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Abstract

This paper proposes a series of techniques for ex-
tracting English verb–particle constructions from
raw text corpora. We initially propose three basic
methods, based on tagger output, chunker output
and a chunk grammar, respectively, with the chunk
grammar method optionally combining with an at-
tachment resolution module to determine the syn-
tactic structure of verb–preposition pairs in ambigu-
ous constructs. We then combine the three methods
together into a single classifier, and add in a number
of extra lexical and frequentistic features, producing
a final F-score of 0.865 over the WSJ.

1 Introduction

There is growing awareness of the pervasiveness and
idiosyncrasy of multiword expressions (MWEs),
and the need for a robust, structured handling
thereof (Sag et al., 2002; Calzolari et al., 2002;
Copestake et al., 2002). Examples of MWEs are
lexically fixed expressions (e.g. ad hoc), idioms (e.g.
see double), light verb constructions (e.g. make a
mistake) and institutionalised phrases (e.g. kindle
excitement).

MWEs pose a challenge to NLP due to their syn-
tactic and semantic idiosyncrasies, which are often
unpredictable from their component parts. Large-
scale manual annotation of MWEs is infeasible due
to their sheer volume (at least equivalent to the num-
ber of simplex words (Jackendoff, 1997)), produc-
tivity and domain-specificity. Ideally, therefore, we
would like to have some means of automatically ex-
tracting MWEs from a given domain or corpus, al-
lowing us to pre-tune our grammar prior to deploy-
ment. It is this task of extraction that we target in
this paper. This research represents a component of
the LinGO multiword expression project,1 which is
targeted at extracting, adequately handling and rep-
resenting MWEs of all types. As a research testbed
and target resource to expand/domain-tune, we use
the LinGO English Resource Grammar (LinGO-
ERG), a linguistically-precise HPSG-based gram-
mar under development at CSLI (Copestake and
Flickinger, 2000; Flickinger, 2000).

The particular MWE type we target for extrac-
tion is the English verb-particle construction.
Verb-particle constructions (“VPCs”) consist of a

1http://lingo.stanford.edu/mwe

head verb and one or more obligatory particles,
in the form of intransitive prepositions (e.g. hand
in), adjectives (e.g. cut short) or verbs (e.g. let
go) (Villavicencio and Copestake, 2002a; Villavicen-
cio and Copestake, 2002b; Huddleston and Pullum,
2002); for the purposes of this paper, we will fo-
cus exclusively on prepositional particles—by far the
most common and productive of the three types—
and further restrict our attention to single-particle
VPCs (i.e. we ignore VPCs such as get along to-
gether). We define VPCs to optionally select for an
NP complement, i.e. to occur both transitively (e.g.
hand in the paper) and intransitively (e.g. battle on).

One aspect of VPCs that makes them difficult to
extract (cited in, e.g., Smadja (1993)) is that the
verb and particle can be non-contiguous, e.g. hand
the paper in and battle right on. This sets them apart
from conventional collocations and terminology (see,
e.g., Manning and Schütze (1999) and McKeown and
Radev (2000)) in that they cannot be captured ef-
fectively using N-grams, due to the variability in the
number and type of words potentially interceding
between the verb and particle.

We are aiming for an extraction technique which
is applicable to any raw text corpus, allowing us to
tune grammars to novel domains. Any linguistic
annotation required during the extraction process,
therefore, is produced through automatic means,
and it is only for reasons of accessibility and compa-
rability with other research that we choose to work
over the Wall Street Journal section of the Penn
Treebank (Marcus et al., 1993). That is, other than
in establishing upper bounds on the performance of
the different extraction methods, we use only the
raw text component of the treebank.

In this paper, we first outline distinguishing fea-
tures of VPCs relevant to the extraction process
(§ 2). We then present and evaluate a number of
simple methods for extracting VPCs based on, re-
spectively, POS tagging (§ 3), the output of a full
text chunk parser (§ 4), and a chunk grammar (§ 5).
Finally, we detail enhancements to the basic meth-
ods (§ 6) and give a brief description of related re-
search (§ 7) before concluding the paper (§ 8).

2 Distinguishing Features of VPCs

Here, we review a number of features of VPCs per-
tinent to the extraction task. First, we describe lin-
guistic qualities that characterise VPCs, and second



we analyse the actual occurrence of VPCs in the
WSJ.

2.1 Linguistic features

Given an arbitrary verb–preposition pair, where the
preposition is governed by the verb, a number of
analyses are possible. If the preposition is intransi-
tive, a VPC (either intransitive or transitive) results.
If the preposition is transitive, it must select for an
NP, producing either a prepositional verb (e.g. re-
fer to) or a free verb–preposition combination
(e.g. put it on the table, climb up the ladder).

A number of diagnostics can be used to distinguish
VPCs from both prepositional verbs and free verb–
preposition combinations (Huddleston and Pullum,
2002):

1. transitive VPCs undergo the particle alterna-
tion

2. with transitive VPCs, pronominal objects must
be expressed in the “split” configuration

3. manner adverbs cannot occur between the verb
and particle

The first two diagnostics are restricted to transitive
VPCs, while the third applies to both intransitive
and transitive VPCs.

The first diagnostic is the canonical test for par-
ticlehood, and states that transitive VPCs take two
word orders: the joined configuration whereby the
verb and particle are adjacent and the NP comple-
ment follows the particle (e.g. hand in the paper),
and the split configuration whereby the NP com-
plement occurs between the verb and particle (e.g.
hand the paper in). Note that prepositional verbs
and free verb–preposition combinations can occur
only in the joined configuration (e.g. refer to the book
vs. *refer the book to). Therefore, the existence of
a verb–preposition pair in the split configuration is
sufficient evidence for a VPC analysis. It is impor-
tant to realise that compatibility with the particle
alternation is a sufficient but not necessary condi-
tion on verb–particlehood. That is, a small number
of VPCs do not readily occur in the split configu-
ration, including carry out (a threat) (cf. ?carry a
threat out).

The second diagnostic stipulates that pronominal
NPs can occur only in the split configuration (hand
it in vs. *hand in it). Note also that heavy NPs tend
to occur in the joined configuration, and that various
other factors interact to determine which configura-
tion a given VPC in context will occur in (see, e.g.,
Gries (2000)).

The third diagnostic states that manner adverbs
cannot intercede between the verb and particle (e.g.
*hand quickly the paper in). Note that this con-
straint is restricted to manner adverbs, and that
there is a small set of adverbs which can pre-modify
particles and hence occur between the verb and par-
ticle (e.g. well in jump well up).

2.2 Corpus occurrence

In order to get a feel for the relative frequency of
VPCs in the corpus targeted for extraction, namely
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Figure 1: Frequency distribution of VPCs in the
WSJ

Tagger correct
extracted

Prec Rec Fβ=1

Brill 135

135
1.000 0.177 0.301

Penn 667

800
0.834 0.565 0.673

Table 1: POS-based extraction results

the WSJ section of the Penn Treebank, we took a
random sample of 200 VPCs from the Alvey Natu-
ral Language Tools grammar (Grover et al., 1993)
and did a manual corpus search for each. In the
case that a VPC was found attested in the WSJ,
we made a note of the frequency of occurrence as:
(a) an intransitive VPC, (b) a transitive VPC in the
joined configuration, and (c) a transitive VPC in the
split configuration. Of the 200 VPCs, only 62 were
attested in the Wall Street Journal corpus (WSJ),
at a mean token frequency of 5.1 and median to-
ken frequency of 2 (frequencies totalled over all 3
usages). Figure 1 indicates the relative proportion
of the 62 attested VPC types which occur with the
indicated frequencies. From this, it is apparent that
two-thirds of VPCs occur at most three times in the
overall corpus, meaning that any extraction method
must be able to handle extremely sparse data.

Of the 62 attested VPCs, 29 have intransitive us-
ages and 45 have transitive usages. Of the 45 at-
tested transitive VPCs, 12 occur in both the joined
and split configurations and can hence be unambigu-
ously identified as VPCs based on the first diagnostic
from above. For the remaining 33 transitive VPCs,
we have only the joined usage, and must find some
alternate means of ruling out a prepositional verb
or free verb–preposition combination analysis. Note
that for the split VPCs, the mean number of words
occurring between the verb and particle was 1.6 and
the maximum 3.

In the evaluation of the various extraction tech-
niques below, recall is determined relative to this
limited set of 62 VPCs attested in the WSJ. That
is, recall is an indication of the proportion of the 62
VPCs contained within the set of extracted VPCs.



3 Method-1: Simple POS-based
Extraction

One obvious method for extracting VPCs is to run a
simple regular expression over the output of a part-
of-speech (POS) tagger, based on the observation
that the Penn Treebank POS tagset, e.g., contains a
dedicated particle tag (RP). Given that all particles
are governed by a verb, extraction consists of simply
locating each particle and searching back (to the left
of the particle, as particles cannot be passivised or
otherwise extraposed) for the head verb of the VPC.
Here and for the subsequent methods, we assume
that the maximum word length for NP complements
in the split configuration for transitive VPCs is 5,2

i.e. that an NP “heavier” than this would occur more
naturally in the joined configuration. We thus dis-
count all particles which are more than 5 words from
their governing verb. Additionally, we extracted a
set of 73 canonical particles from the LinGO-ERG,
and used this to filter out extraneous particles in the
POS data.

In line with our assumption of raw text to extract
over, we use the Brill tagger (Brill, 1995) to auto-
matically tag the WSJ, rather than making use of
the manual POS annotation provided in the Penn
Treebank. We further lemmatise the data using
morph (Minnen et al., 2001) and extract VPCs based
on the Brill tags. This produces a total of 135 VPCs,
which we evaluate according to the standard metrics
of precision (Prec), recall (Rec) and F-score (Fβ=1).
Note that here and for the remainder of this pa-
per, precision is calculated according to the man-
ual annotation for the combined total of 4,173 VPC
candidate types extracted by the various methods
described in this paper, whereas recall is relative to
the 62 attested VPCs from the Alvey Tools data as
described above.

As indicated in the first line of Table 1 (“Brill”),
the simple POS-based method results in a precision
of 1.000, recall of 0.177 and F-score of 0.301.

In order to determine the upper bound on per-
formance for this method, we ran the extraction
method over the original tagging from the Penn
Treebank. This resulted in an F-score of 0.774
(“Penn” in Table 1). The primary reason for the
large disparity between the Brill tagger output and
original Penn Treebank annotation is that it is no-
toriously difficult to differentiate between particles,
prepositions and adverbs (Toutanova and Manning,
2000). Over the WSJ, the Brill tagger achieves a
modest tag recall of 0.103 for particles, and tag pre-
cision of 0.838. That is, it is highly conservative in
allocating particle tags, to the extent that it recog-
nises only two particle types for the whole of the
WSJ: out and down.

4 Method-2: Simple Chunk-based
Extraction

To overcome the shortcomings of the Brill tagger
in identifying particles, we next look to full chunk

2Note, this is the same as the maximum span length of 5
used by Smadja (1993), and above the maximum attested NP
length of 3 from our corpus study (see Section 2.2).

WSJ CoNLL
Prec Rec Fβ=1 Prec Rec Fβ=1

0.889 0.911 0.900 0.912 0.925 0.919

Table 2: Chunking performance

parsing. Full chunk parsing involves partitioning
up a text into syntactically-cohesive, head-final seg-
ments (“chunks”), without attempting to resolve
inter-chunk dependencies. In the chunk inventory
devised for the CoNLL-2000 test chunking shared
task (Tjong Kim Sang and Buchholz, 2000), a ded-
icated particle chunk type once again exists. It is
therefore possible to adopt an analogous approach to
that from Method-1, in identifying particle chunks
then working back to locate the verb each particle
chunk is associated with.

4.1 Chunk parsing method

In order to chunk parse the WSJ, we first tagged
the full WSJ and Brown corpora using the Brill tag-
ger, and then converted them into chunks based on
the original Penn Treebank parse trees, with the
aid of the conversion script used in preparing the
CoNLL-2000 shared task data.3 We next lemma-
tised the data using morph (Minnen et al., 2000),
and chunk parsed the WSJ with TiMBL 4.1 (Daele-
mans et al., 2001) using the Brown corpus as train-
ing data. TiMBL is a memory-based classification
system based on the k-nearest neighbour algorithm,
which takes as training data a set of fixed-length
feature vectors pre-classified according to an infor-
mation field. For each test instance described over
the same feature vector, it then returns the “neigh-
bours” at the k-nearest distances to the test instance
and classifies the test instance according to the class
distribution over those neighbours. TiMBL provides
powerful functionality for determining the relative
distance between different values of a given feature
in the form of MVDM, and also supports weighted
voting between neighbours in classifying inputs, e.g.
in the form of inverse distance weighting.

We ran TiMBL based on the feature set described
in Veenstra and van den Bosch (2000), that is using
the 5 word lemmata and POS tags to the left and
3 word lemmata and POS tags to the right of each
focus word, along with the POS tag and lemma for
the focus word. We set k to 5, ran MVDM over only
the POS tags4 and used inverse distance weighting,
but otherwise ran TiMBL with the default settings.

We evaluated the basic TiMBL method over both
the full WSJ data, training on the Brown section
of the Penn Treebank, and over the original shared
task data from CoNLL-2000, the results for which
are presented in Table 2. Note that, similarly to
the CoNLL-2000 shared task, precision, recall and

3Note that the gold standard chunk data for the WSJ was
used only in evaluation of chunking performance, and to es-
tablish upper bounds on the performance of the various ex-
traction methods.

4Based on the results of Veenstra and van den Bosch
(2000) and the observation that MVDM is temperamental
over sparse data (i.e. word lemmata).



Chunker correct
extracted

Prec Rec Fβ=1

TiMBL 695

854
0.772 0.548 0.641

Penn 651

760
0.857 0.694 0.766

Table 3: Chunk tag-based extraction results

F-score are all evaluated at the chunk rather than
the word level. The F-score of 0.919 for the CoNLL-
2000 data is roughly the median score attained by
systems performing in the original task, and slightly
higher than the F-score of 0.915 reported by Veen-
stra and van den Bosch (2000), due to the use of
word lemmata rather than surface forms, and also
inverse distance weighting. The reason for the drop-
off in performance between the CoNLL data and the
full WSJ is due to the CoNLL training and test data
coming from a homogeneous data source, namely a
subsection of the WSJ, but the Brown corpus being
used as the training data in chunking the full extent
of the WSJ.

4.2 Extraction method

Having chunk-parsed the WSJ in the manner de-
scribed above, we next set about extracting VPCs by
identifying each particle chunk, and searching back
for the governing verb. As for Method-1, we allow a
maximum of 5 words to intercede between a particle
and its governing verb, and we apply the additional
stipulation that the only chunks that can occur be-
tween the verb and the particle are: (a) noun chunks,
(b) preposition chunks adjoining noun chunks, and
(c) adverb chunks found in our closed set of particle
pre-modifiers (see § 2.1). Additionally, we used the
gold standard set of 73 particles to filter out extra-
neous particle chunks, as for Method-1 above.

The results for chunk-based extraction are pre-
sented in Table 3, evaluated over the chunk parser
output (“TiMBL”) and also the gold-standard chunk
data for the WSJ (“Penn”). These results are signifi-
cantly better than those for Method-1 over the Brill
output and Penn data, respectively, both in terms
of the raw number of VPCs extracted and F-score.
One reason for the relative success of extracting over
chunker as compared to tagger output is that our
chunker was considerably more successful than the
Brill tagger at annotating particles, returning an F-
score of 0.737 over particle chunks (precision=0.786,
recall=0.693). The stipulations on particle type and
what could occur between a verb and particle chunk
were crucial in maintaining a high VPC extraction
precision, relative to both particle chunk precision
and the gold standard extraction precision. As can
be seen from the upper bound on recall (i.e. recall
over the gold standard chunk data), however, this
method has limited applicability.

5 Method-3: Chunk Grammar-based
Extraction

The principle weakness of Method-2 was recall, lead-
ing us to implement a rule-based chunk sequencer
which searches for particles in prepositional and ad-
verbial chunks as well as particle chunks. In essence,

Method correct
extracted

Prec Rec Fβ=1

Rule−att
676

1119
0.604 0.694 0.646

Timbl−att
615

823
0.747 0.661 0.702

Penn−att
694

927
0.749 0.823 0.784

Rule+att
951

3126
0.304 0.823 0.444

Timbl+att
739

1049
0.704 0.710 0.707

Penn+att
750

1079
0.695 0.871 0.773

Table 4: Chunk grammar-based extraction results

we take each verb chunk in turn, and search to the
right for a single-word particle, prepositional or ad-
verbial chunk which is contained in the gold stan-
dard set of 73 particles. For each such chunk pair,
it then analyses: (a) the chunks which occur be-
tween them to ensure that, maximally, an NP and
particle pre-modifier adverb chunk are found; (b)
the chunks that occur immediately after the parti-
cle/preposition/adverb chunk to check for a clause
boundary or NP; and (c) the clause context of the
verb chunk for possible extraposition of an NP ver-
bal complement, through passivisation or relativisa-
tion. The objective of this analysis is to both deter-
mine the valence of the VPC candidate (intransitive
or transitive) and identify evidence either support-
ing or rejecting a VPC analysis. Evidence for or
against a VPC analysis is in the form of congruence
with the known linguistic properties of VPCs, as de-
scribed in Section 2.1. For example, if a pronominal
noun chunk were found to occur immediately after
the (possibly) particle chunk (e.g. *see off him), a
VPC analysis would not be possible. Alternatively,
if a punctuation mark (e.g. a full stop) were found
to occur immediately after the “particle” chunk and
nothing interceded between the verb and particle
chunk, then this would be evidence for an intran-
sitive VPC analysis.

The chunk sequencer is not able to furnish posi-
tive or negative evidence for a VPC analysis in all
cases. Indeed, in a high proportion of instances, a
noun chunk (=NP) was found to follow the “parti-
cle” chunk, leading to ambiguity between analysis as
a VPC, prepositional verb or free verb–preposition
combination (see Section 2.1), or in the case that
an NP occurs between the verb and particle, the
“particle” being the head of a PP post-modifying
an NP. As a case in point, the VP hand the paper in
here could take any of the following structures: (1)
hand [the paper] [in] [here] (transitive VPC hand
in with adjunct NP here), (2) hand [the paper] [in
here] (transitive prepositional verb hand in or sim-
ple transitive verb with PP adjunct), and (3) hand
[the paper in here] (simple transitive verb). In such
cases, we can choose to either (a) avoid committing
ourselves to any one analysis, and ignore all such
ambiguous cases, or (b) use some means to resolve
the attachment ambiguity (i.e. whether the NP is
governed by the verb, resulting in a VPC, or the
preposition, resulting in a prepositional verb or free
verb–preposition combination). In the latter case,



we use an unsupervised attachment disambiguation
method, based on the log-likelihood ratio (“LLR”,
Dunning (1993)). That is, we use the chunker output
to enumerate all the verb–preposition, preposition–
noun and verb–noun bigrams in theWSJ data, based
on chunk heads rather than strict word bigrams. We
then use frequency data to pre-calculate the LLR for
each such type. In the case that the verb and “par-
ticle” are joined (i.e. no NP occurs between them),
we simply compare the LLR of the verb–noun and
particle–noun pairs, and assume a VPC analysis in
the case that the former is strictly larger than the
latter. In the case that the verb and “particle” are
split (i.e. we have the chunk sequence VC NC1 PC

NC2),
5 we calculate three scores: (1) the product

of the LLR for (the heads of) VC-PC and VC-NC2

(analysis as VPC, with NC2 as an NP adjunct of
the verb); (2) the product of the LLR for NC1-PC

and PC-NC2 (transitive verb analysis, with the PP
modifying NC1); and (3) the product of the LLR for
VC-PC and PC-NC2 (analysis as prepositional verb or
free verb–preposition combination). Only in the case
that the first of these scores is strictly greater than
the other two, do we favour a (transitive) VPC anal-
ysis.

Based on the positive and negative grammatical
evidence from above, for both intransitive and tran-
sitive VPC analyses, we generate four frequency-
based features. The optional advent of data derived
through attachment resolution, again for both in-
transitive and transitive VPC analyses, provides an-
other two features. These features can be combined
in either of two ways: (1) in a rule-based fashion,
where a given verb–preposition pair is extracted out
as a VPC only in the case that there is positive and
no negative evidence for either an intransitive or
transitive VPC analysis (“Rule” in Table 4); and
(2) according to a classifier, using TiMBL to train
over the auto-chunked Brown data, with the same
basic settings as for chunking (with the exception
that each feature is numeric and MVDM is not used
— results presented as “Timbl” in Table 4). We also
present upper bound results for the classifier-based
method using gold standard chunk data, rather than
the chunker output (“Penn”). For each of these
three basic methods, we present results with and
without the attachment-resolved data (“±att”).

Based on the results in Table 4, the classifier-based
method (“Timbl”) is superior to not only the rule-
based method (“Rule”), but also Method-1 and
Method-2. While the rule-based method degrades
significantly when the attachment data is factored
in, the classifier-based method remains at the same
basic F-score value, undergoing a drop in precision
but equivalent gain in recall and gaining more than
120 correct VPCs in the process. Rule+att returns
the highest recall value of all the automatic meth-
ods to date at 0.823, at the cost of low precision at
0.304. This points to the attachment disambigua-
tion method having high recall but low precision.
Timbl±att and Penn±att are equivalent in terms

5Here, VC = verb chunk, NC = noun chunk and PC = (in-
transitive or transitive) preposition chunk.

Method correct
extracted

Prec Rec Fβ=1

Combine 719

953
0.754 0.710 0.731

M∗

2

686

778
0.882 0.677 0.766

M3−att∗
684

788
0.868 0.694 0.771

M3+att∗
871

1020
0.854 0.823 0.838

Combine∗ 1000

1164
0.859 0.871 0.865

Combine∗Penn
931

1047
0.889 0.903 0.896

Table 5: Consolidated extraction results

of precision, but the Penn data leads to considerably
better recall.

6 Improving on the Basic Methods

Comparing the results for the three basic methods,
it is apparent that Method-1 and Method-2 offer
higher precision while Method-3 offers higher recall.
In order to capitalise on the respective strengths of
the different methods, in this section, we investigate
the possibility of combining the outputs of the four
methods into a single consolidated classifier. Sys-
tem combination is achieved by taking the union of
all VPC outputs from all systems, and having a vec-
tor of frequency-based features for each, based on
the outputs of the different methods for the VPC
in question. For each of Method-1 and Method-2,
a single feature is used describing the total number
of occurrences of the given VPC detected by that
method. For Method-3, we retain the 6 features used
as input to Timbl±att, namely the frequency with
which positive and negative evidence was detected
and also the frequency of VPCs detected through at-
tachment resolution, for both intransitive and tran-
sitive VPCs. Training data comes from the output
of the different methods over the Brown corpus, and
the chunking data for Method-2 and Method-3 was
generated using the WSJ gold standard chunk data
as training data, analogously to the method used to
chunk parse the WSJ.

The result of this simple combination process is
presented in the first line of Table 5 (“Combine”).
Encouragingly, we achieved the exact same recall
as the best of the simple methods (Timbl+att) at
0.710, and significantly higher F-score than any in-
dividual method at 0.731.

Steeled by this initial success, we further augment
the feature space with features describing the fre-
quency of occurrence of: (a) the particle in the cor-
pus, and (b) deverbal noun and adjective forms of
the VPC in the corpus (e.g. turnaround, dried-up),
determined through a simple concatenation opera-
tion optionally inserting a hyphen. The first of these
is attempted to reflect the fact that high-frequency
particles (e.g. up, over) are more productive (i.e.
are found in novel VPCs more readily) than low-
frequency particles.6 The deverbal feature is in-
tended to reflect the fact that VPCs have the po-

6We also experimented with a similar feature describing
verb frequency, but found it to either degrade or have no
effect on classifier performance.



tential to undergo deverbalisation whereas prepo-
sitional verbs and free verb–preposition combina-
tions do not.7 We additionally added in features
describing: (a) the number of letters in the verb
lemma, (b) the verb lemma, and (c) the particle
lemma. The first feature was intended to capture
the informal observation that shorter verbs tend
to be more productive than longer verbs (which
offers one possible explanation for the anomalous
call/ring/phone/*telephone up). The second and
third features are intended to capture this same pro-
ductivity effect, but on a individual word-level. Note
that as TiMBL treats all features as fully indepen-
dent, it is not able to directly pick up on the gold
standard verb–particle pairs in the training data to
select in the test data.

The expanded set of features was used to re-
evaluate each of: Method-2 (M∗

2 in Table 5); the
classifier version of Method-3 with and without
attachment-resolved data (M3±ATT∗); and the
simple system combination method (Combine∗).
Additionally, we calculated an upper bound for the
expanded feature set based on the gold standard
data for each of the methods (Combine∗Penn in Ta-
ble 5). The results for these five consolidated meth-
ods are presented in Table 5.

The addition of the 7 new features leads to an
appreciable gain in both precision and recall for all
methods, with the system combination method once
again proving to be the best performer, at an F-score
of 0.865. The differential between the system com-
bination method when trained over auto-generated
POS and chunk data (Combine∗) and that trained
over gold standard data (Combine∗Penn) is still tan-
gible, but considerably less than for any of the in-
dividual methods. Importantly, Combine∗ outper-
forms the gold standard results for each of the in-
dividual methods. Examples of false positives (i.e.
verb–prepositions misclassified as VPCs) returned
by this final system configuration are firm away, base
on and very off.

In Section 1, we made the claim that VPCs are
highly productive and domain-specific. We validate
this claim by comparing the 1000 VPCs correctly
extracted by the Combine∗ method against both
the LinGO-ERG and the relatively broad-coverage
Alvey Tools VPC inventory. The 28 March, 2002
version of the LinGO-ERG contains a total of 300
intransitive and transitive VPC types, of which
195 were contained in the 1000 correctly-extracted
VPCs. Feeding the remaining 805 VPCs into the
grammar (with a lexical type describing their tran-
sitivity) would therefore result in an almost four-
fold increase in the total number of VPCs, and in-
crease the chances of the grammar being able to
parse WSJ-style text. The Alvey Tools data con-
tains a total of 2254 VPC types. Of the 1000 ex-
tracted VPCs, 284 or slightly over 28%, were not
contained in the Alvey data, with examples includ-
ing head down, blend together and bid up. Combin-
ing this result with that for the LinGO-ERG, one can

7Note that only a limited number of VPCs can be dever-
balised in this manner: of the 62 VPCs attested in the WSJ,
only 8 had a deverbal usage.

see that we are not simply extracting information al-
ready at our fingertips, but are accessing significant
numbers of novel VPC types.

7 Related research

There is a moderate amount of research related to
the extraction of VPCs, or more generally phrasal
verbs, which we briefly describe here.

One of the earliest attempts at extracting “in-
terrupted collocations” (i.e. non-contiguous colloca-
tions, including VPCs), was that of Smadja (1993).
Smadja based his method on bigrams, but unlike
conventional collocation work, described bigrams by
way of the triple of 〈word1,word2,posn〉, where posn
is the number of words occurring between word 1 and
word2 (up to 4). For VPCs, we can reasonably ex-
pect from 0 to 4 words to occur between the verb
and the particle, leading to 5 distinct variants of
the same VPC and no motivated way of selecting
between them. Smadja did not attempt to evalu-
ate his method other than anecdotally, making any
comparison with our research impossible.

The work of Blaheta and Johnson (2001) is closer
in its objectives to our research, in that it takes a
parsed corpus and extracts out multiword verbs (i.e.
VPCs and prepositional verbs) through the use of
log-linear models. Once again, direct comparison
with our results is difficult, as Blaheta and Johnson
output a ranked list of all verb–preposition pairs,
and subjectively evaluate the quality of different sec-
tions of the list. Additionally, they make no attempt
to distinguish VPCs from prepositional verbs.

The method which is perhaps closest to ours is
that of Kaalep and Muischnek (2002) in extracting
Estonian multiword verbs (which are similar to En-
glish VPCs in that the components of the multiword
verb can be separated by other words). Kaalep and
Muischnek apply the “mutual expectation” test over
a range of “positioned bigrams”, similar to those
used by Smadja. They test their method over three
different corpora, with results ranging from a preci-
sion of 0.21 and recall of 0.86 (F-score=0.34) for the
smallest corpus, to a precision of 0.03 and recall of
0.85 (F-score=0.06) for the largest corpus. That is,
high levels of noise are evident in the system output,
and the F-score values are well below those achieved
by our method for English VPCs.

8 Conclusion

In conclusion, this paper has been concerned with
the extraction of English verb–particle construc-
tions from raw text corpora. Three basic meth-
ods were proposed, based on tagger output, chunker
output and a chunk grammar; the chunk grammar
method was optionally combined with attachment
resolution to determine the syntactic structure of
verb–preposition pairs in ambiguous constructs. We
then experimented with combining the output of the
three methods together into a single classifier, and
further complemented the feature space with a num-
ber of lexical and frequentistic features, culminating
in an F-score of 0.865 over the WSJ.

It is relatively simple to adapt the meth-
ods described here to output subcategorisation



types, rather than a binary judgement on verb–
particlehood. This would allow the extracted out-
put to be fed directly into the LinGO-ERG for use
in parsing. We are also interested in extending
the method to extract prepositional verbs, many
of which appear in the attachment resolution data
and are subsequently filtered out by the consolidated
classifier.
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