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Abstract representations is not without cost. Even mod-

Conditional maximum entropy (ME) models pro- €St ME models can require considera_b_le computa-
vide a general purpose machine learning techniquéonal resources and very large quantities of anno-
which has been successfully applied to fields adated training data in order to accurately estimate
diverse as computer vision and econometrics, anf1® model's parameters. While parameter estima-
which is used for a wide variety of classification tion for ME models is conceptually straightforward,
problems in natural language processing. Howevelh Practice ME models for typical natural language
the flexibility of ME models is not without cost. tasks are usually quite large, and frequently contain
While parameter estimation for ME models is con-hundreds of thousands of free parameters. Estima-
ceptually straightforward, in practice ME models tion of such large models is not only expensive, but
for typical natural language tasks are very large, andlS0, due to sparsely distributed features, sensitive
may well contain many thousands of free paramel0 round-off errors. Thus, highly efficient, accurate,
ters. In this paper, we consider a number of a|go_scalable methods are required for estimating the pa-
rithms for estimating the parameters of ME mod-fameters of practical models.

els, including iterative scaling, gradient ascent, con- In this paper, we consider a number of algorithms
jugate gradient, and variable metric methods. Surfor estimating the parameters of ME models, in-
prisingly, the standardly used iterative scaling algo-cludingGeneralized Iterative Scalirgndimproved
rithms perform quite poorly in comparison to the Iterative Scaling as well as general purpose opti-
others, and for all of the test problems, a limited-mization techniques such geadient ascent, conju-
memory variable metric algorithm outperformed thegate gradient,and variable metricmethods. Sur-

other choices. prisingly, the widely used iterative scaling algo-
_ rithms perform quite poorly, and for all of the test
1 Introduction problems, a limited memory variable metric algo-

Maximum entropy (ME) models, variously known rithm outperformed the other choices.

as log-linear, Gibbs, exponential, and multinomial

logit models, provide a general purpose machin® nMaximum likelihood estimation

learning technique for classification and prediction

which has been successfully applied to fields as diSuppose we are given a probability distributipn
verse as computer vision and econometrics. In natusver a set of eventX which are characterized by a
ral language processing, recent years have seen MEdimensional feature vector function: X — RY.
techniques used for sentence boundary detectiohn addition, we have also a set of conte¥¥sand a
part of speech tagging, parse selection and ambigdunctionY which partitions the members &f. In

ity resolution, and stochastic attribute-value gram-the case of a stochastic context-free grammar, for
mars, to name just a few applications (Abney, 1997gxample,X might be the set of possible trees, the
Berger et al., 1996; Ratnaparkhi, 1998; Johnson efeature vectors might represent the number of times
al., 1999). each rule applied in the derivation of each trée,

A leading advantage of ME models is their flex- might be the set of possible strings of words, and
ibility: they allow stochastic rule systems to be Y(w) the set of trees whose yieldisc W. A con-
augmented with additional syntactic, semantic, andlitional maximum entropy modej(x|w) for p has
pragmatic features. However, the richness of théhe parametric form (Berger et al., 1996; Chi, 1998;



Johnson et al., 1999): ratio of Ey[f] to Eyw[f], with the restriction that

oxn (67 f ¥ fj(x) = C for each evenk in the training data

Op(X|w) = xp(6' f()) (1) (acondition which can be easily satisfied by the ad-
Y yev(w) EXP(BT F(y)) dition of a correction feature). We can adapt GIS

to estimate the model parametérsather than the

model probabilitieg, yielding the update rule:

where 8 is a d-dimensional parameter vector and

87 f(x) is the inner product of the parameter vector

and a feature vector. 1
Given the parametric form of an ME model in 5k _ Iog< Ep[f] )

(1), fitting an ME model to a collection of training Eq<k)[f]
data entails finding values for the parameter vector
8 which minimize the Kullback-Leibler divergence  The step size, and thus the rate of convergence,
between the modete and the empirical distribu- depends on the consta@t the larger the value of
tion p: C, the smaller the step size. In case not all rows of
p(X|W) the training data sum to a constant, the addition of a
correction feature effectively slows convergence to
O (X|W) match the most difficult case. To avoid this slowed
convergence and the need for a correction feature,
Della Pietra et al. (1997) propose bmproved Iter-
L(8) = > p(w,x)logge(X|w) (2) ative Scaling(llS) algorithm, whose update rule is
wx the solution to the equation:

D(pllge) = ) p(x,w)log

or, equivalently, which maximize the log likelihood:

The gradient of the log likelihood function, or the _ (k) (k)
vector of its first derivatives with respect to the pa- Bolf] = v; PW)Q™ (x[W) () exp(M(x)3™)
rametem is:

whereM(x) is the sum of the feature values for an
G(6) = Ep[f] —Eglf] 3 eventxin the training data. This is a polynomial in
Since the likelihood function (2) is concave over €xP(8"), and the solution can be found straight-
the parameter space, it has a global maximum wheré@rwardly using, for example, the Newton-Raphson
the gradient is zero. Unfortunately, simply setting method.
G(6) = 0 and solving for6 does not yield a closed 5 5 Eirst order methods

form solution, so we proceed iteratively. At each ) ) ) o
step, we adjust an estimate of the parameéfs Iterative scaling algorithms have a long tradition in

to a new estimat®*+) based on the divergence Statistics and are still widely used for analysis of
between the estimated probability distributigf) ~ contingency tables. Their primary strength is that
and the empirical distributiop. We continue until ON €ach iteration they only require computation of

successive improvements fail to yield a sufficientlyth® €xpected valuesgks. They do not depend on
large decrease in the divergence. evaluation of the gradient of the log-likelihood func-

While all parameter estimation algorithms we tion,_w_h_ich, dependi_ng on the distribution, could be
will consider take the same general form, theProhibitively expensive. In the case of ME mpdels,
method for computing the update¥¥ at each howeyer, the_ vector of gxpected val_ues required by
search step differs substantially. As we shall seelterative scaling essentiallg the gradienG. Thus,
this difference can have a dramatic impact on thdt makes sense to consider methods which use the
number of updates required to reach convergence. 9radient directly. _ o

_ _ The most obvious way of making explicit use of
2.1 lterative Scaling the gradient is byCauchy’s methador the method
One popular method for iteratively refining the of steepest ascenfThe gradient of a function is a
model parameters i&eneralized lIterative Scaling vector which points in the direction in which the
(GIS), due to Darroch and Ratcliff (1972). An function’s value increases most rapidly. Since our
extension of Iterative Proportional Fitting (Dem- goal is to maximize the log-likelihood function, a
ing and Stephan, 1940), GIS scales the probabilnatural strategy is to shift our current estimate of
ity distribution g¥) by a factor proportional to the the parameters in the direction of the gradient via



the update rule: derivatives with respect t6. If we set the deriva-
tive of (4) to zero and solve fay, we get the update
3 = aG(eM) rule for Newton’s method

where the step size® is chosen to maximize 8% =H1(6%)G(8™) (5)

L(6® 4+ 8K). Finding the optimal step size is itself _

an optimization problem, though only in one dimen-Newton’s method converges very quickly (for

sion and, in practice, only an approximate solutionduadratic objective functions, in one step), but it re-

is required to guarantee global convergence. quires the computation of the inverse of the Hessian
Since the log-likelihood function is concave, the Matrix on each iteration. _

method of steepest ascent is guaranteed to find the While the log-likelihood function for ME models

global maximum. However, while the steps takenin (2) is twice differentiable, for large scale prob-

on each iteration are in a very narrow sense locallyems the evaluation of the Hessian matrix is com-

optimal, the global convergence rate of steepest aftutationally impractical, and Newton'’s method is

cent is very poor. Each new search direction is or10t competitive with iterative sgalmg or first order

thogonal (or, if an approximate line search is usedmMethods Variable metricor quasi-Newtommethods

nearly so) to the previous direction. This leads to2void explicit evaluation of the Hessian by building

a characteristic “zig-zag” ascent, with convergence!P an approximation of it using successive evalua-

slowing as the maximum is approached. tions of the gradient. That is, we replaide *(6))
One way of looking at the problem with steep- IN (5) vxlth a local approximation of the inverse Hes-

est ascent is that it considers the same search diianB:

rections many times. We would prefer an algo- 5% =BMG(eN)

rithm which considered each possible search direci, gk

tion only once, in each iteration taking a step of ex-

actly the right length in a direction orthogonal to all

previous search directions. This intuition underlies BRyK — 5k-1)

conjugate gradieninethods, which choose a search

direction Whigh is_a linear combina_tion of the Ste‘?p'wherey(") _ G(e(k)) _ G(e(k—l)).

est ascent direction and the previous search direc- \xiable metric methods also show excellent con-

tion. The step size is selected by an approximatgergence properties and can be much more efficient
line search, as in the steepest ascent method. S fan using true Newton updates, but for large scale

eral non-linear conjugate gradient method's,‘such aSroblems with hundreds of thousands of parame-
the Fletcher-Reevegeg-fr) and thePolak-Ribere- o5 even storing the approximate Hessian is pro-

Positive (cf-prp) algorithms, have been proposed.ppisively expensive. For such cases, we can apply
While theoretically equivalent, they use slighly dif- |imited memory variable metrimethods, which im-

ferent update rules and thus show different numerigjicitiy approximate the Hessian matrix in the vicin-
properties. ity of the current estimate @&* using the previous

23 Second order methods mvalues ofy® andd®. Since in practical applica-

) ) tions values om between 3 and 10 suffice, this can
Another way of looking at the problem with steep- oo 5 substantial savings in storage requirements

est ascent is that_ Wh_”e it takes i_nto account the gragyer variable metric methods, while still giving fa-
dient of the log-likelihood function, it fails to take

) . , vorable convergence properties.
into account its curvature, or the gradient of the gra-

dient. The usefulness of the curvature is made cleag  Comparing estimation techniques

if we consider a second-order Taylor series approx- L . .
imation ofL (6 + 3): The performance of optimization algorithms is

highly dependent on the specific properties of the
problem to be solved. Worst-case analysis typically

a symmatric, positive definite matrix
which satisfies the equation:

1
L(B+3) ~L(0)+8 G(B)+=3"H(8)d (4)
2 1space constraints preclude a more detailed discussion of

. . . - these methods here. For algorithmic details and theoretical
where H is Hessian matrixof the log-likelihood  analysis of first and second order methods, see, e.g., Nocedal

function, thed x d matrix of its second partial (1997) or Nocedal and Wright (1999).




does not reflect the actual behavior on actual probeperations, we can take advantage of the high per-
lems. Therefore, in order to evaluate the perforformance sparse matrix primitives of PETSc.
mance of the optimization techniques sketched in For the comparison, we implemented both Gener-
previous section when applied to the problem of paalized and Improved Iterative Scaling in C++ using
rameter estimation, we need to compare the perforthe primitives provided by PETSc. For the other op-
mance of actual implementations on realistic dataimization techniques, we used TAO (the “Toolkit
sets (Dolan and M@, 2002). for Advanced Optimization”), a library layered on
Minka (2001) offers a comparison of iterative top of the foundation of PETSc for solving non-
scaling with other algorithms for parameter esti-linear optimization problems (Benson et al., 2002).
mation in logistic regression, a problem similar to TAO offers the building blocks for writing optimiza-
the one considered here, but it is difficult to trans-tion programs (such as line searches and conver-
fer Minka’s results to ME models. For one, he gence tests) as well as high-quality implementations
evaluates the algorithms with randomly generateaf standard optimization algorithms (including con-
training data. However, the performance and accujugate gradient and variable metric methods).
racy of optimization algorithms can be sensitive to  Before turning to the results of the comparison,
the specific numerical properties of the function be-two additional points need to be made. First, in
ing optimized; results based on random data mayrder to assure a consistent comparison, we need
or may not carry over to more realistic problems.to use the same stopping rule for each algorithm.
And, the test problems Minka considers are rela+or these experiments, we judged that convergence
tively small (100-500 dimensions). As we havewas reached when the relative change in the log-
seen, though, algorithms which perform well for likelihood between iterations fell below a predeter-
small and medium scale problems may not alwaysnined threshold. That is, each run was stopped
be applicable to problems with many thousands ofvhen:
dimensions. IL(OK) —L(Bk-D),

3.1 Implementation L(6™)

As a basis for the implementation, we have usedvhere the relative toleranee= 10~'. For any par-
PETSc (the “Portable, Extensible Toolkit for Sci- ticular application, this may or may not be an appro-
entific Computation”), a software library designed priate stopping rule, but is only used here for pur-
to ease development of programs which solve larg@oses of comparison.
systems of partial differential equations (Balay et Finally, it should be noted that in the current im-
al., 2001; Balay et al., 1997; Balay et al., 2002).plementation, we have not applied any of the possi-
PETSc offers data structures and routines for paralble optimizations that appear in the literature (Laf-
lel and sequential storage, manipulation, and visuferty and Suhm, 1996; Wu and Khudanpur, 2000;
alization of very large sparse matrices. Lafferty et al., 2001) to speed up normalization of
For any of the estimation techniques, the most exthe probability distributiory. These improvements
pensive operation is computing the probability dis-take advantage of a model’s structure to simplify the
tribution g and the expectations&] for each it-  evaluation of the denominator in (1). The particular
eration. In order to make use of the facilities pro-data sets examined here are unstructured, and such
vided by PETSc, we can store the training data agptimizations are unlikely to give any improvement.
a (sparse) matrid, with rows corresponding to However, when these optimizations are appropriate,
events and columns to features. Then given a pahey will give a proportional speed-up to all of the
rameter vecto8, the unnormalized probabilitiesyy = algorithms. Thus, the use of such optimizations is
are the matrix-vector product: independent of the choice of parameter estimation
method.

<E (6)

(s = expFo
3.2 Experiments
ePo compare the algorithms describedsiy we ap-
plied the implementation outlined in the previous
Eq[f] =Fap section to four training data sets (described in Table
1) drawn from the domain of natural language pro-
By expressing these computations as matrix-vectocessing. The ‘rules’ and ‘lex’ datasets are examples

and the feature expectations are the transpos
matrix-vector product:



dataset classes contexts features non-zeros

rules 29,602 2,525 246 732,384
lex 42,509 2,547 135,182 3,930,406
summary 24,044 12,022 198,467 396,626
shallow 8,625,782 375,034 264,142 55,192,723

Table 1: Datasets used in experiments

of stochastic attribute value grammars, one with ateration of GIS (which seems unlikely), the bene-
small set of SCFG-like features, and with a veryfits of IIS over GIS would in these cases be quite
large set of fine-grained lexical features (Boumamodest.

et al., 2001). The ‘summary’ dataset is part of a Second, note that for three of the four datasets,
sentence extraction task (Osborne, to appear), anfle KL divergence at convergence is roughly the
the ‘shallow’ dataset is drawn from a text chunking same for all of the algorithms. For the ‘summary’
application (Osborne, 2002). These datasets vargataset, however, they differ by up to two orders of
widely in their size and composition, and are repre-magnitude. This is an indication that the conver-
sentative of the kinds of datasets typically encoungence test in (6) is sensitive to the rate of conver-
tered in applying ME models to NLP classification gence and thus to the choice of algorithm. Any de-
tasks. gree of precision desired could be reached by any
The results of applying each of the parameter esef the algorithms, with the appropriate value &f
timation algorithms to each of the datasets is sumHowever, GIS, say, would require many more itera-
marized in Table 2. For each run, we report the KLtions than reported in Table 2 to reach the precision
divergence between the fitted model and the trainachieved by the limited memory variable metric al-
ing data at convergence, the prediction accuracy ofjorithm.
fitted model on a held-out test set (the fraction of Thirg the prediction accuracy is, in most cases,
contexts for which the event with the highest prob-more or less the same for all of the algorithms.
ability under the model also had the highest probagome variability is to be expected—all of the data
bility under the reference distribution), the numbergets peing considered here are badly ill-conditioned,
of iterations required, the number of log-likelihood gg many different models will yield the same like-
and gradient evaluations required (algorithms whichjhgod. In a few cases, however, the prediction
use a line search may require several function evalaccuracy differs more substantially. For the two
uations per iteration), and the total elapsed time (ingayG data sets (‘rules’ and ‘lex’), GIS has a small
seconds¥. _ advantage over the other methods. More dramati-
There are a few things to observe about thesgaly, both iterative scaling methods perform very
results. First, while 1IS converges in fewer StePSpoorly on the ‘shallow’ dataset. In this case, the
the GIS, it takes substantially more time. At |ea3ttraining data is very sparse. Many features are
for this implementation, the additional bookkeepingnea”y ‘pseudo-minimal’ in the sense of Johnson et
overhead required by IIS more than cancels any imz (1999), and so receive weights approaching
provements in speed offered by accelerated conveismoothing the reference probabilities would likely
gence. This may be a misleading conclusion, howimprove the results for all of the methods and re-
ever, since a more finely tuned implementation ofgyce the observed differences. However, this does

IIS may well take much less time per iteration thansuggest that gradient-based methods are robust to
the one used for these experiments. However, evefgrtain problems with the training data.

if each iteration of IS could be made as fast as an Finally, the most significant lesson to be drawn

2The reported time does not include the time required to in-from these results is that, with the exception of
put the training data, which is difficult to reproduce and which steepest ascent, gradient-based methods outperform
is the same for all the algorithms being tested. All tests wergjtarative scaling by a wide margin for almost all the
run using one CPU of a dual processor 1700MHz Pentium .
with 2 gigabytes of main memory at the Center for High Per-dataset_s' as measured by both numb'er of functl_on
formance Computing and Visualisation, University of Gronin- €valuations and by the total elapsed time. And, in

gen. each case, the limited memory variable metric algo-




Dataset Method KL Div. Acc Iters Evals Time

rules gis 5124102 47.00 1186 1187 16.68
iis 5.079<102 43.82 917 918 31.36
steepest ascent 5.0850 2 44.88 224 350 4.80
conjugate gradient (fr) 5.00710°2 44.17 66 181 2.57
conjugate gradient (prp) 5.0%30°2 46.29 59 142 1.93
limited memory variable metric  5.06710°2 44.52 72 81 1.13
lex gis 1.57%10°° 46.74 363 364 31.69
iis 1.487x103 42.15 235 236 95.09
steepest ascent 3.3410°% 4292 980 1545 114.21
conjugate gradient (fr) 1.337103 43.30 148 408 30.36
conjugate gradient (prp) 1.8930°° 44.06 114 281 21.72
limited memory variable metric 1.36610° 43.30 168 176 20.02
summary gis 1.85710°2 96.10 1424 1425 107.05
iis 1.081x102 96.10 593 594 188.54
steepest ascent 2.4890% 96.33 1094 3321 190.22
conjugate gradient (fr) 9.05310° 95.87 157 849 49.48
conjugate gradient (prp) 3.2910% 96.10 112 537 31.66
limited memory variable metric 5.598107° 95.54 63 69 8.52
shallow  gis 3.31410°2 14.19 3494 3495 21223.86
iis 3.238<10°2 542 3264 3265 66855.92
steepest ascent 7.3030°2 26.74 3677 14527 85062.53
conjugate gradient (fr) 2.58510 2 24.72 1157 6823 39038.31
conjugate gradient (prp) 353402 2472 536 2813 16251.12

limited memory variable metric  3.024.0°2 23.82 403 421  2420.30

Table 2: Results of comparison.

rithm performs substantially better than any of theparameter estimation algorithms will it practical to

competing methods. construct larger, more complex models. And, since
_ the parameters of individual models can be esti-
4 Conclusions mated quite quickly, this will further open up the

In this paper, we have described experiments compossibility for more sophisticated model and feature
paring the performance of a number of different al-Selection technigues which compare large numbers
gorithms for estimating the parameters of a con-Of alternative model specifications. This suggests
ditional ME model. The results show that vari- that more comprehensive experiments to compare
ants of iterative scaling, the algorithms which arethe convergence rate and accuracy of various algo-
most widely used in the literature, perform quite rithms on a wider range of problems is called for.
poorly when compared to general function opti- In addition, there is a larger lesson to be drawn
mization algorithms such as conjugate gradient androm these results. We typically think of computa-
variable metric methods. And, more specifically, tional linguistics as being primarily a symbolic dis-
for the NLP classification tasks considered, the lim-cipline. However, statistical natural language pro-
ited memory variable metric algorithm of Benson cessing involves non-trivial numeric computations.
and Mog (2001) outperforms the other choices byAs these results show, natural language processing
a substantial margin. can take great advantage of the algorithms and soft-

This conclusion has obvious consequences for thevare libraries developed by and for more quantita-
field. ME modeling is a commonly used machinetively oriented engineering and computational sci-
learning technique, and the application of improvedences.
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