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Abstract

In many cross-lingual applications we need
to convert a transliterated word into itS
original word. In this paper, we present a
similarity-based framework to model the task
of backward transliteration, and provide a
learning algorithm to automatically acquire
phonetic similarities from a corpus. The
learning algorithm is based on Widrow-Hoff
rule with some modifications. The
experiment results show that the learning
algorithm converges quickly, and the method
using acquired phonetic  similarities
remarkably outperformS previous methods
using pre-defined phonetic similarities or
graphic similarities in a corpus of 1574 pairs
of English names and transliterated Chinese
names. The learning algorithm does not
assume any underlying phonological
structures or rules, and can be extended to
other language pairs once a training corpus
and a pronouncing dictionary are available.

1 Intr oduction

As multilingual documents increase rapidly on
the Internet, the need to bridge the language
barrier is highly demanded. Cross-language
information retrieval (CLIR) (Chen, 1997) aims
to retrieve documents in one language given
queries in the other language, and proper nouns
processing plays an important role in the query
translation (Bian and Chen, 2000; Oard, 1999).
The study (Thompson and Dozier, 1997) showed
that large proportion of queries to news search
engines contain proper nouns. Therefore, any
CLIR systems must handle proper nouns
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transliteration approximately to achieve better
performance.

Transliteration can be classified into two
directions. Given a pair (8, t) where 8 is the
original proper noun in the source language and t
is the transliterated word in the target language,
forward transliteration is the process of
phonetically convert s into t, and backward
transliteration is the process of correctly find or
generate $ given t. Examples of both types are
shown in Table 1.

Direction | From To
Forward Harry Potter Hal-li4-bol-te4
(English) (Chinese)
Harri Pottaa
(Japanese)
Backward | Huo4-ge2-hua2-zil | Hogwarts
(Chinese) (English)
Hoguwaatsu
(Japanese)

Table 1 Two directions of machine transliteration

Two directions and different language pairs have
been exploered in previous works : forward
transliteration from English to Chinese (Wan and
Verspoor, 1998), backward transliteration from
Japanese to English (Knight and Graehl, 1998),
from Chinese to English (Chen et al., 1998; Lin
and Chen, 2000), and from Arabic to English
(Stalls and Knight, 1998). Backward
transliteration is more challenging than forward
transliteration. While forward transliteration can
accomplish the mapping relationship throwgh
table-lookup, backward transliteration is required
to disambuiguate the noise produced in the
forward transliteration and estimate the original
word as close as possible. We mainly focus on
backward transliteration here.

In this paper, we propose a similarity-based
framework to model the task of backward



transliteration. When human beings perform
forward transliteration, the goal is to keep the
original word and the transliterated word as close
as possible in terms of the phonetic similarities.
We base on the same idea to model backward
transliteration. Compared with the generative
models in previous studies (Knight and Graehl,
1998; Stalls and Knight, 1998), the
similarity-based framework directly addresses
the problem of similarity measurement, and can
be evaluated without human judgments.
Similarity-based approaches have been tested in
the grapheme level (Chen et al., 1998) and the
phoneme level (Lin and Chen, 2000). The
similarities in previous works, however, were ad
hoc assigned. In this paper, we address the
problem by developing a learning algorithm to
automatically acquire phonetic Similarities from
a training corpus. With the learning algorithm,
we can remove the labor of assigning phonetic
similarities between two languages, and
hopefully the performance will improve with
learned similarities.

This paper is organized as follows. In Section 2,
we describe the similarity-based framework and
define the similarity between two words. The
learning algorithm and training corpus
preparation are in Section 3. Experiment design
and results are in Section 4. Finally comes
discussions and conclusions.

2  Similarity-based Framework

In the similarity-based framework, given a
transliterated word t, we compare t with a list of
candidate words, and the one with the highest
similarity will be chosen as the original word.
The candidate lists can be collected manually by
newspaper editors or automatically by name
entity extraction systems (Fung and Yee, 1998).
In CLIR applications, after foreign words in the
queries are identified (Sproat et al., 1994; Chen
and Lee, 1996), we perform the mate-matching
process on these words as one step of query
translation. The working flow is illustrated in
Figure 1. In other words, the task of backward
transliteration is reduced into similarity
measurement.

We can measure similarities at three different
levels, including physical sounds, graphemes,
and phonemes. Soundex (Knuth, 1973), for

example, measures similarities at the grapheme
level. Here we choose phonemes because it is
difficult to generate and compare physical sounds,
and comparing at the phoneme level has been
shown to outperform the grapheme level (Lin and
Chen, 2000). Specifically, the phoneme
representation we adopt here is the International
Phonetic Alphabet (IPA), which can represent
phonemes in all languages. In the following
sections, we first describe how to obtain the
phonetic representation in IPA from Chinese
words and English words, followed by the formal
definition of the similarity between two words.

Trandliterated
Word

1

Chinese to IPA

English to IPA

\/

Measure Similarity

}

Similarity Score

Figure 1 Similarity-based backward machine
transliteration

2.1 Grapheme-to-Phoneme
Transformation

For Chinese transliterated words, each character
is first represented in Hanyu Pinyin by looking up
a table, while the tone is ignored. The Hanyu
Pinyin strings are then decomposed into two parts:
the initial consonant and the remaining vowel.
Each part is then mapped into IPA by looking up
another table (Hieronyms, 1997).

English words require more efforts to be
represented in IPA. First, if the word entry exists
in the pronouncing dictionary (Cmudict, 1995),
the pronunciation is taken and transformed to
IPA. If the dictionary does not cover the word,
we apply a speech synthesis system, MBRDICO
(Pagel et al., 1998), to generate the pronunciation.
Although speech synthesis for proper nouns is
still a on-going research problem (Llitjos and
Black, 2001), instead of dropping them we prefer
to keep those words that are not covered in the
dictionary, and investigate the effect of imperfect



speech synthesis in the task of backward
transliteration. The letter-to-phoneme system
will output pronunciations in SAMPA (Wells,
1997), which in turn are mapped to IPA. The
duration information is not used.

2.2 Similarity Measurement

The edit distance (Levenshtein, 1966) is widely
used as relatedness measurement between two
strings. The distance is defined as the minimum
number of insertions, deletions, and substitutions
required to transform one string into the other.
The following similarity definition is equal to the
edit distance with variable costs on insertion,
deletion, and substitution, but the definition is
more suitable than the edit distance for some
applications, for example, finding the substrings
with high similarity (Gusfield, 1997).

We first define the alignment of two strings upon
which the similarity is measured,

Definition 1  Set X is the alphabet set of two
strings Syand So. X' ={%," '}, where ' stands
for space. Space could be inserted into S; and S,
such that they are of equal length and denoted as
S and Sy'. S1’ and S;' are aligned when every
character in either string is opposite a unique
character or space in the other string. The
configuration of two aligned strings is denoted as
A.

The similarity score of two alignments is defined
as follows,

Definition 2  s(a,b) is a function which
measures similarity between the character a and
bin 2. Given an alignment A of two strings S1’
and S; with the same length 1, the similarity
score of two alignments is defined as follows,

Score=i_ls(sl'<i),sz'(i)) )

where S'(i) denotes the i™ character in the string
S.

Take a pair of a English name and its
transliterated Chinese name, (Hugo, Yu3- guo3)
as an example. After applying the
grapheme-to-phoneme procedure described in
the above section, we obtain the phoneme pair (v
k uo, h j u g oU)l. Here, Y =
{h,j,u,v,qg,k, oU, uo,_}. There are many

1 All phonemes in this paper are represented in
SAMPA, which can represent IPA in ASCII.

ways to align these two phoneme strings, two of
which are shown in Table 2.

The similarity function $(ab) can be
conveniently represented as a scoring matrix in
Figure 2. The content of the matrix can either be
manually assigned or automatically learned. The
score ranges from 10 and —10. The higher the
score is, the more similar two phonemes are.

Grapheme Phoneme
A Yu- guo h j ug oU
1 Hugo v k uo
A Yu- guo h j_ ugoU
2 | Hugo _ vk _ uo _
Table 2 Two possible alignments of phoneme
strings(h j u g ou, v k uo)
sab) | h j u v g k oU uo
h 10 O 8 0 O -9 0 -4 -10
J 0O 10 -1 0 O -1 0 -1 3
u 0 0 100 3 0 -4 0 -2 -10
Y 0 0 6 9 0 -6 0 -5 -10
g 0 0 -10 0 10 10 O -7 -10
k 0 0 -10 -1 O 10 0 -10 -10
oU 0 0 2 4 0 -4 10 10 -10
uo 0 0 o 0 O 0 0 10 -10
_ -0 -10 -10 -5 -10 -10 -10 -10

Figure 2 The similarity scoring matrix

With Equation 1 and the scoring matrix in Figure
2, we can then calculate the similarity score of
two alignments in Table 2 as follows,
Scorey, =s(h, _)+s( ,_)+s(u,v)+s(g,k)+
s(oU,uo0) =16

Scorey, = s(h, )+s(,v)+s(_,k)+s(u, )+

s(g, uo) + s(ol, _) =-47
Finally, the similarity score of two strings iS
defined as follows,
Definition 3  Given an alphabet set X’ and a
similarity scoring matrix M, the similarity score
of two strings is the score of the optimal
alignment, i.e. the alignment with the highest
score.
The optimal alignment of two strings can be
computed efficiently using the technique called
dynamic programming (Masek, 1980). Set Tis a
n+1 by m+1 table where n is the length Sy, mis
the length of S,. By filling the table T row by row,
we can obtain the optimal alignment and the
similarity score of S; and S,. The base condition
is defined as follows,



T@.0)= Ys(8(k),')

I<ksi

TO.j)= Y50\ ) @

1<ks<j
The recurrence formula is defined as follows,
T(-15-0+s(8,0).S(J)
T(i-1.j)+s(86).'_), 3
TG j =D +s(_.5,(J))
where 1 <i<n, 1 <j<m.
If we speak in the language of the edit distance,
the recurrence formula attempts to compare the
costs of substitution, deletion, and insertion and
chooses the one with the minimum cost, i.e. the
maximum similarity here. The table can be
complete in the time complexity of O(nm), and
T(n,m) will be the similarity score of the optimal
alignment of S; and S,. The optimal alignment
can be obtained by bookkeeping the choice made
in the recurrence formula. For example, given
the scoring matrix in Figure 2, the optimal
alighment of two phoneme strings S1 (7 h u g
oU) and S, (v k uo)is Ajin Table 2.

T(i, j) = max

3  Learning Phonetic Similarity

The design of the scoring matrix plays an
important role in differentiating which alignment
is better than the other (Gusfield, 1997). The
score reflects how humans perceive phonemes in
the task of backward transliteration.  The
motivation to develop a learning algorithm is to
remove the efforts of assigning scores in the
matrix, and to capture the subtle difference that is
not easy to be quantified by humans.

Edit distance learning has been studied in a
probability framework (Ristad and Yianilos,
1998). While the phonetic similarities can be
represented and learned in the probabilistic
model, a learning algorithm that can directly
work on the aforementioned similarity-based
framework and discriminate between phoneme
strings will be more preferable. In this section,
we first describe how to prepare a training corpus,
followed by the learning algorithm.

3.1 Training Corpus Preparation

In order to train a discriminative classifier, we
have to prepare both positive examples and
negative examples. However, a corpus with pairs
of the original words and the transliterated words
are positive examples only. Fortunately, we can

generate negative examples by mismatching the
original words and the transliterated words
without collecting more data.

Consider a corpus with n pairs of the phoneme
strings (@, ¢€;), where @ is the original English and
¢ is its transliterated Chinese word, 1 <i <n. For
each ¢;, there exists the most similar transliterated
word, ie. @, and n-1 other dissimilar
transliterated words, i.e. &, where 1 <j<n, j=i.
The similarity score of each pair is initialised as
follows,

10*p i=j

SCOr€e c;) :{—10* p izj

where p = max(length(e), length(e;)).
Consequently, a corpus with n pairs can generate
n positive examples, and n(n-1) negative
examples. To account for the discrepancy in the
number of positive and negative samples, we
duplicate the positive examples such that there
are total 2n° examples.

(4)

3.2 Learning Algorithm

If we treat each training sample as a linear
equation, Equation 1 can be rewritten as follows,
m
Y= 2LWX; (5)
i=1j=1

where m s the size of the phoneme sets, w;jis the
row i and the column j of the scoring matrix, X;j is
a binary value indicating the presence of Wi in
the alignment, and y is the similarity score. In
Figure 2, we have a nine by nine scoring matrix,
and thus m=9. Each cell in Figure 2 corresponds
to Wij, where 1 <i J <9. The X1,9, X2,9, X34, X5.6, X7,8
for the alignment A;in Table 2 are one, other X;j
are zero. Furthermore, the system of linear
equations in the corpus can be conveniently

represented in the matrix form,

1 1
X1 7 Xom W1 yl

2 2
X1 0 Xmm x Wi > — y 2
A R )
R R R
xLl o xm,m Wm,m y
or
Xw=y

where the superscript i stands for the i™ sample
pair in the corpus, 1 £i £ R, Ris the number of
pairs in the corpus.

The criterion we choose to optimize is the
sum-of-squared error, i.c. IXw - y|f. Therefore,
the goal of the learning task will be to learn w of



Equation 6 such that the sum-of-quared errors are
minimized. The classical solution is to take the
pseudo inverse of X, i.e. X'= (XtX)'lxt, to obtain
the w that minimizes the sum-of-squared error,
i.e.w = X'"y. However, the pseudo inverse is an
expensive computation when X is a large matrix
(The X in our case is a 1574 by 6241 matrix), and
cannot be computed when X'X is singular.
Therefore, we adopt the Widrow-Hoff rule (Duda
et al., 2001) to avoid these problems. The
Widrow-Hoff, or Least-Mean-Squared (LMS)
rule minimizes the error in gradient descent
fashion. The pseudo code of the learning
algorithm is listed in Figure 3, where the
subscript k stands for the K™ row in the matrix X, i
for the number of iterations, w(i), 7(i), and Xi)
are functions of i, and 77 is the learning rate.
Initialisew(0), y, n(0), i

Do
I —i+1
k -« imod R
n =n0)/R

For the K™ sample (S, #)
Xk « the optimal alignments given w(i-1)
&i) « yx—w(i-1)X«
w(i) — W(i-1)+7() X)X +adi-DXi
While w is not overfitting

Figure 3 The pseudo code of the learning
algorithm based on the Widrow-Hoff rule with
some modifications

The w(i) is updated iteratively until the learned w
appears to overfit on the training set. The
learning rate (i) decreases with the number of
the iterations to ensure the w will converge to a
vector satisfying X'(Xw - y) = 0. In addition to
the Widrow-Hoff rule, we apply the on-line
learning technique (Biehl and Riegler, 1994) to
speed up the convergence. We update w(i)
immediately after encountering a new training
sample instead of accumulating all errors of
training samples. The other speed-up technique
is the momentum used to damp the oscillations.
The a is the momentum coefficient The 7(0) is
empirically set as 5€10°, o as 0.8, and w(0) as
follows,

10 if i=j
Wiyj(O): _10 if iorjisl_'
0 otherwise

Here we assume phonemes are self-similar, and
discourages phonemes to be matches with the
space character. Other phonetic similarities are
initialized to zero, which is a reasonable initial
values without any prior knowledge.

In order to avoid overfitting the corpus and lose
the power of generalization, we evaluate the
learned w on the held-out validation set after a
full iterations of the training set. If the
performace does not improve three iterations in a
row, we stop the gradient descent precedure and
return w with the best performance so far.

4  Experiments

In order to compare the learning approach with
previous works Chen98 (Chen et al., 1998) and
Lin00 (Lin and Chen, 2000), the same corpus iS
adopted here. The corpus is consisted of 1574
pairs of English names and their transliterated
Chinese names, 313 of which have no entries in
the pronouncing dictionary. There are total 97
phonemes used to represent these names, in
which 59 and 51 phonemes are used for Chinese
and English names, respectively.

To evaluate the performance of learned
similarities, we conduct a ten-fold cross
validation on the corpus. In each fold, the corpus
is divided into three sets: 8/10 is the training set,
1/10 is the validation set, and remaining 1/10 is
the test set. The training set is used to generate
positive and negative examples. The validation
set prevents the learner from overfitting the
training set. The test set that the learner has never
seen is used to evaluate the performance. The
average W across ten folds is returned as the final
result. The performance metrics are the average
rank and the average reciprocal rank. The rank is
the position of the correct original word in a list
of candidate words sorted descendently by
similarity scores. The smaller the average rank,
the better the performance. The other metric is
the average reciprocal rank (ARR) (Voorhees
and Tice, 2000), which evaluates same
characteristics as the average rank but puts more
stress on top ranks. The recirprocal rank is
calculated as follows,



M =1 R(i)

where R(i) is the rank of the ith trianing sample,
M is the number of training samples. The value
of ARR is between 0 and 1. The higher the ARR,
the better the performance

The learning curve of one fold is shown in Figure
4. Other nine folds have similar trends, and we
omitted them for simiplicity. The sum of squared
errors (the left y axis) decreases rapidly at the
first few iterations, showing that our learning
algorithm converges quickly. The average rank
of the validation set (the right y axis) improves as
the learning algorithm updates the phonetic
similarities. The average rank increases from
iteration 14, and thus the learning algorithm stops
at iteration 16. Finally the scoring matrix learned
at iteration 13 is returned.

1.1e+10 24
error —o—

rank —+—
le+10 |

9e+09

8e+09

7e+09

Sum-of-squared error
Average rank

6e+09

5e+09

4e+09 1.2
0 2 4 6 8 10 12 14 16

Number of full iterations

Figure 4 The learning curve shows that the leaning
algorithm converges quickly.

The method using learned phonetic similarities is
compared with previous works, and the results
are shown in Table 3. Both average rank and
average reciprocal rank suggest that backward
transliteration using learned phonetic similarities
remarkably outperforms previous methods using
pre-defined similarities, either at the grapheme
the or the phoneme level.

Chen98 Lin00 | Learning
Average
Rank 1211 7.80 2.04
Average
Reciprocal | 0.4460 0.6610 0.8322
Rank
Similarity | Grapheme | Phoneme | Phoneme

Table 3 The experiment results shows that
backward transliteration with learned phonetic
similarities outperforms previous methods.

5 Discussions

Backward transliteration is of particular interest
in machine transliteration.  In this paper
backward transliteration is discussed in a
similarity-based framework, and a learning
algorithm is developed to automatically acquire
phonetic similarities from a training corpus. The
experiment results suggest that the learning
algorithm can effectively extract the similarities,
and learned similarities are more discriminative
than manually assigned scoring matrix.

Since neither underlying phonological structures
are assumed nor alignments must be manually
labelled, the efforts of extending the learning
algorithm to other language pairs should be
minimal once the training corpus and the
pronouncing dictionary are available. However,
not pronouncing dictionaries for all languages are
readily available, and speech synthesis has
difficulties generating pronunciations of proper
nouns. Notice that about 1/5 of the training
corpus have no entries in the pronouncing
dictionary, but the learning approach appears to
able to tolerate the noise from speech synthesis,
and still outperforms previous method that totally
ignore those pairs of no pronunciations. One of
future direction will move toward getting
pronunciations without dictionaries, and this is in
line with the direction of speech synthesis
research (Llitjos and Black, 2001).

The learning algorithm can capture subtle
similarities that cannot easily be manually
assigned based on phonological knowledge. Take
the matrix in Figure 2 as an example?. The vowel
pairs (oU, u)and (oU, uo) have positive score
2 and 10, which means they are similar but in
different degree. However, they are equally
assigned the score 5 in the previous study. The
learning algorithm assigns the consonant pair (g,
k) the positive score 10, which was assigned the
score 8 based on the phonological knowledge that
there is no distinction of voiced and voiceless
consonants in  Chinese. Without any
phonological analysis, the learning algorithm can
acquire those similarities without human
intervention.

2 The matirx in Figure 2 is actually part of the whole
learned scoring matrix, which is 98 by 98, and too
large to be listed here.
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