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Abstract dency parser which is more efficient and simpler

. - than the probabilistic model, yet performs better in
In this paper, we propose a new statistical Jaloanest(raaining and testing on the Kyoto University Corpus.

dependency parser using a cascaded chunki S
model. Conventional Japanese statistical deperr:?he method parses a sentence deterministically only

dency parsers are mainly based on a probabilistigeCiding whether the current segment modifies seg-

Co - ment on its immediate right hand side. Moreover,
model, which is not always efficient or scalable. Weit does not assume the independence constraint be-
propose a new method that is simple and efficient P

: . s tween dependencies
since it parses a sentence deterministically only de- P

ciding Wheth_er _the current segment modlfles th_e2 A Probabilistic Model

segment on its immediate right hand side. Experi-

ments using the Kyoto University Corpus show thatThis section describes the general formulation of the
the method outperforms previous systems as well agrobabilistic model for parsing which has been ap-

improves the parsing and training efficiency. plied to Japanese statistical dependency analysis.
First of all, we define a sentence as a sequence
1 Introduction of segmentsB = (by,by...,b,) and its syntac-

: : tic structure as a sequence of dependency patterns
Dependency analysis has been recognized as a ba%: — (Dep(1), Dep(2) Dep(m—1)) , where

process in Japanese sentence analysis, and a nu ep(i) = j means that the segmehtdepends on

ber of studies have been proposed. Japanese dep?ﬂ\?odifies) segment;. In this framework, we as-

dency structure is usually defined in terms of the -
relationship between phrasal units calleghsetsu sume that the dependency sequentsatisfies the

segments (hereafter “segments”). following two constraints.

Most of the previous statistical approaches for 1. japanese is a head-final language. Thus, ex-
Japanese dependency analysis (Fujio and Mat-  cept for the rightmost one, each segment mod-

sumoto, 1998; Haruno et al., 1999; Uchimoto et jfies exactly one segment among the segments
al., 1999; Kanayama et al., 2000; Uchimoto et al., appearing to its right.

2000; Kudo and Matsumoto, 2000) are based on

a probabilistic model consisting of the following 2. Dependencies do not cross one another.
two steps. First, they estimate modification prob- . . ,
abilities, in other words, how probable one segment Statl_stlcal dependency analysis is defined as a
tends to modify another. Second the optimal combiS€arching problem for the dependency pattém
nation of dependencies is searched from the all carfiat maximizes the conditional probabiliy( D|B)

didates dependencies. Such a probabilistic model igf the Input I?equence unc:]er tEe c?boveémentlonebd
not always efficient since it needs to calculate the“OnStraints. Ifwe assume that the dependency prob-

probabilities for all possible dependencies and crePilities are mutually independerit(D|B) can be

atesn(n—1)/2 (wheren is the number of segments rewritten as:

in a sentence) training examples per sentence. In m—1
addition, the probabilistic model assumes that each  P(D|B) = [[ P(Dep(i)=j|f;;)
pairs of dependency structure is independent. i=1

In this paper, we propose a new Japanese depen- fi; = (f1,..., fn) € R™



P(Dep(i)=j| fi;) represents the probability thigt  algorithm that has classification ability.

modifiesb;. f;; is ann dimensional feature vector  The original idea of our method stems from the

that represents various kinds of linguistic featurescascaded chucking method which has been applied

related to the segmentsandb;. in English parsing (Abney, 1991). Let us introduce
We obtain Dy.; = argmaxp P(D|B) taking the basic framework of the cascaded chunking pars-

into all the combination of these probabilities. Gen-ing method:

erally, the optimal solutiorD,.;; can be identified

by using bottom-up parsing algorithm such as CYK 1. A sequence of base phrases is the input for this

algorithm. algorithm.

The problem in the dependency structure anal- , Scanning from the beginning of the input sen-

ySIS 1S how tlo e:tlmatg thef dep_er!delncydproba;]pup tence, chunk a series of base phrases into a sin-
ties accurately. A number of statistical and machine gle non-terminal node.

learning approaches, such as Maximum Likelihood
estimation (Fujio and Matsumoto, 1998), Decision 3. For each chunked phrase, leave only the head
Trees (Haruno et al., 1999), Maximum Entropy phrase, and delete all the other phrases inside
models (Uchimoto et al., 1999; Uchimoto et al., the chunk
2000; Kanayama et al., 2000), and Support Vector
Machines (Kudo and Matsumoto, 2000), have been
applied to estimate these probabilities.

In order to apply a machine learning algorithm to

dependency analysis, we have to prepare the pos-\we apply this cascaded chunking parsing tech-

itive and negative examples. Usually, in a proba-nique to Japanese dependency analysis. Since

bilistic model, all possible pairs of segments that ar¢japanese is a head-final language, and the chunk-

in a dependency relation are used as positive examng can be regarded as the creation of a dependency

ples, and two segments that appear in a sentence byényeen two segments, we can simplify the process

are not in a dependency relation are used as neggg Japanese dependency analysis as follows:

tive examples. Thus, a total efn — 1)/2 training

examples (where is the number of segments ina 1. Put anO tag on all segments. Th@ tag in-

sentence) must be produced per sentence. dicates that the dependency relation of the cur-
rent segment is undecided.

4. Finish the algorithm if a single non-terminal
node remains, otherwise return to the step 2
and repeat.

3 Cascaded Chunking Model . :
o _ 2. For each segment with a@® tag, decide
In the probabilistic model, we have to estimate the  \yhether it modifies the segment on its immedi-

probabilities of each dependency relation. However,  ate right hand side. If so, th@ tag is replaced
some machine learning algorithms, such as SVMs,  yith aD tag.

cannot estimate these probabilities directly. Kudo _ _

and Matsumoto (2000) used the sigmoid function 3- Delete all segments with a D tag that are imme-

to obtain pseudo probabilities in SVMs. However,  diately followed by a segment with an O tag.
there is no theoretical endorsement for this heuris- 4. Terminate the algorithm if a single segment re-
tics. mains, otherwise return to step 2 and repeat.

Moreover, the probabilistic model is not good
in. its scalability since it usually requires a total of Figure 1 shows an example of the parsing process
n(n — 1)/2 training examples per sentence. It will with the cascaded chunking model.
be hard to combine the probabilistic model with  The input for the model is the linguistic features
some machine learning algorithms, such as SVMstelated to the modifier and modifiee, and the output
which require a polynomial computational cost onfrom the model is either of the tag® (or O). In
the number of given training examples. training, the model simulates the parsing algorithm
In this paper, we introduce a new method forby consulting the correct answer from the training
Japanese dependency analysis, which does not rannotated corpus. During the training, positive (D)
quire the probabilities of dependencies and parseand negative (O) examples are collected. In testing,
a sentence deterministically. The proposed methothe model consults the trained system and parses the
can be combined with any type of machine learningnput with the cascaded chunking algorithm.



Figure 1. Example of the parsing process with cas-
caded chunking model

We think this proposed cascaded chunking mod
has the following advantages compared with the tra-
ditional probabilistic models.

‘ l dency relations are independent. However,
) 11\ 1 there are some cases in which one cannot parse
Bz Eo @M B0 BHU7E. a sentence correctly with this assumption. For

He her warm heart be moved

( He was moved by her warm heart.) example, coordinate structures cannot be al-
Initialization ways parsed with the independence constraint.
nput: 13 B0 BM RO BEILL. The cascaded chunking model parses and es-
g O O O 0 O timates relations simultaneously. This means
Pt fElE A O BAL B RELT. that one can use all dependency relations,
Tg O O D D O which have narrower scope than that of the cur-
...  beeed rent focusing relation being considered, as fea-
Input: 1K HED HEdlC BELE, ture sets. We describe the details in the next
Tagg O D b 0 section.
,,,,,,,,,,,,,,,,, Deeted
Input: fgiE EOlE BELE ¢ Independence from machine learning algo-
Tag. O D O rithm
,,,,,,,,,,,,,,,,, Deleted | The cascaded chunking model can be com-
Input: {13 BE L, bined with any machine learning algorithm that
Teg. Dd';ed o works as a binary classifier, since the cascaded
777777777777777777777777777 chunking model parses a sentence determinis-
Input: REL 7. tically only deciding whether or not the current
Tag: F%ish segment modifies the segment on its immedi-

ate right hand side. Probabilities of dependen-
cies are not always necessary for the cascaded
chunking model.

3.1 Dynamic and Static Features

eE_inguistic features that are supposed to be effective
in Japanese dependency analysis are: head words
and their parts-of-speech tags, functional words and
inflection forms of the words that appear at the end
of segments, distance between two segments, exis-
tence of punctuation marks. As those are solely de-
model require)(n?) parsing time, (where: fined by the pair of segments, we refer to them as
is the number of segments in a sentence.). Off1€static features _ _
the other hand, the cascaded chunking model Japanese dependency relations are heavily con-
requiresO(n?) in the worst case when all seg- strained by such s‘_ta_ltlc featur_es since the_mﬂectlon
ments modify the rightmost segment. The ac-forms and postposmonal particles constrain the de;-
tual parsing time is usually lower tha(n?), pendency relation. However, when a s_entence is
since most of segments modify segment on itdong and there are more than one possible depen-
immediate right hand side. dgncy, static features, by themselves cannot deter-
Furthermore, in the cascaded chunking modelmlne the cor_rect erendency.
the training éxamples are extracted using th ,_T0 cope with this problem, Kudo and Matsumoto
parsing algorithm itself. The training exam-e(zoo-o) introduced anew type of features caltiye
ples required for the caécaded chunking mode amic features which are created dynamlcally dur-
is much smaller than that for the probabilistic ng the barsing process. For gxample, i some rela-
model. The model reduces the training Costtlon is deter_mlned, this modification relation may
signifiéantly and enables training using Iargerhave some influence on other dependency re_Iatlon.
amounts of annotated corpus Ther_efore, once a segment ha_s been pletermmeq to
' modify another segment, such information is kept in
No assumption on the independence be- both of the segments and is added to them as a new
tween dependency relations feature. Specifically, we take the following three
The probabilistic model assumes that depentypes of dynamic features in our experiments.

e Simple and Efficient
If we use the CYK algorithm, the probabilistic



modify or not?

with a Kernel functionk (x;,x;), SVMs can han-
' dle non-linear hypotheses. Among many kinds of
' | l Kernel functions available, we will focus on tlle
|

;
| [ 1 1 . | [ 1 lV th polynomial kernel:s (x;, x;) = (x; - x; + 1)%.
Use ofd-th polynomial kernel functions allows us to

build an optimal separating hyperplane which takes
Figure 2: Three types of Dynamic Features

into account all combinations of features upito

5 Experiments and Discussion
A. The segments which modify the current candi-5'l Experimental Setting

date modifiee. (boxes marked with A in Figure We used the following two annotated corpora for
2) our experiments.

B. The segments which modify the current candi-

ifi . - Standard data set
date modifier. (boxes marked with B in Figure ¢ >tandard data se

2)

C. The segment which is modified by the current
candidate modifiee. (boxes marked with C in
Figure 2)

4 Support Vector Machines

Although any kind of machine learning algorithm
can be applied to the cascaded chunking model, we
use Support Vector Machines (Vapnik, 1998) for our
experiments because of their state-of-the-art perfor-
mance and generalization ability.

SVM is a binary linear classifier trained
from the samples, each of which belongs ei-
ther to positive or negative class as follows:
(Xl, y1>, RN (Xl, y1) (Xl‘ e R", y; € {+1, —1}),
wherex; is a feature vector of theth sample rep-
resented by am dimensional vector, ang; is the
class (positive{1) or negative{-1) class) label of
thei-th sample. SVMs find the optimal separating
hyperplane ¥ - x + b) based on the maximal mar-

This data set consists of the Kyoto University
text corpus Version 2.0 (Kurohashi and Nagao,
1997). We used 7,958 sentences from the ar-
ticles on January 1st to January 7th as training
examples, and 1,246 sentences from the arti-
cles on January 9th as the test data. This data
set was used in (Uchimoto et al., 1999; Uchi-
moto et al., 2000) and (Kudo and Matsumoto,
2000).

e Large data set

In order to investigate the scalability of the cas-
caded chunking model, we prepared larger data
set. We used all 38,383 sentences of the Kyoto
University text corpus Version 3.0. The train-
ing and test data were generated by a two-fold
cross validation.

The feature sets used in our experiments are
shown in Table 1. The static features are basically
taken from Uchimoto’s list (Uchimoto et al., 1999).

Head Word (HW)is the rightmost content word

gin strategy. The margin can be seen as the distand® thc_a segmentt-unctional Word (FW)s set as fol-
between the critical examples and the separating hQQWS-

perplane. We omit the details here, the maximal

- FW = the rightmost functional word, if there is

margin strategy can be realized by the following op-& functional word in the segment

timization problem:

- FW = the rightmost inflection form, if there is a

predicate in the segment

Minimize : L(w) = %HWH2

- FW = same as thelW, otherwise.

The static features include the information on ex-
istence of brackets, question marks and punctuation

Furthermore, SVMs have the potential to carrymarks, etc. Besides, there are features that show
out non-linear classifications. Though we leave thghe relative relation of two segments, such as dis-
details to (Vapnik, 1998), the optimization problem tance, and existence of brackets, quotation marks
can be rewritten into a dual form, where all featureand punctuation marks between them.
vectors appear as their dot products. By simply sub- For a segment X and its dynamic feature Y
stituting every dot product of; andx; in dual form  (where Y is of type A or B), we set theunctional

Subject to: y;[(w-x;)+b>1(i=1,...,0).



Representation (FReature of X based on thew For the first impression, it may seems natural that

of X (X-FW)as follows: higher accuracy is achieved with the probabilistic
- FR = lexical form of X-FWif POS of X-FWis  model, since all candidate dependency relations are

particle, adverb, adnominal or conjunction used as training examples. However, the experimen-
- FR = inflectional form ofX-FWif X-FWhas an tal results show that the cascaded chunking model

inflectional form. performs better. Here we list what the most signif-
- FR = the POS tag oX-FW, otherwise. icant contributions are and how well the cascaded

For a segment X and its dynamic feature C, weChunking model behaves compared with the proba-
set POS tag and POS-subcategory oftivéof X, Dilistic model. S _ _

All our experiments are carried out on Alpha- The p_robablllstlc mod(_el is tralngd_ with all candi-
Sever 8400 (21164A 500Mhz) for training and daté pairs of segments in the training corpus. The
Linux (Pentiumlll 1GHz) for testing. We used a problem of this training is that exceptional depen-

third degree polynomial kernel function, which is 9ency relations may be used as training examples.

exactly the same setting in (Kudo and MatsumotoFOr xample, suppose a segment which appears to

2000). right hand side of the correct modifiee and has a
Performance on the test data is measured using™Milar content word, the pair with this segment be-

dependency accuracy and sentence accuracy. D omes a negative gxample. However, this is nega-
; dive because there is a better and correct candidate

pendencies out of all dependency relations Sen@t a different point in the sentence. Therefore, this
' ay not be a true negative example, meaning that

tence accuracy is the percentage of sentences In: o -
this can be positive in other sentences. In addition,

which all dependencies are determined correctly. . . o iy
P y if a segment is not modified by a modifier because of
5.2 Experimental Results cross dependency constraints but has a similar con-
. tent word with correct modifiee, this relation also
The results for the new cascaded chunking model ; )
ecomes an exception. Actually, we cannot ignore

well as for the previous probabilistic model basedthese exceptions, since most segments modify a seg-
on SVMs (Kudo and Matsumoto, 2000) are summa- S ) . . _
: : : ment on its immediate right hand side. By using
rized in Table 2. We cannot employ the experiments I did fd d lati h -
for the probabilistic model using large dataset since., cand ates of dependency relation as the training
o ’ examples, we have committed to a number of excep-
the data size is too large for our current SVMs learn- . ; S
. X ; R ; tions which are hard to be trained upon. Looking in
ing program to terminate in a realistic time period. : .
E thouah th b £ traini | particular on a powerful heuristics for dependency
zj/efn thoug %néjmh erk_o ram(ljn? .e)l(amptﬁsstructure analysis: “A segment tends to modify a
used for the cascaded chunking modet IS 1ess thagy, , .o, segment if possible,” it will be most impor-

a quarter of that fgr the probabilistic model, and thetant to train whether the current segment modifies
used feature set is the same, dependency accur

) ) Afi¥e segment on its immediate right hand side. The
and sentence accuracy are improved using the ¢

: A¥ascaded chunking model is designed along with
(fiid;;;);‘kmg model (89.09% 89.29%, 46.17% this heuristics and can remove the exceptional re-

) . - : . lations which has less potential to improve perfor-
The time required for training and parsing are sig-y,ance.

nificantly reduced by applying the cascaded chunk-

ing model (336h—8h, 2.1sec— 0.5sec.). 5.4 Effects of Dynamic Features

Figure 3 shows the relationship between the size of
the training data and the parsing accuracy. This fig-
ure also shows the accuracy with and without the
As can be seen Table 2, the cascaded chunkindynamic features. Generally, the results with the
model is more accurate, efficient and scalable thadynamic feature set is better than the results with-
the probabilistic model. It is difficult to apply the out it. The dynamic features constantly outperform
probabilistic model to the large data set, since itstatic features when the size of the training data is
takes no less than 336 hours (2 weeks) to carry odarge. In most cases, the improvements is consider-
the experiments even with the standard data set, arable.

SVMs require quadratic or more computational cost Table 3 summarizes the performance without
on the number of training examples. some dynamic features. From these results, we can

5.3 Probabilistic model vs. Cascaded
Chunking model



Static Features | Modifier/Modifiee | Head Word (surface-form, POS, POS-
segments subcategory, inflection-type, inflection-
form), Functional Word (surface-form,

POS, POS-subcategory, inflection-type,
inflection-form),  brackets, quotation-
marks, punctuation-marks, position in
sentence (beginning, end)

Between two segi distance(1,2-5,6-), case-particles, brackets,

ments guotation-marks, punctuation-marks
Dynamic Features Type A,B Form of inflection represented withunc-
tional Representation
Type C POS and POS-subcategory of Head word

Table 1: Features used in our experiments

Data Set Standard Large

Model Cascaded Chunking Probabilistic| Cascaded Chunking Probabilistic
Dependency Acc. (%) 89.29 89.09 90.46 N/A
Sentence Acc. (%) 47.53 46.17 53.16 N/A
# of training sentences 7,956 7,956 19,191 19,191
# of training examples 110,355 459,105 261,254 1,074,316
Training Time (hours) 8 336 48 N/A
Parsing Time (sec./sentence) 0.5 2.1 0.7 N/A

Table 2: Cascaded Chunking model vs Probabilistic model

89.5 ] Deleted type of| Diff. from the model with dynamic features

g 8y dynamic feature; Dependency Acc/ Sentence Acc.
g 88.5 | A -0.28% -0.89%
g 88 | B -0.10% -0.89%
3 875 C -0.28% -0.56%
S gl AB -0.33% -1.21%
g 17 o AC -0.55% -0.97%
o 865 dynamic-c’ ——

o L ‘ | staticg” BC -0.54% -1.61%

1000 2000 3000 4000 5000 6000 7000 8000 ABC -0.58% -2.34%

Number of Training Data (sentences)

_ o Table 3: Effects of dynamic features with the stan-
Figure 3: Training Data vs. Accuracy (cascadedyard data set

chunking/standard data set)

conclude that all dynamic features are effective instatistical model based on the Maximum Entropy

improving the performance. framework. They extend the original probabilistic
) ) model, which learns only two class; ‘modify* and
5.5 Comparison with Related Work ‘not modify’, to the one that learns three classes;
Table 4 summarizes recent results on Japanese déetween’, ‘modify* and ‘beyond’. Their model can
pendency analysis. also avoid the influence of the exceptional depen-

Uchimoto et al. (2000) report that using the Ky- dency relations. Using same training and test data,
oto University Corpus for their training and testing, we can achieve accuracy of 89.29%. The difference
they achieve around 87.93% accuracy by buildings considerable.



Model Training Corpus (# of sentences)Acc. (%)
Our Model Cascaded Chunking (SVMs) Kyoto Univ. (19,191) 90.46
Kyoto Univ. (7,956) 89.29
Kudo et al 00 Probabilistic model (SVMs) Kyoto Univ. (7,956) 89.09
Uchimoto et al 00,98 Probabilistic model (ME + posterior context) Kyoto Univ. (7,956) 87.93
Kanayama et al 99 Probabilistic model (ME + HPSG) EDR (192,778) 88.55
Haruno et al 98 Probabilistic model (DT + Boosting) EDR (50,000) 85.03
Fujio et al 98 Probabilistic model (ML) EDR (190,000) 86.67

Table 4: Comparison with the related work

Kanayama et al. (2000) use an HPSG-basetribute to improve the performance.
Japanese grammar to restrict the candidate depen-
dencies. Their model uses at most three candidatd3eferences
restricted by the grammar as features; the nearesgteven Abney. 1991. Parsing By Chunking. In
the second nearest, and the farthest from the modi- Principle-Based ParsingKluwer Academic Pub-
fier. Thus, their model can take longer context into lishers.
account, and disambiguate complex dependency réfasakazu Fujio and Yuji Matsumoto. 1998.

lations. However, the features are still static, and dy- Japanese Dependency Structure Analysis based
namic features are not used in their model. We can- on Lexicalized Statistics. InProceedings of

not directly compare their model with ours because EMNLP '98 pages 87—96.

they use a different corpus, EDR corpus, which ismsahiko Haruno, Satoshi Shirai, and Yoshifumi
ten times as large as the corpus we used. Never- Ogyama. 1999. Using Decision Trees to Con-
theless, they reported an accuracy 88.55%, which is struct a Practical ParserMachine Learning
worse than our model. 34:131-149.

Haruno et al. (99) report that using the EDR Hijroshi Kanayama, Kentaro Torisawa, Yutaka Mit-
Corpus for their training and testing, they achieve suishi, and Jun’ichi Tsujii. 2000. A Hybrid
around 85.03% accuracy with Decision Tree and Japanese Parser with Hand-crafted Grammar and
Boosting. Although Decision Tree can take com-  Statistics. InProceedings of the COLING 2000
binations of features as SVMs, it easily overfits on  pages 411-417.
its own. To avoid overfitting, Decision Tree is usu- Taku Kudo and Yuji Matsumoto. 2000. Japanese
ally used as an weak learner for Boosting. Com- pependency Structure Analysis based on Support
bining Boosting technique with Decision Tree, the \iector Machines. IrEmpirical Methods in Nat-
performance may be improved. However, Haruno ural Language Processing and Very Large Cor-
etal. (99) report that the performance with Decision pora, pages 18-25.

Tree falls down when they added lexical entries withggdao Kurohashi and Makoto Nagao. 1997. Kyoto
lower frequencies as features even using Boosting. University text corpus project. IRroceedings of
We think that Decision Tree requires a careful fea- e ANLP, Japaypages 115-118.

ture selection for achieving higher accuracy. Kiyotaka Uchimoto, Satoshi Sekine, and Hitoshi
. Isahara. 1999. Japanese Dependency Structure
6 Conclusion Analysis Based on Maximum Entropy Models.
We presented a new Japanese dependency parsefn Proceedings of the EACIpages 196-203.

using a cascaded chunking model which achieveKiyotaka Uchimoto, Masaki Murata, Satoshi
90.46% accuracy using the Kyoto University Cor- Sekine, and Hitoshi Isahara. 2000. Dependency
pus. Our model parses a sentence deterministically model using posterior context. Procedings of
only deciding whether the current segment modifies Sixth International Workshop on Parsing Tech-
the segment on its immediate right hand side. Our nologies

model outperforms the previous probabilistic modelVladimir N. Vapnik. 1998. Statistical Learning
with respect to accuracy and efficiency. In addition, Theory Wiley-Interscience.

we showed that dynamic features significantly con-



	Table of Content
	Workshops
	Authors

