
Japanese Dependency Analysis using Cascaded Chunking

Taku Kudo and Yuji Matsumoto
Graduate School of Information Science,
Nara Institute of Science and Technology
{taku-ku,matsu}@is.aist-nara.ac.jp

Abstract

In this paper, we propose a new statistical Japanese
dependency parser using a cascaded chunking
model. Conventional Japanese statistical depen-
dency parsers are mainly based on a probabilistic
model, which is not always efficient or scalable. We
propose a new method that is simple and efficient,
since it parses a sentence deterministically only de-
ciding whether the current segment modifies the
segment on its immediate right hand side. Experi-
ments using the Kyoto University Corpus show that
the method outperforms previous systems as well as
improves the parsing and training efficiency.

1 Introduction

Dependency analysis has been recognized as a basic
process in Japanese sentence analysis, and a num-
ber of studies have been proposed. Japanese depen-
dency structure is usually defined in terms of the
relationship between phrasal units calledbunsetsu
segments (hereafter “segments”).

Most of the previous statistical approaches for
Japanese dependency analysis (Fujio and Mat-
sumoto, 1998; Haruno et al., 1999; Uchimoto et
al., 1999; Kanayama et al., 2000; Uchimoto et al.,
2000; Kudo and Matsumoto, 2000) are based on
a probabilistic model consisting of the following
two steps. First, they estimate modification prob-
abilities, in other words, how probable one segment
tends to modify another. Second the optimal combi-
nation of dependencies is searched from the all can-
didates dependencies. Such a probabilistic model is
not always efficient since it needs to calculate the
probabilities for all possible dependencies and cre-
atesn(̇n−1)/2 (wheren is the number of segments
in a sentence) training examples per sentence. In
addition, the probabilistic model assumes that each
pairs of dependency structure is independent.

In this paper, we propose a new Japanese depen-

dency parser which is more efficient and simpler
than the probabilistic model, yet performs better in
training and testing on the Kyoto University Corpus.
The method parses a sentence deterministically only
deciding whether the current segment modifies seg-
ment on its immediate right hand side. Moreover,
it does not assume the independence constraint be-
tween dependencies

2 A Probabilistic Model

This section describes the general formulation of the
probabilistic model for parsing which has been ap-
plied to Japanese statistical dependency analysis.

First of all, we define a sentence as a sequence
of segmentsB = 〈b1, b2 . . . , bm〉 and its syntac-
tic structure as a sequence of dependency patterns
D = 〈Dep(1), Dep(2), . . . , Dep(m−1)〉 , where
Dep(i) = j means that the segmentbi depends on
(modifies) segmentbj . In this framework, we as-
sume that the dependency sequenceD satisfies the
following two constraints.

1. Japanese is a head-final language. Thus, ex-
cept for the rightmost one, each segment mod-
ifies exactly one segment among the segments
appearing to its right.

2. Dependencies do not cross one another.

Statistical dependency analysis is defined as a
searching problem for the dependency patternD
that maximizes the conditional probabilityP (D|B)
of the input sequence under the above-mentioned
constraints. If we assume that the dependency prob-
abilities are mutually independent,P (D|B) can be
rewritten as:

P (D|B) =
m−1∏

i=1

P (Dep(i)=j | fij)

fij = (f1, . . . , fn) ∈ Rn.

P (Dep(i)=j | fij) represents the probability thatbi

modifiesbj . fij is ann dimensional feature vector
that represents various kinds of linguistic features
related to the segmentsbi andbj .

We obtainDbest = argmaxD P (D|B) taking
into all the combination of these probabilities. Gen-
erally, the optimal solutionDbest can be identified
by using bottom-up parsing algorithm such as CYK
algorithm.

The problem in the dependency structure anal-
ysis is how to estimate the dependency probabili-
ties accurately. A number of statistical and machine
learning approaches, such as Maximum Likelihood
estimation (Fujio and Matsumoto, 1998), Decision
Trees (Haruno et al., 1999), Maximum Entropy
models (Uchimoto et al., 1999; Uchimoto et al.,
2000; Kanayama et al., 2000), and Support Vector
Machines (Kudo and Matsumoto, 2000), have been
applied to estimate these probabilities.

In order to apply a machine learning algorithm to
dependency analysis, we have to prepare the pos-
itive and negative examples. Usually, in a proba-
bilistic model, all possible pairs of segments that are
in a dependency relation are used as positive exam-
ples, and two segments that appear in a sentence but
are not in a dependency relation are used as nega-
tive examples. Thus, a total ofn(̇n − 1)/2 training
examples (wheren is the number of segments in a
sentence) must be produced per sentence.

3 Cascaded Chunking Model

In the probabilistic model, we have to estimate the
probabilities of each dependency relation. However,
some machine learning algorithms, such as SVMs,
cannot estimate these probabilities directly. Kudo
and Matsumoto (2000) used the sigmoid function
to obtain pseudo probabilities in SVMs. However,
there is no theoretical endorsement for this heuris-
tics.

Moreover, the probabilistic model is not good
in its scalability since it usually requires a total of
n(̇n − 1)/2 training examples per sentence. It will
be hard to combine the probabilistic model with
some machine learning algorithms, such as SVMs,
which require a polynomial computational cost on
the number of given training examples.

In this paper, we introduce a new method for
Japanese dependency analysis, which does not re-
quire the probabilities of dependencies and parses
a sentence deterministically. The proposed method
can be combined with any type of machine learning

algorithm that has classification ability.
The original idea of our method stems from the

cascaded chucking method which has been applied
in English parsing (Abney, 1991). Let us introduce
the basic framework of the cascaded chunking pars-
ing method:

1. A sequence of base phrases is the input for this
algorithm.

2. Scanning from the beginning of the input sen-
tence, chunk a series of base phrases into a sin-
gle non-terminal node.

3. For each chunked phrase, leave only the head
phrase, and delete all the other phrases inside
the chunk

4. Finish the algorithm if a single non-terminal
node remains, otherwise return to the step 2
and repeat.

We apply this cascaded chunking parsing tech-
nique to Japanese dependency analysis. Since
Japanese is a head-final language, and the chunk-
ing can be regarded as the creation of a dependency
between two segments, we can simplify the process
of Japanese dependency analysis as follows:

1. Put anO tag on all segments. TheO tag in-
dicates that the dependency relation of the cur-
rent segment is undecided.

2. For each segment with anO tag, decide
whether it modifies the segment on its immedi-
ate right hand side. If so, theO tag is replaced
with aD tag.

3. Delete all segments with a D tag that are imme-
diately followed by a segment with an O tag.

4. Terminate the algorithm if a single segment re-
mains, otherwise return to step 2 and repeat.

Figure 1 shows an example of the parsing process
with the cascaded chunking model.

The input for the model is the linguistic features
related to the modifier and modifiee, and the output
from the model is either of the tags (D or O). In
training, the model simulates the parsing algorithm
by consulting the correct answer from the training
annotated corpus. During the training, positive (D)
and negative (O) examples are collected. In testing,
the model consults the trained system and parses the
input with the cascaded chunking algorithm.

Input:

Tag: O O O O O

Initialization

Tag: O O D D O

Tag: O D D O

Tag: O D O

Deleted

Tag: D O

Tag: O
Finish

Input:

Input:

Input:

Input:

Input:

Deleted

Deleted

Deleted

��� �������
	���
��������������

��� �����
��������������

��� �����
��������������

��� �����
��������������

���
��������������

��� ���������

���������

�
	��

�
	��

He her warm heart be moved

(He was moved by her warm heart.)

Figure 1: Example of the parsing process with cas-
caded chunking model

We think this proposed cascaded chunking model
has the following advantages compared with the tra-
ditional probabilistic models.

• Simple and Efficient
If we use the CYK algorithm, the probabilistic
model requiresO(n3) parsing time, (wheren
is the number of segments in a sentence.). On
the other hand, the cascaded chunking model
requiresO(n2) in the worst case when all seg-
ments modify the rightmost segment. The ac-
tual parsing time is usually lower thanO(n2),
since most of segments modify segment on its
immediate right hand side.

Furthermore, in the cascaded chunking model,
the training examples are extracted using the
parsing algorithm itself. The training exam-
ples required for the cascaded chunking model
is much smaller than that for the probabilistic
model. The model reduces the training cost
significantly and enables training using larger
amounts of annotated corpus.

• No assumption on the independence be-
tween dependency relations
The probabilistic model assumes that depen-

dency relations are independent. However,
there are some cases in which one cannot parse
a sentence correctly with this assumption. For
example, coordinate structures cannot be al-
ways parsed with the independence constraint.
The cascaded chunking model parses and es-
timates relations simultaneously. This means
that one can use all dependency relations,
which have narrower scope than that of the cur-
rent focusing relation being considered, as fea-
ture sets. We describe the details in the next
section.

• Independence from machine learning algo-
rithm
The cascaded chunking model can be com-
bined with any machine learning algorithm that
works as a binary classifier, since the cascaded
chunking model parses a sentence determinis-
tically only deciding whether or not the current
segment modifies the segment on its immedi-
ate right hand side. Probabilities of dependen-
cies are not always necessary for the cascaded
chunking model.

3.1 Dynamic and Static Features

Linguistic features that are supposed to be effective
in Japanese dependency analysis are: head words
and their parts-of-speech tags, functional words and
inflection forms of the words that appear at the end
of segments, distance between two segments, exis-
tence of punctuation marks. As those are solely de-
fined by the pair of segments, we refer to them as
thestatic features.

Japanese dependency relations are heavily con-
strained by such static features since the inflection
forms and postpositional particles constrain the de-
pendency relation. However, when a sentence is
long and there are more than one possible depen-
dency, static features, by themselves cannot deter-
mine the correct dependency.

To cope with this problem, Kudo and Matsumoto
(2000) introduced a new type of features calleddy-
namic features, which are created dynamically dur-
ing the parsing process. For example, if some rela-
tion is determined, this modification relation may
have some influence on other dependency relation.
Therefore, once a segment has been determined to
modify another segment, such information is kept in
both of the segments and is added to them as a new
feature. Specifically, we take the following three
types of dynamic features in our experiments.

Modifier Modifiee

modify or not?

... ...A A CB B

Figure 2: Three types of Dynamic Features

A. The segments which modify the current candi-
date modifiee. (boxes marked with A in Figure
2)

B. The segments which modify the current candi-
date modifier. (boxes marked with B in Figure
2)

C. The segment which is modified by the current
candidate modifiee. (boxes marked with C in
Figure 2)

4 Support Vector Machines
Although any kind of machine learning algorithm
can be applied to the cascaded chunking model, we
use Support Vector Machines (Vapnik, 1998) for our
experiments because of their state-of-the-art perfor-
mance and generalization ability.

SVM is a binary linear classifier trained
from the samples, each of which belongs ei-
ther to positive or negative class as follows:
(x1, y1), . . . , (xl, yl) (xi ∈ Rn, yi ∈ {+1,−1}),
wherexi is a feature vector of thei-th sample rep-
resented by ann dimensional vector, andyi is the
class (positive(+1) or negative(−1) class) label of
the i-th sample. SVMs find the optimal separating
hyperplane (w · x + b) based on the maximal mar-
gin strategy. The margin can be seen as the distance
between the critical examples and the separating hy-
perplane. We omit the details here, the maximal
margin strategy can be realized by the following op-
timization problem:

Minimize : L(w) = 1
2‖w‖2

Subject to : yi[(w · xi) + b] ≥ 1 (i = 1, . . . , l).

Furthermore, SVMs have the potential to carry
out non-linear classifications. Though we leave the
details to (Vapnik, 1998), the optimization problem
can be rewritten into a dual form, where all feature
vectors appear as their dot products. By simply sub-
stituting every dot product ofxi andxj in dual form

with a Kernel functionK(xi,xj), SVMs can han-
dle non-linear hypotheses. Among many kinds of
Kernel functions available, we will focus on thed-
th polynomial kernel:K(xi,xj) = (xi · xj + 1)d.
Use ofd-th polynomial kernel functions allows us to
build an optimal separating hyperplane which takes
into account all combinations of features up tod.

5 Experiments and Discussion

5.1 Experimental Setting

We used the following two annotated corpora for
our experiments.

• Standard data set
This data set consists of the Kyoto University
text corpus Version 2.0 (Kurohashi and Nagao,
1997). We used 7,958 sentences from the ar-
ticles on January 1st to January 7th as training
examples, and 1,246 sentences from the arti-
cles on January 9th as the test data. This data
set was used in (Uchimoto et al., 1999; Uchi-
moto et al., 2000) and (Kudo and Matsumoto,
2000).

• Large data set
In order to investigate the scalability of the cas-
caded chunking model, we prepared larger data
set. We used all 38,383 sentences of the Kyoto
University text corpus Version 3.0. The train-
ing and test data were generated by a two-fold
cross validation.

The feature sets used in our experiments are
shown in Table 1. The static features are basically
taken from Uchimoto’s list (Uchimoto et al., 1999).

Head Word (HW)is the rightmost content word
in the segment.Functional Word (FW)is set as fol-
lows:

- FW = the rightmost functional word, if there is
a functional word in the segment

- FW = the rightmost inflection form, if there is a
predicate in the segment

- FW= same as theHW, otherwise.
The static features include the information on ex-

istence of brackets, question marks and punctuation
marks, etc. Besides, there are features that show
the relative relation of two segments, such as dis-
tance, and existence of brackets, quotation marks
and punctuation marks between them.

For a segment X and its dynamic feature Y
(where Y is of type A or B), we set theFunctional

Representation (FR)feature of X based on theFW
of X (X-FW)as follows:

- FR = lexical form ofX-FW if POS ofX-FW is
particle, adverb, adnominal or conjunction

- FR = inflectional form ofX-FW if X-FWhas an
inflectional form.

- FR = the POS tag ofX-FW, otherwise.
For a segment X and its dynamic feature C, we

set POS tag and POS-subcategory of theHWof X.
All our experiments are carried out on Alpha-

Sever 8400 (21164A 500Mhz) for training and
Linux (PentiumIII 1GHz) for testing. We used a
third degree polynomial kernel function, which is
exactly the same setting in (Kudo and Matsumoto,
2000).

Performance on the test data is measured using
dependency accuracy and sentence accuracy. De-
pendency accuracy is the percentage of correct de-
pendencies out of all dependency relations. Sen-
tence accuracy is the percentage of sentences in
which all dependencies are determined correctly.

5.2 Experimental Results

The results for the new cascaded chunking model as
well as for the previous probabilistic model based
on SVMs (Kudo and Matsumoto, 2000) are summa-
rized in Table 2. We cannot employ the experiments
for the probabilistic model using large dataset, since
the data size is too large for our current SVMs learn-
ing program to terminate in a realistic time period.

Even though the number of training examples
used for the cascaded chunking model is less than
a quarter of that for the probabilistic model, and the
used feature set is the same, dependency accuracy
and sentence accuracy are improved using the cas-
caded chunking model (89.09%→ 89.29%, 46.17%
→ 47.53%).

The time required for training and parsing are sig-
nificantly reduced by applying the cascaded chunk-
ing model (336h.→8h, 2.1sec.→ 0.5sec.).

5.3 Probabilistic model vs. Cascaded
Chunking model

As can be seen Table 2, the cascaded chunking
model is more accurate, efficient and scalable than
the probabilistic model. It is difficult to apply the
probabilistic model to the large data set, since it
takes no less than 336 hours (2 weeks) to carry out
the experiments even with the standard data set, and
SVMs require quadratic or more computational cost
on the number of training examples.

For the first impression, it may seems natural that
higher accuracy is achieved with the probabilistic
model, since all candidate dependency relations are
used as training examples. However, the experimen-
tal results show that the cascaded chunking model
performs better. Here we list what the most signif-
icant contributions are and how well the cascaded
chunking model behaves compared with the proba-
bilistic model.

The probabilistic model is trained with all candi-
date pairs of segments in the training corpus. The
problem of this training is that exceptional depen-
dency relations may be used as training examples.
For example, suppose a segment which appears to
right hand side of the correct modifiee and has a
similar content word, the pair with this segment be-
comes a negative example. However, this is nega-
tive because there is a better and correct candidate
at a different point in the sentence. Therefore, this
may not be a true negative example, meaning that
this can be positive in other sentences. In addition,
if a segment is not modified by a modifier because of
cross dependency constraints but has a similar con-
tent word with correct modifiee, this relation also
becomes an exception. Actually, we cannot ignore
these exceptions, since most segments modify a seg-
ment on its immediate right hand side. By using
all candidates of dependency relation as the training
examples, we have committed to a number of excep-
tions which are hard to be trained upon. Looking in
particular on a powerful heuristics for dependency
structure analysis: “A segment tends to modify a
nearer segment if possible,” it will be most impor-
tant to train whether the current segment modifies
the segment on its immediate right hand side. The
cascaded chunking model is designed along with
this heuristics and can remove the exceptional re-
lations which has less potential to improve perfor-
mance.

5.4 Effects of Dynamic Features
Figure 3 shows the relationship between the size of
the training data and the parsing accuracy. This fig-
ure also shows the accuracy with and without the
dynamic features. Generally, the results with the
dynamic feature set is better than the results with-
out it. The dynamic features constantly outperform
static features when the size of the training data is
large. In most cases, the improvements is consider-
able.

Table 3 summarizes the performance without
some dynamic features. From these results, we can

Static Features Modifier/Modifiee
segments

Head Word (surface-form, POS, POS-
subcategory, inflection-type, inflection-
form), Functional Word (surface-form,
POS, POS-subcategory, inflection-type,
inflection-form), brackets, quotation-
marks, punctuation-marks, position in
sentence (beginning, end)

Between two seg-
ments

distance(1,2-5,6-), case-particles, brackets,
quotation-marks, punctuation-marks

Dynamic Features Type A,B Form of inflection represented withFunc-
tional Representation

Type C POS and POS-subcategory of Head word

Table 1: Features used in our experiments

Data Set Standard Large
Model Cascaded Chunking Probabilistic Cascaded Chunking Probabilistic
Dependency Acc. (%) 89.29 89.09 90.46 N/A
Sentence Acc. (%) 47.53 46.17 53.16 N/A
of training sentences 7,956 7,956 19,191 19,191
of training examples 110,355 459,105 261,254 1,074,316
Training Time (hours) 8 336 48 N/A
Parsing Time (sec./sentence) 0.5 2.1 0.7 N/A

Table 2: Cascaded Chunking model vs Probabilistic model

86

86.5

87

87.5

88

88.5

89

89.5

1000 2000 3000 4000 5000 6000 7000 8000

D
ep

en
de

nc
y

A
cc

ur
ac

y
(%

)

Number of Training Data (sentences)

’dynamic-c’
’static-c’

Figure 3: Training Data vs. Accuracy (cascaded
chunking/standard data set)

conclude that all dynamic features are effective in
improving the performance.

5.5 Comparison with Related Work

Table 4 summarizes recent results on Japanese de-
pendency analysis.

Uchimoto et al. (2000) report that using the Ky-
oto University Corpus for their training and testing,
they achieve around 87.93% accuracy by building

Deleted type of Diff. from the model with dynamic features

dynamic feature Dependency Acc. Sentence Acc.
A -0.28% -0.89%
B -0.10% -0.89%
C -0.28% -0.56%

AB -0.33% -1.21%
AC -0.55% -0.97%
BC -0.54% -1.61%

ABC -0.58% -2.34%

Table 3: Effects of dynamic features with the stan-
dard data set

statistical model based on the Maximum Entropy
framework. They extend the original probabilistic
model, which learns only two class; ‘modify‘ and
‘not modify‘, to the one that learns three classes;
‘between‘, ‘modify‘ and ‘beyond‘. Their model can
also avoid the influence of the exceptional depen-
dency relations. Using same training and test data,
we can achieve accuracy of 89.29%. The difference
is considerable.

Model Training Corpus (# of sentences)Acc. (%)
Our Model Cascaded Chunking (SVMs) Kyoto Univ. (19,191) 90.46

Kyoto Univ. (7,956) 89.29
Kudo et al 00 Probabilistic model (SVMs) Kyoto Univ. (7,956) 89.09

Uchimoto et al 00,98 Probabilistic model (ME + posterior context) Kyoto Univ. (7,956) 87.93
Kanayama et al 99 Probabilistic model (ME + HPSG) EDR (192,778) 88.55

Haruno et al 98 Probabilistic model (DT + Boosting) EDR (50,000) 85.03
Fujio et al 98 Probabilistic model (ML) EDR (190,000) 86.67

Table 4: Comparison with the related work

Kanayama et al. (2000) use an HPSG-based
Japanese grammar to restrict the candidate depen-
dencies. Their model uses at most three candidates
restricted by the grammar as features; the nearest,
the second nearest, and the farthest from the modi-
fier. Thus, their model can take longer context into
account, and disambiguate complex dependency re-
lations. However, the features are still static, and dy-
namic features are not used in their model. We can-
not directly compare their model with ours because
they use a different corpus, EDR corpus, which is
ten times as large as the corpus we used. Never-
theless, they reported an accuracy 88.55%, which is
worse than our model.

Haruno et al. (99) report that using the EDR
Corpus for their training and testing, they achieve
around 85.03% accuracy with Decision Tree and
Boosting. Although Decision Tree can take com-
binations of features as SVMs, it easily overfits on
its own. To avoid overfitting, Decision Tree is usu-
ally used as an weak learner for Boosting. Com-
bining Boosting technique with Decision Tree, the
performance may be improved. However, Haruno
et al. (99) report that the performance with Decision
Tree falls down when they added lexical entries with
lower frequencies as features even using Boosting.
We think that Decision Tree requires a careful fea-
ture selection for achieving higher accuracy.

6 Conclusion

We presented a new Japanese dependency parser
using a cascaded chunking model which achieves
90.46% accuracy using the Kyoto University Cor-
pus. Our model parses a sentence deterministically
only deciding whether the current segment modifies
the segment on its immediate right hand side. Our
model outperforms the previous probabilistic model
with respect to accuracy and efficiency. In addition,
we showed that dynamic features significantly con-

tribute to improve the performance.

References
Steven Abney. 1991. Parsing By Chunking. In

Principle-Based Parsing. Kluwer Academic Pub-
lishers.

Masakazu Fujio and Yuji Matsumoto. 1998.
Japanese Dependency Structure Analysis based
on Lexicalized Statistics. InProceedings of
EMNLP ’98, pages 87–96.

Msahiko Haruno, Satoshi Shirai, and Yoshifumi
Ooyama. 1999. Using Decision Trees to Con-
struct a Practical Parser.Machine Learning,
34:131–149.

Hiroshi Kanayama, Kentaro Torisawa, Yutaka Mit-
suishi, and Jun’ichi Tsujii. 2000. A Hybrid
Japanese Parser with Hand-crafted Grammar and
Statistics. InProceedings of the COLING 2000,
pages 411–417.

Taku Kudo and Yuji Matsumoto. 2000. Japanese
Dependency Structure Analysis based on Support
Vector Machines. InEmpirical Methods in Nat-
ural Language Processing and Very Large Cor-
pora, pages 18–25.

Sadao Kurohashi and Makoto Nagao. 1997. Kyoto
University text corpus project. InProceedings of
the ANLP, Japan, pages 115–118.

Kiyotaka Uchimoto, Satoshi Sekine, and Hitoshi
Isahara. 1999. Japanese Dependency Structure
Analysis Based on Maximum Entropy Models.
In Proceedings of the EACL, pages 196–203.

Kiyotaka Uchimoto, Masaki Murata, Satoshi
Sekine, and Hitoshi Isahara. 2000. Dependency
model using posterior context. InProcedings of
Sixth International Workshop on Parsing Tech-
nologies.

Vladimir N. Vapnik. 1998. Statistical Learning
Theory. Wiley-Interscience.

	Table of Content
	Workshops
	Authors

