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Abstract

This paper explores the use of Sup-
port Vector Machines (SVMs) for an
extended named entity task. We inves-
tigate the identification and classifica-
tion of technical terms in the molecular
biology domain and contrast this to re-
sults obtained for traditional NE recog-
nition on the MUC-6 data set. Fur-
thermore we compare the performance
of the SVM model to a standard HMM
bigram model. Results show that the
SVM utilizing a rich feature set of a
+3 context window and POS features
(MUC-6 only) had a significant perfor-
mance advantage on both the MUC-6
and molecular biology data sets.

1 Introduction

Named entity (NE) extraction is now firmly es-
tablished as a core technology for understanding
low level semantics of texts. NE was formalized
in the DARPA-sponsored Message Understand-
ing Conference (MUC)-6 (MUC, 1995) and since
then several methodologies have been widely ex-
plored:

e heuristics-based, using rules written by

human experts after inspecting examples
(Fukuda et al., 1998);

e supervised such as (Bikel et al., 1997) using
labelled training examples;

e non-supervised methods such as (Collins
and Singer, 1999).

NE’s main role has been to identify expres-
sions such as the names of people, places and or-
ganizations as well as date and time expressions.
Such expressions are hard to analyze using tra-
ditional natural language processing (NLP) be-
cause they belong to the open class of expres-
sions, i.e. there is an infinite variety and new
expressions are constantly being invented.

The application of NE to non-news domains
requires us to consider extending NE so that it
can capture types, i.e. instances of conceptual
classes as well as individuals. To distinguish be-
tween traditional NE and extended NE we refer
to the later as NE+. There are several issues
that may mean that NE+ is more challenging
that NE. The most important is the number
of variants of NE+4 expressions due to graph-
ical, morphological, shallow syntactic and dis-
course variations. For example the use of head
sharing combined with embedded abbreviations
in unliganded (apo)- and liganded (holo)-LBD.
Such expressions will require syntactic analysis
beyond simple noun phrase chunking if they are
to be successfully captured. NE4 expressions
may also require richer contextual evidence than
is needed for regular NEs - for example knowl-
edge of the head noun or the predicate. At the
ontology level there are complex issues related
to granularity when deciding on which class a
possible NE+ expression should be assigned to.

NE+ expressions will typically belong to a
much richer taxonomy than NE, opening up the
possibility of combining information extraction
(IE) with deep knowledge representations such
as ontologies. This is an area we are currently

exploring (Collier et al., 2002). Examples of



NE+ classes include, a person’s name, a pro-
tein name, a chemical formula or a computer
product code. All of these may be valid candi-
dates for tagging depending on whether they are
contained in the ontology.

NE+ can be viewed as a type of multiple
classification task and there are several effective
and well studied learning algorithms available
for this such as Hidden Markov Models (HMMs)
(Rabiner and Juang, 1986) and transformation-
based error-driven learning (TBL) (Brill, 1995).
Recently a new learning paradigm called sup-
port vector machines (SVMs) (Vapnik, 1995)
has been the focus of intensive research in ma-
chine learning due to its capacity to learn effec-
tively from large feature sets. SVMs have been
applied very successfully in the past to several
traditional classification tasks such as text clas-
sification. Promising results have been reported
for NLP tasks such as part of speech tagging and
chunking, e.g. (Kudoh and Matsumoto, 2000).

We have implemented and compared two
learning methods (SVM, HMM) and tested
them on two data sets. The comparison between
these models is informative because of the dif-
ferent nature of the two learning methods. In
the case of the HMM the learning approach is
generative, i.e. it makes use of positive exam-
ples to build a model of NE classes and then
evaluates each unseen sentence to see how well
each of the words ‘fits’ the model. The SVM
on the other hand is a discriminative approach
and makes use of both positive and negative ex-
amples to learn the distinction between the two
Another major difference is that the
SVM outputs a measure of distance from the
classification function whereas the HMM uses
the Viterbi algorithm (Viterbi, 1967) to decode
using maximum likelihood probabilities. Basi-
cally we expect the models to have quite dif-
ferent strengths and weaknesses and hopefully
these can be complementary, allowing us even-
tually to combine the approaches to achieve a
composite model. The two models are described
further below along with their performance.

classes.

2 Method

2.1 SVM

We developed our method using the Tiny SVM
package from NAIST ! which is an implementa-
tion of Vladimir Vapnik’s SVM combined with
an optimization algorithm (Joachims, 1999).

SVMs like other inductive-learning ap-
proaches take as input a set of training exam-
ples (given as binary valued feature vectors) and
finds a classification function that maps them
to a class. There are several points about SVM
models that are worth summarizing here. The
first is that SVMs are known to robustly han-
dle large feature sets and to develop models
that maximize their generalizability. This makes
them an ideal model for the NE+ task. General-
izability in SVMs is based on statistical learning
theory and the observation that it is useful some-
times to misclassify some of the training data so
that the margin between other training points is
maximized (Cortes and Vapnik, 1995). This is
particularly useful for real world data sets that
often contain inseparable data points. Secondly,
although training is generally slow, the resulting
model is usually small and runs quickly as only
the support vectors need to be retained, i.e. the
patterns that help define the function which sep-
arates positive from negative examples. Thirdly
is that SVMs are binary classifiers and so we
need to combine SVM models to obtain a multi-
class classifier.

Formally then we can consider the purpose
of the SVM to be to estimate a classification
function f : x — {£1} using training examples
from x x {£1} so that error on unseen exam-
ples is minimized. The classification function
returns either +1 if the test data is a mem-
ber of the class, or —1 if it is not. Although
SVMs learn what are essentially linear decision
functions, the effectiveness of the strategy is en-
sured by mapping the input patterns x to a fea-
ture space I using a nonlinear mapping function
® : x — I'. Since the algorithm is well described
in the literature cited earlier we will focus our
description from now on the features we used for

'Tiny SVM is available from http:// http://cl.aist-
nara.ac.jp/ taku-ku/software/ TinySVM/
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Figure 1: Lexical features and context consid-
ered by the SVM model when deciding the class
tag T at the focus position t includes surface
word forms, part of speech, orthographic fea-
tures and previous word class tags.

training.

In our implementation each training pattern
is given as a vector which represents certain lex-
ical features. All models use a surface word,
an orthographic feature (Collier et al., 2000)
and previous class assignments, but our experi-
ments with part of speech (POS) features (Brill,
1992) showed that POS features actually inhib-
ited performance in the molecular biology data
set which we present below. This is probably
because the POS tagger was trained on news
texts. Therefore POS features are used only for
the MUC-6 news data set where we show a com-
parison with and without these features. The
form of the vector is basically a bag of words,
i.e. word positions or ordering are not recorded.
In the experiments we report below we use fea-
ture vectors consisting of differing amounts of
‘context’ by varying the window around the fo-
cus word which is to be classified into one of the
NE+ classes. The full window of context consid-
ered in these experiments is £3 about the focus
word as shown in Figure 1. In pattern formation
we took an IOB based approach to NE+ chunk
identification in which each word was assigned
a class tag from {/_C;, B_Cy, O} where C} is the
class, B stands for a beginning of chunk tag,
I stands for an in-chunk tag, and O stands for
outside of chunk, i.e. not a member of one of
the given classes.

Due to the nature of the SVM as a binary
classifier it is necessary in a multi-class task to
consider the strategy for combining several clas-
sifiers. In our experiments with Tiny SVM the
strategy used was one-against-one rather than
one-against-the-rest. For example, if we have
four classes A, B, C and D then Tiny SVM
builds classifiers for (1) A against (B, C, D),
(2) B against (C, D), and (3) C against D. The
winning class is the one which obtains the most
votes of the pairwise classifiers.

We implemented two versions of the SVM.
SV M? uses a +3 window about the focus word
and is implemented with the polynomial (poly)
kernel function. SV M? is used to directly com-
pare the performance of the SVM with the HMM
model described below and here we use only fea-
tures for the focus word and previous word, i.e.
a more limited context. Due to effects of data
sparseness the HMM would be very difficult to
train using a wider context window - this is one
of the advantages we hope to test in SV M.

The kernel function k : x X x — R mentioned
above basically defines the feature space f by
computing the inner product of pairs of data
points. For x € x we explored the simple poly-
nomial function k(z;, ;) = (z; - z; + 1)%.

2.2 HMM

The HMM we implemented for comparison with
the SVM was the version fully described in (Col-
lier et al., 2000)2. Basically this is a linear in-
terpolating HMM trained using maximum likeli-
hood estimates from bigrams of the surface word
and an orthographic feature which is determin-
istically chosen. No part of speech was used in
the formulation of this model.

We consider words to be ordered pairs consist-
ing of a surface word, W, and a word feature,
F, given as < W, F >. As is common prac-
tice, we need to calculate the probabilities for a
word sequence for the first word’s name class C
and every other word differently since we have
no initial name-class to make a transition from.

ZFor purposes of comparison we note that in further
tests Nobata et al. (2000) found this HMM to be superior
to the C4.5 decision tree rule learner.



Accordingly we use the following equation to cal-
culate the initial name class probability,

Pr(Co| < Wy, Fy >) =
oo f(Col < Wy, Fo >) +
o1f(Col < -, Fo>) +
o2 f(Co) (1)

and for all other words and their name classes
C as follows:

Pr(Cy| < Wy, Fy >, < W1, Fp1 >,C_1) =
Mf(C < Wi, Fy >, < W1, Frqg >,C1) +
M(CH < F > < Wi, Fr1 >,Cp 1) +
Mf(C < Wy, Fy >, < L Fi—1 >,Ce1) +
MG < F > < Fp1>,Ciq) +
A f(Ce|Cy1) +

5f(Ct) (2)

where f(|) is calculated with maximum-
likelihood estimates from counts on training
data.

In our current system we set the constants \;
and o; by hand and let > o; = 1.0, >_ \; = 1.0,
09 > 01 > 02, A\p > A1... > As. The current
name-class C} is conditioned on the current word
and feature, the previous name-class, Cy_1, and
previous word and feature.

Once the state transition probabilities have
been calculated according to Equations 1 and
2, the Viterbi algorithm (Viterbi, 1967) is used
to search the state space of possible name class
assignments in linear time to find the highest
probability path, i.e. to maximize Pr(W,C).

>

2.3 Data Sets

We used two data sets in our study one for
NE+ and the other for traditional NE. The NE+
collection (Biol) consists of 100 MEDLINE ab-
stracts (23586 words) in the domain of molec-
ular biology annotated for the names of genes
and gene products (Tateishi et al., 2000). The
second (MUC-6) is the collection of 60 executive
succession texts (24617 words) used in MUC-6
for dryrun and testing. Details are shown in Ta-

bles 1 and 2.

’ Class H # ‘ Description

PROTEIN 2125 | proteins, protein
groups,families,
complexes and
substructures

DNA 358 | DNAs, DNA groups,
regions and genes

RNA 30 RNAs, RNA groups,
regions and genes

SOURCE.cl 93 cell line

SOURCE.ct 417 | cell type

SOURCE.mo | 21 IMONOo-organism

SOURCE.mu || 64 multi-celled organism

SOURCE.vi 90 viruses

SOURCE.sl 7 sublocation

SOURCE.ti 37 tissue

Table 1: Markup classes used in Biol with the
number of word tokens for each class.

3 Results and Analysis

Results are given as F-scores (van Rijsbergen,
1979) and calculated using the CoNLL eval-
uation script®.  F-score is defined as F =
(2PR)/(P+ R). where P denotes Precision and
R Recall. P is the ratio of the number of cor-
rectly found NE chunks to the number of found
NE chunks, and R is the ratio of the number
of correctly found NE chunks to the number of
true NE chunks.

Table 3 shows the overall F-score for the three
models and two collections, calculated using 10-

3 Available from http://lcg-www.uia.ac.be/
conll2002 /ner /bin/
’ Class H # ‘

DATE 542
LOCATION 390
ORGANIZATION | 1783
MONEY 423
PERCENT 108
PERSON 838
TIME 3

Table 2: Markup classes used in MUC-6 with
the number of word tokens for class label.



fold cross validation on the total test collection.
Due to the size of the collections we did not ob-
serve an optimal result for each model but we
found a clear and sustained advantage by SVM!
over the HMM for the NE task in MUC-6 and
the NE+ task in Biol. The only drawback we
observed with SVM? was that it seemed to be
quite weak for the very low frequency classes
such as RNA, SOURCE.mo or TIME where the
HMM usually proved to be more robust. SVM?
was the weakest model that we tested and we
can conclude that when trained with similar
knowledge to the HMM the SVM has no partic-
ular performance advantage that we could ob-
serve. However by exploiting the SVMs capabil-
ity to easily handle large feature sets including a
wide context window and POS tags the results
suggest that the SVM will perform at a signif-
icantly higher level than the HMM. A detailed
break down of results by class is shown in Table
4.

What is not obvious from the tables is the
effect we found of tokenization. In all the exper-
iments reported for SVM in Table 3 we used the
FDG parser (Tapanainen and Jarvinen, 1997)
which we found gave much better results for
Biol than a simple tokenization strategy that
simply split each word at spaces or punctuation
marks. On MUC-6 the advantage was less clear
and we concluded that the frequent and ambigu-
ous use of hyphen in Biol was the key factor.

On the NE+ task in Biol we found that SVM!
slightly but clearly outperformed the HMM. In
analysis of SVM! results we identified several
types of error. The first and perhaps most seri-
ous type was caused by local syntactic ambigui-
ties such as head sharing in 39-kD SH2, SH3 do-
main which should have been classed as a PRO-
TEIN, but the SVM split it into two PROTEIN
expressions SH2 and SH3 domain. In partic-
ular the ambiguous use of hyphen, e.g. 14FE1
single-chain (sc) Fv antibody , and parentheses,
e.g. scFv (14E1), seemed to cause the SVM
more difficulties than the HMM. It is likely that
the limited contextual information we gave to
the SVM was the cause of this and can be im-
proved on using grammatical features such as
head noun or main verb. HMM seems to gain

an advantage through the Viterbi algorithm by
being able to partially consider evidence over
the entire sentence. A second minor type of er-
ror seemed to be the result of inconsistencies in
the annotation scheme for Biol such as the in-
clusion of a definite description in a term name
for UT7/TPO cells, a thrombopoietin-dependent
megakaryocytic cell line which was all considered
to be a SOURCE.ct expression.

4 Conclusion

There are many more kernel parameters to ex-
plore than can be dealt with here and we will
be continuing our investigation by tuning the
SVM parameters. The results do however pro-
vide an indication of performance trends: the
first is that SVM will outperform the HMM by a
significant margin on both the MUC-6 and Biol
data sets if it is given a wide context window
(£3) and a rich feature set. The second is that
the SVM lacked sufficient knowledge about com-
plex structures in NE+ expressions to achieve
its best performance on Biol. We believe that
with further tuning our SVM model will prove
more useful in NE4 and allow us to combine ev-
idence from large feature sets in order to model
local structure and context. Furthermore, if a
training set was developed for the POS tagger
in the NE+ domain it seems likely that the SVM
would strongly benefit from this. In its current
configuration SVM! could be combined with the
HMM on the Biol data set to achieve better per-
formance in 5 of the 10 classes.

While acknowledging the danger of drawing
broad conclusions about the NE+ task from one
domain-based data set, pending further analy-
sis, we can cautiously say that performance on
the two data sets has shown that the MUC-6 NE
task is somewhat easier than the Biol NE+ task.
Despite a few investigations into the nature of
the NE task (Palmer and Day, 1997) (Nobata
et al., 2000) the information theoretical aspects
of the knowledge required for the task are still
not, well understood and this must be consid-
ered as a key area for future research. In order
to test our method more accurately and develop
a composite model we are now building a more



Model
Data set | HMM SVM! (poly) SVM?
degree d= degree d=
1 2 3 4 2
Biolf 70.97 || 71.33 71.78 68.54 65.09 | 65.63
MUC-6f 70.38 | 72.86 73.21 69.22 65.12 | 65.94
MUC-6 - 74.80 74.66 72.68 67.92 | 68.83

Table 3: Overall F-scores for each of the learning methods on the two test sets using 10-fold cross
validation on all data. SVM!(poly) denotes the SVM trained using a polynomial kernel function
and a +3 context window; SVM? results when a context window of -1 and the focus were used
so that direct comparisons with the HMM can be made. T Results for models using surface word
and orthographic features but no part of speech features; ¥ Results for models using surface word,

orthographic and part of speech features.

realistic data set for molecular biology from full
journal articles.
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