Learning attribute values in typed-unification grammars:
On generalised rule reduction

Liviu Ciortuz

CS Department, University of York, UK. E-mail: ciortuzQcs.york.ac.uk

Abstract: We present Generalised Reduction (GR),
a learning technique for generalising attribute/feature
values in typed-unification grammars. GR eliminates as
many as possible of the feature constraints (FCs) from
the type feature structures (FSs) while applying a crite-
rion of preserving the parsing results on a given, training
corpus. For parsing with GR-restricted rule FSs, and for
checking the correctness of obtained parses on other cor-
pora, one may use a new form FS unification which we
call two-step unification to speed up parsing. We report
results on a large-scale HPSG grammar for English.

1 Introduction and Related Work

Interest in typed-unification grammars in Natural
Language Processing can be traced back to the sem-
inal work on the PATR-II system [20]. Since then,
different types of unification-based grammar for-
malisms were developed by the Computational Lin-
guistics community — most notably Lexical Func-
tional Grammars [11], Head-driven Phrase Struc-
ture Grammars (HPSG, [19]) and Categorial (uni-
fication) Grammars [23]. During the last years, such
wise-coverage grammars were implemented.’

F'S unification is by far the most time-consuming
task during unification with large-scale typed-
unification grammars. Therefore, making it more
efficient is of great interest. Several solutions for
speeding-up FS unification have been proposed un-
til now: FS sharing [18] [22], the Quick-Check pre-
unification filter [12], the hyper-active parsing [16]
strategy, or parsing with ambiguity packing [17].
Compilation of parsing with typed FSs [24] [7] is an-
other approach for speeding-up the FS unification.

This paper will show that an ILP-inspired learn-
ing technique [14] for generalising typed-unification
grammars opens the way for further applying a new

! For instance the HPSG for English developed at Stan-
ford [9] called LinGO, two HPSGs for Japanese de-
veloped at Tokyo University [13], and respectively
at DFKI-Saarbriicken, Germany [21], and the HPSG
for German, developed also at DFKI [15]. Large-scale
LFG grammars were developed by Xerox Corp., but
they are not publicly available.

speed-up technique for parsing with such grammars,
namely two-step unification.

The QC pre-unification filter, one of the most
effective speed-up technique for FS unification, is
very simple in itself. It considers the set of feature
paths most probably leading to unification failure,
and then compares the corresponding values of these
paths inside the two FSs to be unified. If such a
pair of values is — eventually if their root sorts are
— incompatible, then certainly the two FSs don’t
unify. The QC filter rules out many of the unifi-
cations, and speeds up considerably the parsing —
around 63% for the PET system [4], and 42% for the
LiGHTcompiler [8].2

The effectiveness of the QC pre-unification tech-
nique resides in the fact that there is a relatively
reduced number of failure paths inside rule FSs. Us-
ing the LIGHT system, we identified 148 failure paths
on the CSLI test-suite, out of the total of 494 paths
inside rule F'Ss for LinGO. Among these paths, only
a small number is responsible for most of the unifi-
cation failures.?

The Generalised Reduction technique will work
on a larger subset of feature paths inside rule FSs,
namely those paths which contribute to unification
failure, by eliminating those FCs which are not deci-
sively contribute (or only seldom contribute) to uni-
fication failure. The paths retained by GR will be
called in the sequel GR-paths.*

We will present an efficient algorithm for gen-
eralised reduction of rule FSs in large-scale typed-
unification grammars. Measurements done on the
LinGO grammar revealed that almost 60% of the
feature constraints in the expanded grammar rule
FSs can be eliminated without affecting the parsing
result on the CSLI test-suite. As a consequence, the

2 LigHT uses compiled unification, which without QC
proved to be (40%) faster than unification in PET,
the fastest interpreter running LinGO-like grammars.
This is why the speed-up factor provided by QC for
LiGHT is lower than that for PET.

% For the LinGO grammar, in the LIGHT system, we
used maximum 43 QC-paths.

* QC and two-step unification, working on the GR-
learnt grammar, will be orthogonal.

LIGHT system registered a reduction of the unifica-
tion time that sped parsing up to 23%.°

2 Generalised Reduction —
Definitions

From the logical point of view, FSs can be viewed as
positive OSF-clauses, which are finite sets of atomic
OSF-constraints [2] — sort constraints, feature con-
straints and equation constraints. Therefore the gen-
eralisation of FSs can be logically achieved through
elimination of some atomic constraints from the FS.
We showed in [6] how one can improve the linguistic
competence — i.e., enhancing the coverage — of a
given typed-unification grammar by guided general-
isation, using parsing failures.%

Generalised reduction (GR) is a restricted form
of FS generalisation that eliminates as many as pos-
sible of the feature constraints from a type FS of the
given unification grammar while applying an eval-
uation criterion for maintaining the parsing results
on a large corpus/test-suite. Note that although GR
explicitly eliminates only feature constraints, it may
be the case that sort and/or equation constraints
associated with the value of an eliminated feature
constraint get implicitly eliminated through FS nor-
malisation [2].

We make the observation that the notion of re-
striction in the HPSG literature designates the elim-
ination of certain (few) features following the appli-
cation of a parsing rule. Generalised Reduction ex-
tends this operation on arbitrary chosen features (of
course, ensuring the parsing correctness on the given
training corpus). We prefer the name reduction for
this operation, since from the logical point of view,
eliminating one feature constraint from a FS logi-
cally generalises that FS, while its set of attribute
paths gets indeed restricted. However, we will de-
note the result of applying GR to a FS as the GR-
restricted form or the GR-learnt form of that FS.

Alternatively, one may think of generalised re-
duction as relative unfilling. Indeed, expansion for

® Note that the feature constraints eliminated through
generalised reduction are usually on the bottom lev-
els of rule FSs, therefore are least visited during
unification.

The approach we followed in developing both the gen-
eralisation and specialisation procedures for learning
attribute values in typed-unification grammars is ba-
sically the one proposed by Inductive Logic Program-
ming (ILP) [14]. We adapted/applied the main ILP
ideas to the feature constraint (subset of the first-
order) logic specific to such grammars [2] [5] [3].

[=2]

typed-unification grammars — the procedure that
propagates both top-down in the type hierarchy and
locally in the typed FS the constraints associated
to types in the grammar — is usually followed by
unfilling [10], a feature constraint removal technique
which is corpus-independent. Generalised Reduction
may be thought as a corpus/test-suite relative un-
filling technique.

GR is shown not only to improve the perfor-
mance of the given grammar — since it maximally
reduces the size of the (rule) FSs in grammar — but
also adds an interesting improvement to the pars-
ing system design. As measurements on parsing the
CSLI test-suite have shown that in average only 8%
of the items produced on the chart during parsing
constitute part of the full parses, one can devise uni-
fication as a two-step operation. Parsing with two-
step unification will i. use the GR-learnt form of the
grammar rules to produce full parses, and ii. even-
tually complete/check the final parses using the full
(or, better: complementary) form of rule FSs.

3 Generalised Reduction of Rule FSs
— Algorithms

We present two algorithms for generalised reduc-
tion of types in unification grammars. The first one,
called A in the sequel is a simple, non-incremental
one. From it we derived a second, incremental algo-
rithm (B) that we have optimised. Both algorithms
have mainly the same kind of input and output.

Input: G, a typed-unification grammar, © a test-
suite i.e., a set of sentences annotated by a parsing
evaluation function;

Output: a more/most general grammar than G ob-
tained by generalised reduction of FSs, and produc-
ing the same parsing evaluation results as G on ©.

The measurements provided below used the fol-
lowing parsing evaluation criterion: the number of
full parses, the number of attempted unifications and
the number of successful unifications must be pre-
served for each sentence in the test-suite, after the
elimination of a (selected) feature constraint.

Notes:
1. Due to the large size of (both) the LinGO gram-
mar and the test-suite used for running GR, this
parsing evaluation criterion is a good approximation
of the following “tough” criterion: the set of actual
parses (up to the associated FSs) delivered for each
sentence by the two grammar versions must be ex-
actly the same. We make the remark that after ap-
plying GR on the LinGO using the CSLI test-suite,

this “tough” criterion was satisfied.

2. The parsing evaluation criteria must be actually
combined with one regarding the memory/space re-
sources exhaustion: if for a given sentence, after elim-
ination of a feature constraint the resources initially
allocated for parsing are exhausted, then that fea-
ture constraint is kept in the grammar.

3. Although in our experiments only the rule types
in G were subject to generalised reduction, the for-
mulation of the two GR algorithms can be extended
to any FS in the input grammar. Applying GR to
the type FSs used in type-checking is easy, but if
parsing correctness must be ensured — i.e., elimina-
tion of over-generalised parses is required in the end
—, then things get more complicated than for rule
FSs. Extending GR to lexical entries is even more
demanding in case lexical rules are used.

A. A simple GR procedure:

for each rule ¥(r) in the grammar G
for each feature constraint ¢ in ¥(r)
if removing ¢ from ¥(r)
preserves the parsing (evaluation) results
for each sentence in the test-suite ©
then ¥(r) :=¥(r) — {¢};

Remarks:

1. Obviously, the GR result is dependent on the or-
der in which feature constraints are processed: the
elimination of the constraint ¢ can block the elim-
ination of the constraint ¢ if ¢ is tried first, and
vice-versa. Therefore usually there is no unique GR
form for a given grammar.

2. In the actual implementation of the GR algo-
rithms

— we first worked on the elimination of feature con-
straints from key arguments (in the decreasing order
of their “usage” frequency on the given test-suite),
then from non-key arguments (according to the same
kind of frequency), and finally from rule LHS sub-
structures;

— inside a “reduction partition” (i.e., key argu-
ment, non-key argument, LHS structure), feature
constraints are tried for elimination following the
bottom-up traversal order of the acyclic rooted
graph representing the rule FS.

3. The first two for’s in the procedure A can be com-
bined into a single for iterating over the set of all
feature constraints < r,¢ > in the grammar’s rules

(p €¥(r)).

The more efficient GR algorithm B introduced
below is obtained basically by:
— reversing the two for’s, namely the one identified
above (4), and the one iterating over the sentences

in the test-suite. The advantage is that those sen-
tences which become/are correctly parsed by G; —
an intermediate generalised form of G — need not
to be tried again when computing G; 1.

— getting a first GR version of the input grammar
by running the simple procedure A on one or more
sentences, and subsequently improving it iteratively.

B. An improved GR procedure:

do0.Gp =¢G,i=0;

1. Apply the procedure A on a sentence s from ©O;
let Giy1 be the result

2. eliminate from @ the sentences for which G; 11
provides the same parsing results as G

until © = 0.

The reader should note that the set of FCs to be
tried for elimination in the procedure A called at the
step 1 — see the Remark 3 following the presentation
of the algorithm A — is provided by G —G;, therefore
it is becoming lower and lower at each loop. Indeed,
from the logical point of view, G = Gy E ... E
Gnt1 E Gn ... E G2 E Gi. Viewed as set of con-
straints, G = Gy D D Qi+1 DG ... DGy DGy
therefore G — G411 C G — Gp.

Further improvements:

1. At the step 2, the elimination of sentences from
O is done in a procrastinated manner: initially © is
sorted according to the number of failed unifications
per sentence when using G, — therefore the sentence
s chosen at the step 1 may be considered the first
sentence in @; — and subsequently only the first sen-
tences from ©@; which are correctly parsed by G;1
are eliminated.” The reason for procrastinated elim-
ination of sentences from @ is the significant time
consumption engendered by the over-parsing and/or
the exhaustion of allocated resources that may be
caused — very frequently, in the beginning — for
some of the the remaining sentences in © due to
the (premature) elimination of certain constraints
in precedent loops in the procedure B.

2. Only FCs from rules involved in the parsing
of the sentence s at the step 1 must be checked for
elimination in view of generalisation. If the sentence
exhausted the allocated resources for parsing, this
optimisation does not apply, because it is not possi-
ble to tell in advance which rules might have been
used if exhaustion had not been reached.

3. A “preview” test which decides whether a
whole rule partition is immediately learnable is
highly improving the running time of the GR pro-
cedure on LinGO. This test means eliminating from

7 ©;41 starts with the first sentence in ©; which causes
over-parsing with G;41. Obviously, @y = 6.

G — G; in a single step all the constraints in a parti-
tion — argument, respectively LHS substructure —,
for the rules previously identified as contributing to
parsing the sentence s. At rule level, identifying the
FCs that must be retained in G;4; may be further
speeded up through halving the FC search space.

4. As constraints in FCs in a rule FS are implic-
itly ordered by their position in the rooted acyclic
graph representing the rule, another optimisation is
possible: if all ancestors of a FC have been approved
for elimination, than that FC may be eliminated
immediately, assuming that its value is not coref-
erenced in a subsequent partition — argument of
LHS —, and this fact that can be determined in the
preparation of the GR application.

5. In our current implementation of the GR. pro-
cedure, the ezhaustion of resources allocated for
parsing is controlled by a sentence-independent cri-
terion. Currently, the allocated resources allow for
the complete parsing of all sentences in the test-
suite. But using such a criterion has the following
drawback: if the procedure A causes strong over-
parsing (possibly looping) for a sentence, then this
fact is detected eventually only after all resources
get exhausted. We suggest a better, punctual crite-
rion for evaluating the consumption of allocated re-
sources for parsing: i. initially, for each sentence in
the given test-suite register the parsing time using
G; ii. if during the generalised reduction, parsing a
sentence using the current generalised form of rules
consumes more than n times the initially registered
parsing time without finishing, then consider that
that sentence is a resource exhausting one.

Incorporating all but the last improvement men-
tioned above, the procedure B required 61 minutes
on a Pentium IIT PC at 933MHz running Red Hat
Linux 7.1. (All measurements reported in the next
section were done on that PC.)

Because the test-suite for training is processed
incrementally only by the algorithm B, we will refer
to it as the incremental GR algorithm, while the
algorithm A will be called the non-incremental one.

4 Measurements and Comparisons

When running the GR algorithm A, the reduction of
the number of FCs in rule argument sub-structures
of LinGO was impressive: 61.38% for key/head ar-
guments and respectively 61.85% for non-key argu-
ments (see Figure 1). The number of feature paths
in rule argument sub-structures was reduced from
494 to 234, revealing that the decisive contribution

to unification failures for LinGO on the CSLI test-
suite is restricted to less than half of the feature
paths in the arguments. We will call those feature
paths GR-paths.

This result complements the view provided by
the QC technique: only 8.5% of the total feature
paths in the arguments are responsible for most of
the unification failures during parsing with LinGO.
As expected, all QC-paths we are using in LIGHT
for LinGO are among the GR-paths identified by
the procedure A.

While the average number of FCs eliminated
from LinGO by the GR algorithm B and the pars-
ing performances on the resulted grammar version
are only slightly different than those provided by
the algorithm A, the number of GR-paths retained
in the rule arguments is significantly higher in the
B case than in the A case. This is difference is ex-
plained by the test-suite fragmentation/atomisation
on which the design of the procedure B was based.

The table in Figure 2 presents a snapshot on the
most needed memory resources (and the reduction
percentage) when parsing with full-form rule FSs,
respectively GR-restricted rule FSs. The graphic in
Figure 3 presents the evolution of the average rule
reduction rate for getting the LinGO GR-version us-
ing the algorithm B. Figure 4 illustrates the reduc-
tion of the parsing time for the sentences in the CSLI
test-suite when running the LinGO grammar with
the GR-restricted rules. One can see in this last fig-
ure — especially for the sentences requiring many
unifications — that although the number of unifica-
tions is increased, the total parsing time is reduced.

The GR algorithm B may be generalised so to
provide the inner loop (the call to the procedure
A) not only one but several (n) sentences which
are incorrectly parsed by G; 1. If so, the processing
time for getting the GR-version of the given gram-
mar will increase. However, as the table in Figure 5
shows, this is a convenient way to get (empirically)
a smaller number of computed GR-paths.We expect
this would be convenient for further research — com-
piled unification of FSs using look-up tables — using
the GR-result or independently of this. 8

® Note that the running time of all GR algorithms can
be significantly improved if, in the beginning of the
GR application, all feature constraints not used when
parsing the training test-suite are eliminated from the
initial grammar. (Unfortunately, the current version of
the LIGHT system cannot identify these unused FCs.)
However, eliminating from start these FCs will bias
the set of GR-paths to be computed. In general, FCs
initially not used in parsing the training test-suite may
however appear in the GR-restricted grammar version.

A | B |

FC reduction rate: average
key, non-key arg, LHS

61.38% 61.85% 55.96%

58.92% 56.64%
52.21% 57.75% 60.73%

GR vs. total feat. paths in rule arg. (reduction)

234/494 (47.36%)

318/494 (35.62%)

average parsing time, in msec.
using full-form rule FSs
1st-step unification (reduction %)
emulated 2-step unification (red. %)

21.617
16.662 (22.24%)
18.657 (13.12%)

16.736 (22.07%)
18.427 (14.20%)

Fig. 1. Comparison between the results of applying the two GR procedures on LinGO/CSLI.

| || full-form rules | GR-restricted, 1st-step-unif. | GR-restricted, emulated 2-step-unif. |

heap cells 101614 38320

(62.20%)

76998 (24.23%)

feature frames 60303 30370

(19.64%)

58963 (02.22%)

Fig. 2. A snapshot view on reduction of memory usage when parsing the CSLI test-suite with GR-LinGO.

1n |

0 500 1000 1500 2000 2500 3000 3500
CPU time

] a
"result" using 4:3 ——

reduction rate

Fig. 3. Procedure B: rule reduction rate vs. CPU time
consumption on LinGO/CSLI.

1000

'st2rusing 12 +
"St1" using 12 ~--—-

800 |- R g

600 —

400 i | ,

average parsing time (msec.)

Ll H Ll
0 2000 4000 6000 8000 10000 12000
unifications

Fig. 4. Comparisons: unifications vs. parsing time on the
CSLI test-suite using LIGHT on LinGO: the full version
vs. the GR-restricted version using lst-step unification.

| n || running time | FCs reduction rate | GR-paths |

2 1h 36min 59.38 200
4 2h 27min 59.42 187
8 4h 03min 59.39 187

Fig.5. A comparison on running the parameterised (n)
GR-procedure B on the CSLI test-suite.

We tested a GR-version of LinGO (produced
when using the CSLI test-suite) on the aged test-
suite also provided with LinGO. This test-suite re-
quires in average 4.65 times more unifications per
sentence than the CSLI test-suite. (The CSLI test-
suite has 1348 sentences of average length of 6.38
tokens and the ambiguity 1.5. For the aged test-
suite, the average length is 8.5 and the ambiguity
14.14.) Of the 96 sentences in the aged test-suite, 59
were correctly parsed, 3 exhausted the allocated re-
sources, and 34 were over-parsed. The average pars-
ing precision for the sentences non-exhausting the
allocated resources was 83.79%.

On LinGO, applying the algorithm A (only) to
the most complicated sentence in the CSLI test-suite
resulted in a 18% reduction of the number of FCs in-
side rule FSs. We obtained the same reduction rate
(i.e., feature constraint elimination percentage) on
LinGO, running 30 iterations using the simplest sen-
tences in the CSLI test-suite.

To produce a GR-version of LinGO using the
aged test-suite for training, the procedure B needed
4h 44min, and the reduction rate was 65.60%. How-

ever, it took only 38min to further improve the pre-
viously obtained GR-version of LinGO (on the CSLI
test-suite), using the aged test-suite, and the rule FS
reduction rate went down only with 3.1%.

5 Further Work

A. Compiled 2-step unification vs. interpreted 2-step
unification:

As already presented in Section 2, unifying a
(passive item) FS with a rule argument FS may be
seen as a two step/phase process: i. performing uni-
fication with the GR-restricted form of the rule ar-
gument FS, and if successful, #. continuing unifi-
cation with the GR-complementary rule argument
sub-structure. The interesting thing here is that the
second unification phase may be postponed. If pars-
ing doesn’t loop (and the allocated resources are
not consumed), this second step is eventually needed
only for full parses.’

Different strategies may be used to apply effi-
ciently the unification’s second phase.

The simplest one is to emulate the second
unification step as (on-line) type-checking via FS
unfolding.'® (This is why this step may be called
“rule checking”.) Unfortunately, from the implemen-
tation point of view, rule/type checking doesn’t com-
mute with (further) rule application. This is why,
when emulating the second unification step as type-
checking, the parsing ambiguity engenders a lot of
redundant work, namely retrieving the GR-values
— i.e., the values of the GR-paths — in the FS to
be checked, each time the second-unification step is
applied on that FS.'!

A simple solution that can be imagined to avoid
this redundancy is to save those GR-values. But, if
the GR-values have to be saved after each applica-
tion of a rule — i.e., the first unification step —,
then it would be too much time-costly. This cost,
may simply exceed the cost for the redundant work
that consists in retrieving the GR-values, because
only a reduced percentage of items take usually part
in full parses.

9 Otherwise, i.e., if parsing correctness is required and
using the GR-restricted form of rules make the parser
loop and/or the allocated resources are consumed,
then we have to use the full form of rules. Sub-
sequently, the GR-learnt grammar version may be
improved.

This is how we did the measurements for the bottom
line showing parsing results in Figure 1.

This is why on the aged test-suite, we found that pars-
ing with emulated two-step unification is not gaining
significant speed w.r.t. parsing with full-form rules.

10

11

Therefore we suggest, the following trade-off:

i. given a certain item — eventually found on a full
parse —, perform the first application of the second
unification step on that item as type checking; addi-
tionally, save the identified values of the GR-paths.!?
i1. subsequent second-unification step operations
performed on that item may be performed using the
GR-complementary sub-structure of the rule, start-
ing from the (previously) stored GR-values.'?

B. Identifying exception FCs, and handling excep-
tion FCs typed-unification grammars:

If for instance only successful unifications desig-
nate which rules must be checked during rule reduc-
tion, the number of eliminated FCs increases (=5%
of all rule FCs in LinGO), but the parsing time with
the GR form of the grammar might increase because
the number of parse items produced may increase.

Those FCs involved in the difference set “success-
ful” unifications — “successful+failed” unifications)
may be seen as FC exceptions. We suggest the fol-
lowing handling of exception FCs in a two-step uni-
fication approach: if at least one parent such an “ex-
ception” FC in the GR form of the rule was passed in
a successful unification, then trigger the application
of the full form of the rule FS either immediately or
at a certain higher phrase level.

Exception FCs may thus constitute the object of
a trade-off between over-parsing and parsing prun-
ing, using the two-step unification strategy.

GR would benefit if its application would be
preceded by a procedure for automate detection
of cycles in parsing with generalised forms of the
input typed-unification grammar. Finally, integrat-
ing linguistics-specific knowledge and testing GR on
other grammars and test-suites will provide addi-
tional insights into the use of this learning method.

Conclusion: Generalised Reduction extends the
view previously provided by the Quick-Check pre-
unification technique [12] on feature paths inside
rule argument FSs for large-scale typed-unification
grammars. We showed that if the number of FCs
in rule FSs may be highly reduced — eventually
through automate learning —, then a simple tech-
nique called two-step unification can significantly

2 In compiled unification, those GR-values may be sim-
ply retrieved via the X variables which are indexing
the nodes of the compiled FSs [1].

13 The compiled form of the second unification step is
obtainable by application of abstract program trans-
formation techniques on the (non-SRC) compiled form
of the rule FS.

speed-up the parsing. We elaborated two GR algo-
rithms for rule FSs, firstly a simple, non-incremental
one, and then an optimised, incremental one. In the
LIGHT system, to the 42% speed-up factor provided
by QC on the LinGO grammar, GR may add a sub-
sequent 23% reduction of the average parsing time.

Acknowledgements: The LIGHT system was de-
veloped at the Language Technology Lab of The
German Research Center for Artificial Intelligence
(DFKI), Saarbriicken, Germany. The present work
was done while the author was supported by an EP-
SRC ROPA grant at the University of York.

References

1.

10.

. U. Callmeier.

H. Ait-Kaci and
R. Di Cosmo. Compiling order-sorted feature term
unification. Technical report, Digital Paris Research
Laboratory, 1993. PRL Technical Note 7, download-
able from http://www.isg.sfu.ca/life/.

H. Ait-Kaci and A. Podelski. Towards a meaning of
LIFE. Journal of Logic Programming, 16:195-234,
1993.

H. Ait-Kaci, A. Podelski, and S.C. Goldstein.
Order-sorted feature theory unification. Journal of
Logic, Language and Information, 30:99-124, 1997.

PET — a platform for experi-
mentation with efficient HPSG processing tech-
niques. Journal of Natural Language Engineering,
6 (1) (Special Issue on Efficient Processing with
HPSG):99-108, 2000.

B. Carpenter. The Logic of Typed Feature Struc-
tures — with applications to unification grammars,
logic programs and constraint resolution. Cambridge
University Press, 1992.

L. Ciortuz. Towards ILP-based learning of attribute
path values in typed-unification grammars. 2002.
(Submitted).

L. Ciortuz. On compilation of head-corner bottom-
up chart-based parsing with unification grammars.
In Proceedings of the IWPT 2001 International
Workshop on Parsing Technologies, pages 209-212,
Beijing, China, October 17-19, 2001.

L. Ciortuz. LIGHT — a constraint language and
compiler system for typed-unification grammars. In
Proceedings of the 25th German Conference on Ar-
tificial Intelligence (KI-2002), Aachen, Germany,
September 16-20, 2002. Springer-Verlag.

A. Copestake, D. Flickinger, and I. Sag. A Gram-
mar of English in HPSG: Design and Implementa-
tions. Stanford: CSLI Publications, 1999.

D. Gerdemann. Term encoding of typed feature
structures. In Proceedings of the 4th International
Workshop on Parsing Technologies, pages 89-97,
Prague, Czech Republik, 1995.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. R. M. Kaplan and J. Bresnan. Lexical-functional
grammar: A formal system for grammatical repre-
sentation. In J. Bresnan, editor, The Mental Repre-
sentation of Grammatical Relations, pages 173-381.
The MIT Press, 1982.

R. Malouf, J. Carroll, and A. Copestake. Effi-
cient feature structure operations without compi-
lation. Journal of Natural Language Engineering,
6 (1) (Special Issue on Efficient Processing with
HPSG):29-46, 2000.

Y. Mitsuishi, K. Torisawa, and J. Tsujii. HPSG-
Style Underspecified Japanese Grammar with Wide
Coverage. In Proceedings of the 17th Interna-
tional Conference on Computational Linguistics:
COLING-98, pages 867-880, 1998.

S. Muggleton and L. De Raedt. Inductive logic pro-
gramming: Theory and methods. Journal of Logic
Programming, 19,20:629-679, 1994.

Stefan Miiller. Deutsche Syntar deklarativ. Head-
Driven Phrase Structure Grammar fir das Deutsche.
Number 394 in Linguistische Arbeiten. Max
Niemeyer Verlag, Tiibingen, 1999.

S. Oepen and J. Caroll. Performance profiling
for parser engineering. Journal of Natural Lan-
guage Engineering, 6 (1) (Special Issue on Effi-
cient Processing with HPSG: Methods, Systems,
Evaluation):81-97, 2000.

S. Oepen and J. Carroll. Ambiguity packing in
HPSG — practical results. In Proceedings of the 1st
Conference of the North American Chapter of the
ACL, pages 162-169, Seattle, WA, 2000.

F. Pereira. A structure-sharing representation for
unification-based grammar formalisms. In Proceed-
ings of the 23rd meeting of the Association for Com-
putational Linguistics, pages 137-144, Chicago, Illi-
nois, 1985.

C. Pollard and I. Sag. Head-driven Phrase Structure
Grammar. Center for the Study of Language and
Information, Stanford, 1994.

S. M. Shieber, H. Uszkoreit, F. C.
Pereira, J. Robinson, and M. Tyson. The formal-
ism and implementation of PATR-II. In J. Bresnan,
editor, Research on Interactive Acquisition and Use
of Knowledge. SRI International, Menlo Park, Calif.,
1983.

M. Siegel. HPSG analysis of Japanese. In Verb-
mobil: Foundations of Speech-to-Speech Translation.
Springer Verlag, 2000.

H. Tomabechi. Quasi-destructive graph unification
with structure-sharing. In Proceedings of COLING-
92, pages 440-446, Nantes, France, 1992.

H. Uszkoreit. Categorial Unification Grammar. In
International Conference on Computational Linguis-
tics (COLING’92), pages 498-504, Nancy, France,
1986.

S. Wintner and N. Francez. Efficient implementa-
tion of unification-based grammars. Journal of Lan-
guage and Computation, 1(1):53-92, 1999.

	Table of Content
	Workshops
	Authors

