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Abstract

Error analysis is a key step in developing sta-
tistical parsers. In doing this, we manually dis-
cover typical cases by examining parser output.
In this paper we argue that the process can be
speeded up by considering the output from an
ensemble of parsers. We do this by resampling
small proportions (10% and up) from the train-
ing data, and exploiting the high diversity of the
resulting parsers - resulting from the sparseness
of natural-language data. Varying the sample
size, we can trace the gradual learning of each
instance and classify instances into a few types.
This division helps in distinguishing instances
which are hard for the system, from instances
which may be learned in principle. We suggest
that such analysis can yield a qualitative ap-
proach to evaluation of statistical parsers.

1 Introduction

The task of parsing can be viewed as a detection
task, where the goal of the parser is to detect
instances of structures witnin the sentence. Ac-
cordingly, recall and precision are used in mea-
suring the parser performance.

When we say “Recall is 80%”, do we mean:

i. in the given test set, the chance of a single
instance to be detected is 80%7 or

ii. in an arbitrary sample, 80% of the in-
stances will be detected?

In general, we have a single test data set at
hand. Assuming it is representative, we adopt
the second interpretation and conjecture that
the recall carries to other data sets. There
still remains, however, the question from the
first interpretation: what are the chances of an
instance to be detected? Or in more general
terms: how easy or hard each instance is?

Some instances in natural language (NL) data
are very easy to detect, or to classify correctly.
For example, words with only one possible part-
of-speech (POS) are easy to tag, prepositional
phrases that include “of” are easy to attach, and
NPs with a very common structure are easy to
detect. On the other hand, some instances may
be very hard to detect with statistical methods
due to the inherent sparseness of NL data.

When analyzing the errors made in a single
run of a supervised parser, we can discover prob-
lematic cases by observing recurring errors. But
results from a single run show a partial picture,
because they are sensitive to peculiarities in the
training set. Such results may reflect failures or
successes that are not due to properties of the
model, but to a random balance of positive and
negative evidence for certain types of instances.

If we knew, for a certain learning system,
which types of instances are easy and which
are hard to detect, and how “easy” or “hard”
the individual instances are, this would provide
us with means to qualitatively analyze the sys-
tem’s performance. This, in turn, would enable
us to compare systems that are similar accord-
ing to recall and precision. In such cases, it is
possible that the systems differ in their ability to
handle certain types of instances in a way which
recall and precision do not reflect. Such a com-
parison would be qualitative in nature, unlike
statistical significance tests such as McNemar’s
test whose goal is different.

In this paper, we propose a method which al-
lows to study the easiness and hardness of test
instances. The method relies on training the
model on samples from the training data, there-
by creating multiple parsers, and recording the
instances detected each time.

We use the number of parsers that detected
the instance as a measure of easiness. Due to



the Zipfian nature of NL data, training samples
are likely to differ in low-count instances. As
each parser uses the features that were present
in its training set, the parsers will differ with
respect to the set of features they use. Each
parser will provide a different viewpoint of the
target structures. It is expected that easy in-
stances will be detected by all or most of the
parsers, while hard instances — missed by most
of the parsers. Moreover, as we increase the
sample size, we can trace the learning process
at the instance level and characterize instances
according to the variation of their easiness.

The idea of using an ensemble of supervised
systems, trained on different samples, for mak-
ing observations regarding individual instances
is common in the frameworks of classifier com-
bination and selective sampling. The boosting
approach (Freund and Schapire, 1995) creates a
classifier ensemble by training a system on sam-
ples drawn with preference to hard instances.
Skalak (1997) suggests a more elaborated tax-
onomy of easiness and hardness levels, derived
from leave-one-out results. He uses this infor-
mation in order to remove uncharacteristic in-
stances from the training set.

Query by committee (Seung et al., 1992) ap-
proaches select training instances for which the
disagreement between classifiers is the highest.
Abe and Mamitsuka (1998), proposes to obtain
the classifier collection by sampling from the
training set with a uniform distribution (as in
bagging (Breiman, 1996)) or with preference to
hard instances as in boosting.

We propose to use the ensemble of supervised
parsers for error analysis. We demonstrate our
method with a statistical memory-based shallow
parsing algorithm and the task of NP detection.

2 Learning Algorithm

The experiments were carried out using the
memory-based sequence learning algorithm pre-
sented by Dagan and Krymolowski (2001, here-
after MBSL). The system considers POS se-
quences at the beginning or end of target in-
stances, NPs in our case. For each POS se-
quence, it records the number of times it ap-
pears in the beginning or end of an NP, as well
as anywhere else in the corpus. For composi-
tional NPs, the embedded NPs are treated in
the same way as POS. This provides an addi-

tional level of abstraction.
sample training data.

The input for parsing is a POS sequence, rep-
resenting a tagged sentence. MBSL tests each
subsequence, with its context, as a candidate
for being an NP instance. Single words are test-
ed first, then two-word subsequences and so on
in increasing order of length. This allows the
algorithm to use embedded NPs when testing
composite ones.

If a subsegeuence corresponds to a real in-
stance, then ideally, the entire POS string with
its context would appear a number of times in
the training data as an instance, and not in oth-
er structures. For example, the sequen(:e1

“VBZ DT NNS IN NNP .”
appears once in Figure 1, third sentence, as
an NP instance with one word in each side:
“YBZ [yp DT NNS IN NNP yp] .7

In the more general case, MBSL tries to re-
construct the POS sequence from prefixes and
suffixes of NPs in the training data, which we
term tiles. For example, the NP

“[yp DT JJ NN NNS IN NNP ypl”
has support for the prefix tile “[yp DT JJ NN”
from the two first NPs in sentences 2 and 3,
and for the suffix tiles “IN NNP ypl” “NNS IN
NNP ypl” from the first NP in sentence 2 and
the second NP in sentence 3 respectively.

The algorithm takes negative evidence into
account as well. For example, the prefix tile
“[yp JJ” appears in sentence 1, but “JJ” ap-
pears twice in other positions, that is, not as
the first word in an NP. These two appear-
ances constitute a negative evidence for this tile,
which overshadows the single positive appear-
ance, therefore MBSL will not use this tile.

Each NP candidate is given a score, the algo-
rithm uses this score in disambiguation. MBSL
considers up to a specified number ¢ of context
words, before and after an NP, in tiles. Here we
use ¢ = 2.

Figure 1 presents

3 Easiness

Let T denote the set of NPs in the test data,
and S a set of n training-set samples used for

We wuse the Penn Treebank set of POS
tags: DT=determiner, JJ=adjective, RB=adverb,
VBD=verb in past tense, VBN=passive verb, VB=verb,
IN=preposition, NN=singular noun, NNS=plural noun,
and CC=coordinating conjunction.



1. [wp NNS yp] [yp VBZ RB [yp JJ NNS ypl vpl
2. [y DT JJ NN IN NNP wpl [yp VBZ [yp DT NN ypl ypl
3. [NP DT JJ NN NN NP] [VP VBZ [NP DT NNS IN NNP NP] vp]

Figure 1: An example of training data for MBSL

training a supervised parser. We refer to the
parser trained on the i sample as “parser i”.
Each instance a € T can be characterized by a
bit-vector

v9(a) = (v1(a),. ..

»vn(a))

where

(a) = 1 a was detected by parser ¢
Yil%) =1 0 a was not detected by parser 7 .

The vector v°(a) is the detection profile of a
according to the set of samples S.

We extract from the detection profile the pro-
portion

number of ’1’s in v° (a
easiness® (a) = p (@) ,

which is the probability of detecting a by one of
the parsers in the ensemble. For easy and hard
instances, easiness”(a) will be close to 1 and 0
respectively. The easiness does not depend only
on the instance, but also on the training sam-
ples. We will discuss this issue further in the
experiment section. In this paper we restrict
our study to NPs marked in an annotated cor-
pus, all of these NPs are therefore correct. In
the general case, an instance can have a high
easiness but still not be correct.

4 Experiments
4.1 Data

The training data used in our experiments con-
sisted of Penn Treebank WSJ (Marcus et al.,
1993) Sections 15-18, with Section 20 as test.
These data sets were used by Ramshaw and
Marcus (1995) and CoNLL-2000 shared task
(Tjong Kim Sang and Buchholz, 2000) and have
become a common testbed for shallow parsing
tasks. Table 1 shows the number of sentences
and NPs in the training and test data. We
counted compositional NPs separately, as their
structure is more complicated than that of base
NPs.

Training Test
Dataset WSJ 15-18 | WSJ 20
Sentences 8936 2012
NPs:
Base 50860 11401
Compositional 18472 4398
Total 69332 15799

Table 1: Training and test data

Psamp 10% | 256% | 50% | 80% | 95%
Avg. rec.% 81 83 84 85 85
Easiness: proportion in test data
0 3 4 5 8 10
0-0.1 9 9 10 12 14
0.1-0.2 3 2 2 1 1
0.2-0.3 2 2 1 1 0
0.3-0.4 2 2 1 1 0
0.4-0.5 2 2 1 0 0
0.5-0.6 2 2 2 1 0
0.6-0.7 2 2 1 1 0
0.7-0.8 3 2 2 2 0
0.8-0.9 5 3 2 2 1
0.9-1 70 74 78 81 84
1 52 61 67 74 78

Table 2: A summary of five resampling exper-
iments: sample size, average recall, and distri-
bution of easiness. Instances with easiness of
0 and 1 are counted within the corresponding
ranges as well as separately.

4.2 Estimating Easiness

We conducted a few resampling experiments,
each with a different sampling proportion
10% < psamp < 99.75% of the training data.
1000 samples were taken in each experiment,
resulting in an ensemble of n = 1000 parsers.

Table 2 presents a summary of five resam-
pling experiments. For reference, the recall of
the parser trained on the complete data is 85%.
We see that the average recall rises as samples
grow.

As psamp is increased, there is more overlap



between individual training samples. For exam-
ple, two samples of 90% each will share at least
80% of the training data, while at the other ex-
treme, two 10% samples are typically disjoint.
This effect results in more similar parsers when
the samples are larger. We therefore see an in-
crease in the number of instances with extreme
easiness values near 0 and 1 for larger psamp.-
Ultimately, with the full training sample, each
instance is either detected or missed, therefore,
foreach a € T

lim  easiness®(a) =0 or 1.
psamp—>100%

where S represents a set of training samples
drew with proportion psamp.

When the training samples are small, only
very easy instances will have easiness ~ 1, but
instances with easiness ~ 0 may not necessarily
be hard. The converse happens when the sam-
ples are large: hard instances will have lower
easiness values but instances with easiness ~ 1
need not be very easy. In order to get a de-
tailed view, we examined, for each a € T, how
its easiness varies with the sample size.

Figure 2 shows four patterns of easiness
change. The curves can be viewed as “learn-
ing curves” for individual instances. As table
3 shows, most of the instances start with easi-
ness values above 0.5 for small samples, which
increase as the sample size grows. The high-
er the initial easiness, the faster it gets to the
value of 1. As for the instances with initial easi-
ness below 0.5 — they end up mostly undetected
by the parser trained on the full training set.
Such a behaviour coincides with our usual view
of learning.

This is not, however, the whole story. Some
instances start with very low easiness and yet
end with a value of 1 (“learned” instances),
while others start with high easiness but even-
tually are not detected (“forgotten” instances).
We explain both cases by a borderline phe-
nomenon for which there is little negative ev-
idence in the first case, and little positive evi-
dence in the second. For example, the construc-
tion “NP IN NP” may or may not be a composi-
tional noun. When most such constructions in
the training sample are not NPs, incidental bal-
ance of features in a small sample can still result
in detecting such instances, whereas larger sam-

ples are less noisy and therefore less susceptible
to this effect.

20 40 60 80 100 20 40 60 80 100
| oo o o T T
0.8 Easy Instances T Hard Instances o8
0.6 - —+ - 06
0.4 —+ - 04
02 [ -+ oz
w r T ]
g L + 4
S S P I o N s s L)
S e e e e
ﬁ [ Instance T\ Instances Forgotten ]
0.8 - -+ - o8
0.6 - -+ - 06
04 [ + 04
0.2 F + —o0.2
O S N =2 N 50

20 40 60 80 100 20 40 60 80 100

Training sample size (% from training set)

Figure 2: Four patterns of the easiness change
with sampling proportion pgamp.

Easiness Full Sample
Dsamp = 10% | Missed | Detected
0-50% 13% 5%
Hard Learned
50-100% 1.5% 80.5%
Forgotten Easy

Table 3: Frequencies of instances exhibiting the
four types of easiness change

4.3 [Easiness and Bagging

Taking small samples has the advantage of pro-
ducing parsers which disagree more with one
another, and can provide finer distinctions be-
tween instances. In memory-based learning,
where it is important to keep all the available
evidence from the training data (Daelemans et
al., 1999), small samples have an advantage in
requiring less space - with a tradeoff in perfor-
mance.

In order to study whether we can still get a
good performance with small samples, we ran
bagging (Breiman, 1996) experiments. We used
Psamp = 10% and tried a range of thresholds.
For each threshold 8, we selected the instances



with easiness greater than 6, and calculated the
recall, precision, and Fg with 3 = 1. The re-
sults are presented in Table 4 along with the
performance of the parser trained on the full
training set. As we see, it is possible to achieve
a performance similar to that of the full model
by bagging parsers trained on small samples of
the training set.

As we use a single data set and a single
method for this work, it is hard to say whether
this holds for other tasks as well. This result
may indicate that a small training material is
sufficient for analyzing the particular test set
(as also implied by the high recall values for
low psamp in table 2), we leave that for future
research. In particular, while thresholds of 30%
and 40% yielded recall and precision similar to
those obtained by training on the full data set,
it is not possible to say at present whether this
is due to the task, the system, or the data sets
in use.

Threshold | Recall | Precision | Fpg
20% 88.3 65.5 75.2
30% 86.1 70.1 77.2
40% 84.0 73.4 78.3
50% 81.9 76.5 79.1
60% 79.5 79.0 79.3
70% 77.1 81.4 79.2
Full 85.0 71.4 77.6

Table 4: Results of bagging experiment with
10% samples

5 Discussion

Analyzing the results of a single run of a super-
vised parser, we can find frequent errors. This
information is, however, limited to that run and
does not always reflect why an instance was
not detected. Possible reasons can be that the
system cannot find supporting evidence in the
training data, or due to a random balance of
supporting and contradicting evidence for that
instance. Distinguishing between errors of these
types and, more generally, tracing the learning
or “forgetting” patterns of instances, are im-
portant steps in analyzing the performance of a
supervised parser. Combined with a clustering
approach (Krymolowski and Marx, 2002), we
may be able to group together instances with

similar behaviour and structure, and speed up
the process of error analysis.

When a model is probabilistic (e.g., DOP
(Scha et al., 1999)), we can intuitively observe
that instances that get a high probability are
easy while those with low probability are hard.
For models represented as a separator in an ab-
stract numeric feature space (e.g., SNoW (Roth,
1998)), the distance from the separator can be
an indication of easiness. Assuming the sepa-
rator fluctuates within a bounded area of space
for different training samples, the easy instances
are those within a safe distance from that area,
while the hard ones are more sensitive to errors
resulting from noise in the training samples.

In this work, we proposed a method for esti-
mating the easiness of instances which is suit-
able even for a non-probabilistic model or model
which is not represented in an abstract numeric
feature space. The method relies on generating
an ensemble of parsers by resampling from the
training data. We studied the effect of sample
size on the distribution of easiness in a test sam-
ple, and presented learning curves for individual
instances. The curves can help in finding easy
instances that are being learned in the common
way, as well as instances affected by noise, or
for which little evidence does exist in the data
although the full model misses them.

In using training samples, we took advantage
of the Zipfian distribution of natural-language
data. This yields samples that differ in the low-
count instances they contain which, in turn, in-
creases the difference between parsers trained
on different samples. Given a sampling propor-
tion, we sampled randomly from the data. It
might be possible to increase the diversity a-
mong parsers by sampling chunks of sentences.
As the style within a chunk is more uniform
than within a collection of texts, this could fo-
cus each parser on a smaller number of instance
types. This will sharpen the coverage differ-
ences between parsers (in expense of the cover-
age of each one).

As further work, we plan to investigate the
relation between easiness and concepts like
typicality (Zhang, 1992) and class prediction
strength (e.g. Hoste and Daelemans (2000)).
We also plan to study the extent to which easi-
ness depends on the feature set used by the su-
pervised parser, and compare a number of sys-



L. Breiman.

Yuval Krymolowski and Zvika Marx.

tems in order to find instances which are hard

or easy for most of the methods (cf. Pedersen
(2002) for the word-sense disambiguation task).

We hope this would provide a means for qualita-

tive comparison between systems. Further yet,

we hope this would contribute to a more focused

use of the individual learning methods, possibly
in combination with hand-coded rules, saving

learning effort for the cases where it is more
needed.
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