambiguation results for these models
and corresponding conditional log linear models.

2 Characteristics of the Treebank and
Features Used

The Redwoods treebank (Oepen et al., 2002) is
an under-construction treebank of sentences corre-
sponding to a particularHPSGgrammar, the LinGO
ERG (Flickinger, 2000). The current preliminary
version contains 10,000 sentences of spoken di-
alog material drawn from the Verbmobil project.
The Redwoods treebank makes available the en-
tire HPSGsigns for sentence analyses, but we have
used in our experiments only small subsets of this
representation. These are (i) derivation trees com-
posed of identifiers of lexical items and construc-
tions used to build the analysis, and (ii) semantic
dependency trees which encode semantic head-to-
head relations. The Redwoods treebank provides
deeper semantics expressed in the Minimum Recur-
sion Semantics formalism (Copestake et al., 2001),
but in the present experiments we have not explored
this fully.

The nodes in the derivation trees represent com-
bining rule schemas of theHPSGgrammar, and not
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Figure 1: Derivation tree for the sentenceLet us see

phrasal categories of the standard sort. The whole
HPSG analyses can be recreated from the deriva-
tion trees, using the grammar. The preterminals of
the derivation trees are lexical labels. These are
much finer grained than Penn Treebank pretermi-
nals tags, and more akin to those used in Tree-
Adjoining Grammar models (Bangalore and Joshi,
1999). There are a total of about8, 000 lexical la-
bels occurring in the treebank. One might conjec-
ture that a supertagging approach could go a long
way toward parse disambiguation. However, an up-
per bound for such an approach for our corpus is
below 55 percent parse selection accuracy, which
is the accuracy of an oracle tagger that chooses at
random among the parses having the correct tag se-
quence (Oepen et al., 2002).

The semantic dependency trees are labelled with
relations most of which correspond to words in the
sentence. These labels provide some abstraction be-
cause some classes of words have the same semantic
label — for example all days of week are grouped
in one class, as are all numbers.

As an example the derivation tree for one analysis
of the short sentenceLet us seeis shown in figure 1.
The semantic dependency tree for the same sentence
is:

let_rel

pron_rel see_understand_rel

In addition to this information we have used the
main part of speech information of the lexical head
to annotate nodes in the derivation trees with labels
like verb, noun, preposition, etc.

Other information that we have not explored in-
cludes subcategorization information, lexical types
(these are a rich set of about500 syntactic types), in-
dividual features such as tense, aspect, gender, etc.
Another resource is the type hierarchy which can be



explored to form equivalence classes on which to
base statistical estimation.

3 Models

3.1 Generative Models

We learn generative models that assign probabilities
to the derivation trees and the dependency trees. We
train these models separately and in the final stage
we combine them to yield a probability or score for
an entire sentence analysis. We rank the possible
analyses produced by theHPSGgrammar in accor-
dance with the estimated scores.

We first describe learning such a generative
model for derivation trees using a single decision
tree and a set of available features. We will call
the set of available features{f1, . . . , fm} a history.
We estimate the probability of a derivation tree as
P (t) =

∏
n∈t P (expansion(n)|history(n)). In

other words, the probability of the derivation tree
is the product of the probabilities of the expansion
of each node given its history of available features.

Given a training corpus of derivation trees cor-
responding to preferred analyses of sentences we
learn the distributionP (expansion|history) us-
ing decision trees. We used a standard decision
tree learning algorithm where splits are determined
based on gain ratio (Quinlan, 1993). We grew the
trees fully and we calculated final expansion prob-
abilities at the leaves by linear interpolation with
estimates one level above. This is a similar, but
more limited, strategy to the one used by Magerman
(1995).

The features over derivation trees which we made
available to the learner are shown in Table 1. The
node direction features indicate whether a node is a
left child, a right child, or a single child. A num-
ber of ancestor features were added to the history.
The grammar used, the LinGOERG has rules which
are maximally binary, and the complements and ad-
juncts of a head are collected through multiple rules.
Moreover, it makes extensive use of unary rules for
various kinds of “type changing” operations. A sim-
ple PCFG is reasonably effective to the extent that
important dependencies are jointly expressed in a
local tree, as is mostly the case for the much flatter
representations used in the Penn Treebank. Here,
this is not the case, and the inclusion of ancestor
nodes in the history makes necessary information
more often local in our models. Grandparent anno-
tation was used previously by Charniak and Carroll
(1994) and Johnson (1998).

No. Name Example
0 Node Label HCOMP
1 Parent Node Label HCOMP
2 Node Direction left
3 Parent Node Direction none
4 Grandparent Node Label IMPER
5 Great Grandparent Top ? yes
6 Left Sister Node Label HCOMP
7 Left Preterminal US
8 Preterminal to the Left of7 LET_V1
9 Category of Node verb

Table 1: Features over derivation trees

No Name Example
0 Node Label let_rel
1 Direction of Dependent left
2 Number of Intervening Dependents1
3 Parent Node Label top
4 Label to the Left or Right pron_rel

Table 2: Features over semantic dependency trees

Similarly we learn generative models over se-
mantic dependency trees. For these trees the ex-
pansion of a node is viewed as consisting of sepa-
rate trials for each dependent. Any conditional de-
pendencies among children of a node can be cap-
tured by expanding the history. The features used
for the semantic dependency trees are shown in Ta-
ble 2. This set of only5 features for semantic trees
makes the feature subset selection method less ap-
plicable since there is no obvious redundancy in the
set. However the method still outperforms a single
decision tree. The model for generation of semantic
dependents to the left and right is as follows: First
the left dependents are generated from right to left
given the head, its parent, right sister, and the num-
ber of dependents to the left that have already been
generated. After that, the right dependents are gen-
erated from left to right, given the head, its parent,
left sister and number of dependents to the right that
have already been generated. We also add stop sym-
bols at the ends to the left and right. This model
is very similar to the markovized rule models in
Collins (1997). For example, the joint probability
of the dependents oflet_rel in the above example
would be:

P (stop|let_rel,left,0,top,none)×
P (pron_rel|let_rel,right,0,top,stop)×
P (see_understand_rel|let_rel,right,1,top,pron_rel)×
P (stop|let_rel,right,2,top,see_understand_rel)



3.2 Conditional Log Linear Models
A conditional log linear model for estimating the
probability of anHPSGanalysis given a sentence has
a set of features{f1, . . . , fm} defined over analyses
and a set of corresponding weights{λ1, . . . , λm}
for them. In this work we have defined features over
derivation trees and syntactic trees as described for
the branching process models.

For a sentences with possible analysest1, . . . , tk,
the conditional probability for analysisti is given
by:

P (ti|s) =
exp

(∑m
j=1 fj(ti)λj

)

∑k
i′=1 exp

(∑m
j=1 fj(ti′)λj

) (1)

As in Johnson et al. (1999) we trained the model
by maximizing the conditional likelihood of the
preferred analyses and using a Gaussian prior for
smoothing (Chen and Rosenfeld, 1999). We used
conjugate gradient for optimization.

Given an ensemble of decision trees estimating
probabilitiesP (expansion|history) we define fea-
tures for a corresponding log linear model as fol-
lows: For each path from the root to a leaf in any of
the decision trees, and for each possible expansion
for that path that was seen in the training set, we
add a featurefeh(t). For a treet, this feature has as
value the number of time the expansione occurred
in t with the historyh.

4 Experiments
We present experimental results comparing the
parse ranking performance of different models. The
accuracy results are averaged over a ten-fold cross-
validation on the data set summarized in Table 3.
The sentences in this data set have exactly one pre-
ferred parse selected by a human annotator. At this
early stage, the treebank is expected to be noisy be-
cause all annotation was done by a single annotator.
Accuracy results denote the percentage of test sen-
tences for which the highest ranked analysis was the
correct one. This measure scores whole sentence ac-
curacy and is therefore more strict than the labelled
precision/recall measures and more appropriate for
the task of parse ranking. When a model ranks a
set ofm parses highest with equal scores and one of
those parses is the preferred parse in the treebank,
we compute the accuracy on this sentence as1/m.

To give an idea about the difficulty of the task on
the corpus we have used, we also show a baseline
which is the expected accuracy of choosing a parse

sentences length lex ambig struct ambig
5277 7.0 4.1 7.3

Table 3: Annotated corpus used in experiments: The
columns are, from left to right, the total number of sen-
tences, average length, and average lexical and structural
ambiguity

Model Generative Log Linear
Test Train Test Train

Random 26.00 26.00 26.00 26.00
PCFG-S 67.27 72.23 79.34 85.31
PCFG-GP 72.39 83.89 81.52 91.56
PCFG-DTAll 75.57 96.51 81.82 97.61

Table 4: Parse ranking accuracy of syntactic mod-
els: single decision tree compared to simpler mod-
els

at random and accuracy results from simpler models
that have been used broadly in NLP.PCFG-S is a
simple PCFG model where we only have the node
label (feature0) in the history, andPCFG-GP has
only the node and its parent’s labels (features0 and
1) as in PCFG grammars with grandparent annota-
tion.

Table 4 shows the accuracy of parse selection of
the three simple models mentioned above defined
over derivation trees and the accuracy achieved by
a single decision tree (PCFG-DTAll) using all fea-
tures in Table 1. The third column contains accuracy
results for log linear models using the same features.

We can note from Table 4 that the genera-
tive models greatly benefit from the addition of
more conditioning information, while the log lin-
ear model performs very well even with only simple
rule features, and its accuracy does not increase so
sharply with the addition of more complex features.
The error reduction fromPCFG-S to PCFG-DTAll
is 25.36%, while the corresponding error reduction
for the log linear model is 12%. The error reduction
for the log linear model fromPCFG-GP to PCFG-
DTAll is very small which suggests an overfitting ef-
fect. PCFG-S is doing much worse than the log lin-
ear model with the same features, and this is true for
the training data as well as for the test data. A partial
explanation for this is the fact thatPCFG-S tries to
maximize the likelihood of the correct parses under
strong independence assumptions, whereas the log
linear model need only worry about making the cor-
rect parses more probable than the incorrect ones.

Next we show results comparing the single deci-



Type of Model All Features Feature Subspaces
PCFG Log linear PCFG Log linear

Derivation Trees 75.57 81.82 78.97 82.24
Dependency Trees 67.38 69.91 68.88 73.50
Combined Feature Subspaces Accuracy80.10 83.32

Table 5: Parse ranking accuracy: single decision trees and ensembles

sion tree model (PCFG-DTAll) to an ensemble of 11
decision trees based on different feature subspaces.
The decision trees in the ensemble are used to rank
the possible parses of a sentence individually and
then their votes are combined using a simple ma-
jority vote. The sets of features in each decision
tree are obtained by removing two features from the
whole space. The left preterminal features (features
with numbers 7 and 8) participate in only one de-
cision tree. Also, features 2, 3, and 5 participate
in all decision trees since they have very few pos-
sible values and should not partition the space too
quickly. The feature space of each of the 10 de-
cision trees not containing the left preterminal fea-
tures was formed by removing two of the features
from among those with numbers {0, 1, 4, 6, and 9}
from the initial feature space (minus features 7 and
8). This method for constructing feature subspaces
is heuristic, but is based on the intuition of removing
the features that have the largest numbers of possi-
ble values.1

Table 5 shows the accuracy results for mod-
els based on derivation trees, semantic dependency
trees, and a combined model. The first row shows
parse ranking accuracy using derivation trees of
generative and log linear models over the same fea-
tures. Results are shown for features selected by a a
single decision tree, and an ensemble of 11 decision
tree models based on different feature subspaces as
described above. The relative improvement in accu-
racy of the log linear model from single to multiple
decision trees is fairly small.

The second row shows corresponding models for
the semantic dependency trees. Since there are a
small number of features used for this task, the
performance gain from using feature subspaces is

1We also preformed an experiment where we removed ev-
ery combination of two features from the whole space of fea-
tures 0–8 to obtain subspaces. This results in a large number
of feature subspaces (36). The performance of this method was
slightly worse than the result reported in Table 5 (78.52%). We
preferred to work with an ensemble of 11 decision trees for
computational reasons.

not so large. It should be noted that there is a
90.9% upper bound on parse ranking accuracy us-
ing semantic trees only. This is because for many
sentences there are several analyses with the same
semantic dependency structure. Interestingly, for
semantic trees the difference between the log lin-
ear and generative models is not so large. Finally,
the last row shows the combination of models over
derivation trees and semantic trees. The feature sub-
space ensemble of 11 decision tree models for the
derivation trees is combined with the ensemble of
5 feature subspace models over semantic dependen-
cies to yield a larger ensemble that ranks possible
sentence analyses based on weighted majority vote
(with smaller weights for the semantic models). The
improvement for PCFG models from combining the
syntactic and semantic models is about5.4% error
reduction from the error rate of the better (syntac-
tic) models. The corresponding log linear model
contains all features from the syntactic and semantic
decision trees in the ensemble. The error reduction
due to the addition of semantics is6.1% for the log
linear model. Overall the gains from using semantic
information are not as good as we expected. Further
research remains to be done in this area.

The results show that decision trees and ensem-
bles of decision trees can be used to greatly improve
the performance of generative models over deriva-
tion trees and dependency trees. The performance
of generative models using a lot of conditioning in-
formation approaches the performance of log linear
models although the latter remain clearly superior.
The corresponding improvement in log linear mod-
els when adding more complex features is not as
large as the improvement in generative models. On
the other hand, there might be better ways to incor-
porate the information from additional history in log
linear models.

5 Error Analysis

It is interesting to see what the hard disambiguation
decisions are, that the combined syntactic-semantic



models can not at present get right.
We analyzed some of the errors made by the best

log linear model defined over derivation trees and
semantic dependency trees. We selected for analysis
sentences that the model got wrong on one of the
training - test splits in the 10 fold cross-validation
on the whole corpus. The error analysis suggests
the following breakdown:

• About 40% of errors are due to inconsistency
or errors in annotation

• About 15% of the errors are due to grammar
limitations

• About 45% of the errors are real errors and we
could hope to get them right

The inconsistency in annotation hurts the perfor-
mance of the model both when in the training data
some sentences were annotated incorrectly and the
model tried to fit its parameters to explain them, and
when in the test data the model chose the correct
analysis but it was scored as incorrect because of
incorrect annotation. It is not straightforward to de-
tect inconsistencies in the training data by inspect-
ing test data errors. Therefore the percentages we
have reported are not exact.

The log linear model seems to be more suscepti-
ble to errors in the training set annotation than the
PCFG models, because it can easily adjust its pa-
rameters to fit the noise (causing overfitting), espe-
cially when given a large number of features. This
might partly explain why the log linear model does
not profit greatly over this data set from the addition
of a large number of features.

A significant portion of the real errors made by
the model are PP attachment errors. Another class
of errors come from parallel structures and long dis-
tance dependencies. For example, the model did
not disambiguate correctly the sentenceIs anywhere
from two thirty to five on Thursday fine?, preferring
the interpretationfrom [two thirty] to [five on Thurs-
day] rather than what would be the more common
meaning[from [two thirty] to [five]] [on Thurs-
day]. This disambiguation decision seems to re-
quire common world knowledge or it might be ad-
dressable with addition of knowledge about paral-
lel structures. ( (Johnson et al., 1999) add features
measuring parallelism).

We also compared the errors made by the best log
linear model using only derivation tree features to
the ones made by the combined model. The large

majority of the errors made by the combined model
were also made by the syntactic model. Examples
of errors corrected with the help of semantic infor-
mation include:

The sentenceHow about on the twenty fourth
Monday?(punctuation is not present in the corpus)
was analyzed by the model based on derivation trees
to refer to the Monday after twenty three Mondays
from now, whereas the more common interpretation
would be that the day being referred to is the twenty
fourth day of the month, and it is also a Monday.
There were several errors of this sort corrected by
the dependency trees model.

Another interesting error corrected by the seman-
tic model was for the sentence:We will get a cab
and go. The syntactic model chose the interpreta-
tion of that sentence in the sense:We will become
a cab and go, which was overruled by the semantic
model.

6 Conclusions and Future Work

We have presented work on building probabilistic
models for HPSG parse disambiguation. As the
number of available features increases it becomes
more important to select relevant features automati-
cally. We have shown that decision trees using dif-
ferent feature subspaces can be combined in ensem-
bles that choose the correct parse with higher accu-
racy than individual models.

Our plans for future work include exploring more
information from theHPSGsigns and defining fea-
tures that capture long distance dependencies. An-
other line of future research is defining models over
the deeperMRS semantic representations, possibly
in conjunction with clustering of semantic types.
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