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Abstract

This paper presents a novel approach to
extracting phrase-level answers in a question 
answering system. This approach uses
structural support provided by an integrated 
Natural Language Processing (NLP) and
Information Extraction (IE) system. Both
questions and the sentence-level candidate
answer strings are parsed by this NLP/IE
system into binary dependency structures.
Phrase-level answer extraction is modelled by 
comparing the structural similarity involving 
the question-phrase and the candidate answer-
phrase.

There are two types of structural support. The 
first type involves predefined, specific entity 
associa tions such as Affiliation, Position, Age 
for a person entity. If a question asks about 
one of these associations, the answer-phrase
can be determined as long as the system
decodes such pre-defined dependency links 
correctly, despite the syntactic difference
used in expressions between the question and 
the candidate answer string. The second type 
involves generic grammatical relationships
such as V-S (verb-subject), V-O (verb-
object).

Preliminary experimental results show an
improvement in both precision and recall in 
extracting phrase-level answers, compared
with a baseline system which only uses Named 
Entity constraints. The proposed methods are 
particularly effective in cases where the
question-phrase does not correspond to a
known named entity type and in cases where 
there are multiple candidate answer-phrases
satisfying the named entity constraints.

Introduction

Natural language Question Answering (QA) is 
recognized as a capability with great potential.
The NIST-sponsored Text Retrieval Conference
(TREC) has been the driving force for developing 
this technology through its QA track since TREC-8
(Voorhees 1999). There has been significant
progress and interest in QA research in recent
years (Voorhees 2000, Pasca and Harabagiu 2001).

QA is different than search engines in two aspects: 
(i) instead of a string of keyword search terms, the 
query is a natural language question, necessitating 
question parsing, (ii) instead of a list of documents 
or URLs, a list of candidate answers at phrase level 
or sentence level are expected to be returned in 
response to a query, hence the need for text
processing beyond keyword indexing, typically
supported by Natural Language Processing (NLP) 
and Information Extraction (IE) (Chinchor and
Marsh 1998, Hovy, Hermjakob and Lin 2001, Li 
and Srihari 2000). Examples of the use of NLP and 
IE in Question Answering include shallow parsing 
(Kupiec, 1993), semantic parsing (Litkowski



1999), Named Entity tagging (Abney et al. 2000, 
Srihari and Li 1999) and high-level IE (Srihari 
and Li, 2000).

Identifying exact or phrase-level answers is a
much more challenging task than sentence-level
answers. Good performance on the latter can be 
achieved by using sophisticated passage retrieval 
techniques and/or shallow level NLP/IE
processing (Kwok et al. 2001, Clarke et al. 2001). 
The phrase-level answer identification involves
sophisticated NLP/IE and it is difficult to apply 
only IR techniques for this task (Prager et al. 
1999). These two tasks are closely related. Many 
systems (e.g. Prager et al 1999; Clark et al 2001) 
take a two-stage approach. The first stage
involves retrieving sentences or paragraphs in
documents as candidate answer strings. Stage
Two focuses on extracting phrase-level exact
answers from the candidate answer strings.

This paper focuses on methods involving Stage 
Two. The input is a sentence pair consisting of a 
question and a sentence-level candidate answer 
string. The output is defined to be a phrase, called 
answer-point, extracted from the candidate
answer string. In order to identify the answer-
point, the pair of strings are parsed by the same 
system to generate binary dependency structures 
for both specific entity associations and generic 
grammatical relationships. An integrated Natural 
Language Processing (NLP) and Information
Extraction (IE) engine is used to extract named 
entities (NE) and their associations and to decode 
grammatical relationships. The system searches
for an answer-point by comparing the structural 
similarity involving the question-phrase and a
candidate answer-phrase. Generic grammatical
relationships are used as a back-off for specific 
entity associations when the question goes beyond 
the scope of the specific associations or when the 
system fails to identify the answer-point which 
meets the specific  entity association constraints. 
The proposed methods are particularly helpful in 
cases where the question-phrase does not
correspond to a known named entity type and in 
cases where there are multiple candidate answer-
points to select from.

The rest of the paper is structured as follows: 
Section 1 presents the NLP/IE engine used,

sections 2 discusses how to identify and formally 
represent what is being asked, section 3 presents 
the algorithm on identifying exact answers
leveraging structural support, section 4 presents 
case studies and benchmarks, and section 5 is the 
conclusion.
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Figure 1: InfoXtract™ NLP/IE System Architecture

1 NLP/IE Engine Description

The NLP/IE engine used in the QA system
described here is named InfoXtract™. It consists 
of an NLP component and IE component, each 
consisting of a set of pipeline modules (Figure 1). 
The NLP component serves as underlying support 
for IE. A brief description of these modules is 
given below.

• Part-of-Speech Tagging: tagging syntactic
categories such as noun, verb, adjective, etc. 

• Shallow Parsing: grouping basic linguistic
units as building blocks for structural links, 
such as Basic Noun Phrase, Verb Group, etc. 

• Asking-point Identification: analysis of
question sentences to determine what is being 
asked



• Semantic Parsing: decoding grammatical
dependency relationships at the logical level 
between linguistic units, such as Verb-Subject
(V-S), Verb-Object (V-O), Head-Modifier
(H-M) relationships; both active patterns and 
passive patterns will be parsed into the same 
underlying logical S-V-O relationships

• Named Entity Tagger: classifying proper
names and other phrases to different
categories such as Person, Organization,
Location, Money, etc.

• Entity Association Extractor: relating named 
entities with predefined associations such as 
Affiliation, Position, Age, Spouse, Address,
etc.

The NE tagger in our system is benchmarked to 
achieve close to human performance, around or 
above 90% precision and recall for most
categories of NE. This performance provides
fundamental support to QA. Many questions
require a named entity or information associated 
with a named entity as answers. A subset of the 
NE hierarchy used in our system is illustrated
below:

Person: woman, man
Organization: company, government,

association, school, army, mass-media
Location: city, province, country, continent, 

ocean, lake, etc.
Time Expressions: hour, part-of-day, day-of-

week, date, month, season, year, decade, 
century, duration

Numerical Expressions: percentage, money, 
number, weight, length, area, etc.

Contact expressions: email, address,
telephone, etc.

The Entity Association module correlates named 
entities and extracts their associations with other 
entities or phrases.  These are specific, predefined 
relationships for entities of person and
organization. Currently, our system can extract
the following entity associations with high
precision (over 90%) and modest recall ranging 
from 50% to 80% depending on the size of
grammars written for each specific association. 

Person: affiliation, position, age, spouse,
birth-place, birth-time, etc.

Organization: location, staff, head, products,
found-time, founder, etc.

Entity associations are semantic structures very
useful in supporting QA. For example, from the 
sentence Grover Cleveland , who in June 1886
married 21-year-old Frances Folsom,…the IE
engine can identify the following associations:

Spouse: Grover Cleveland Frances Folsom
Spouse: Frances Grover Cleveland 
Age:  Frances Folsom 21-year-old

A question asking about such an association, say, 
Q11: Who was President Cleveland ’s wife, will be 
parsed into the following association link between 
a question-phrase ‘Who’ and the entity ‘Cleveland’ 
(see Section 2): Spouse: Cleveland  Who. The 
semantic similarity between this structure and the 
structure Spouse: Grover Cleveland  Frances 
Folsom can determine the answer point to be
‘Frances Folsom’.

The Semantic Parsing module decodes the
grammatical dependency relationships: V-S, V-O,
V-C (Verb-Complement), H-M of time, location, 
reason, manner, purpose, result, etc. This module 
extends the shallow parsing module through the 
use of a cascade of handcrafted pattern matching 
rules.  Manual benchmarking shows results with 
the following performance:

H-M: Precision 77.5%
V-O: Precision 82.5%
V-S: Precision 74%
V-C: Precision 81.4%

In our semantic parsing, not only passive patterns
will be decoded into the same underlying
structures as active patterns, but structures for
verbs such as acquire and for de-verbal nouns such 
as acquisition lead to the same dependency links, 
as shown below.

AOL acquired Netscape in 1998. 
V-S: acquired  AOL
V-O: acquired  Netscape
H-M: acquired  in 1998 (time-modifier)

Netscape was acquired by AOL in 1998. 
V-S: was acquired  by AOL



V-O: was acquired  Netscape
H-M: was acquired  in 1998 (time-modifier)

the acquisition of Netscape by AOL in 1998…
V-S: acquisition  by AOL
V-O: acquisition  of Netscape 
H-M: acquired  in 1998 (time-modifier)

These links can be used as structural support to 
answer questions like Who acquired Netscape or
which company was acquired by AOL.

Obviously, our semantic parser goes one step
further than parsers which only decode syntactic 
relationships. It consumes some surface structure 
variations to provide the power of comparing the 
structural similarity at logical level. However,
compared with the entity association structures 
which sits at deep semantic level, the logical SVO 
(Subject-Verb-Object) structures still cannot
capture semantic relations which are expressed
using different head verbs with different
structures. An example is the pair : X borrows Y 
from Z versus Z lends Y to X.

2 Asking Point Link Identification

Asking point link identification is a crucial step in 
a QA system. It provides the necessary
information decoded from question processing for 
a system to locate the corresponding answer-
points from candidate answer strings. 

The Asking-point (Link) Identification Module is 
charged with the task of parsing wh-phrases in 
their context into three categories: NE Asking-
point, Asking-point Association  Link and
Asking-point Grammar  Link. Asking Point refers
to the question phrases with its constraints  that a 
corresponding answer-point should satisfy in
matching. Asking-point Link is the decoded binary 
relationship from the asking point to another unit 
in the question. 

The identification of the NE asking point is
essentially mapping the wh-phrase to the NE
types or subtypes. For example, which year is 
mapped to [which year]/NeYear, how old mapped 
to [how old]/NeAge, and how long mapped to 
[how long]/NeLength or [how long]/NeDuration, 
etc.

The identification of the Asking-point Association
Link is to decide whether the incoming question 
asks about a predefined association relationship. 
For Asking-point Association  Link, the module 
needs to identify the involved entity and the asked 
association. For example, the Asking-point
Association  Link for How old is John Smith is the 
AGE relationship of the NePerson John Smith,
represented as AGE: John Smith  [how
old]/NeAge.

The wh-phrases which may or may not be mapped 
to NE asking points and whose dependency links 
are beyond predefined associations lead to Asking-
point Grammar Links, e.g. How did Julian Hill 
discover nylon? This asking-point link is
represented as H-M: discover  [How]/manner-
modifier. As seen, an asking-point grammar link 
only involves generic grammatical constraints: in 
this case, the constraints for a candidate answer-
point to satisfy during matching are H-M link with 
‘discover’ as head and a phrase which must be a 
modifier of manner. 

These three types of asking points and their
possible links form a natural hierarchy that can be 
used to facilitate the backoff strategy for the
answer-point extraction module (see Section 3): 
Asking-point Association Link  Asking-point
Grammar Link  NE Asking Point.  This
hierarchy defines the sequence of matching steps 
which should be followed during the answer-point
extraction.

The backoff from Asking-point Association  Link 
to Asking-point Grammar  Link is necessary as the 
latter represents more generic structural constraints 
than the former. For example, in the sentence
where is IBM located, the Asking-point
Association Link is LOCATION: IBM
[where]/NeLocation while the default Grammar
Link is H-M: located  [where]/location-
modifier. When the specific association constraints 
cannot be satisfied, the system should attempt to 
locate an answer-point by searching for a location-
modifier of the key verb ‘located’.

The NE asking point constraints are also marked 
for asking-point association links and those asking-
point grammar links whose wh-phrases can be



mapped to NE asking points. Backing off to the 
NE asking point is required in cases where the 
asking-point association constraints and
grammatical structural constraints cannot be
satisfied. For How old is John Smith, the asking-
point grammar  link is represented as H-M: John 
Smith  [how old]/NeAge. If the system cannot 
find a corresponding AGE association or a
modifier of NeAge for the entity John Smith to
satisfy the structural constraints, it will at least 
attempt to locate a candidate answer-point by
enforcing the NE asking point constraints NeAge. 
When there is only one NeAge in the answer
string, the system can extract it as the only
possible answer-point even if the structural
constraints are not honored.

3 Answer Point Identification

The answer-point identification is accomplished 
through  matching the asking-point to candidate 
answer-points using the following back-off
algorithm based on the processing results of the 
question and the sentence-level candidate answer 
string.

(1) if there is Asking-point Association
Link, call Match(asking-point association 
link, candidate answer-point association 
link) to search for the corresponding
association to locate answer-point

(2) if step (1) fails and there is an asking-
point grammar link, call Match(asking-
point grammar link, candidate answer-
point grammar link) to search for the
corresponding grammar link to locate the 
answer-point

(3) if step (2) fails and there is an NE asking 
point, search for the corresponding NEs: 
if there is only one corresponding NE, 
then extract this as the answer-point else 
mark all corresponding NEs as candidate 
answer-points

The function Match(asking-point link, candidate 
answer-point link) is defined as (i) exact match or 
synonym match of the related units (synonym
match currently confined to verb vs. de-verbal
noun); (ii) match the relation type directly (e.g. V-
S matches V-S, AGE matches AGE, etc.); (iii) 
match the type of asking point and answer point 

(e.g. NePerson asking point matches NePerson and
its sub-types NeMan and NeWoman; ‘how’
matches manner-modifier; etc.): either through
direct link or indirect link based on conjunctive 
link (ConjLink) or equivalence link (S-P, subject-
predicative or appositive relations between two
NPs).

Step (1) and Step (2) attempt to leverage the
structural support from parsing and high-level
information extraction beyond NE. It is worth
noticing that in our experiment, the structural
support used for answer-point identification only 
checks the binary links involving the asking point 
and the candidate answer points, instead of full 
template matching as proposed in (Srihari and Li, 
2000).

Full template matching is best exemplified by the 
following example. If the incoming question is 
Who won the Nobel Prize in 1991, and the
candidate answer string is John Smith won the
Nobel Prize in 1991, the question template and 
answer template are shown below:

win
V-S: NePerson [Who]
V-O: NP [the Nobel Prize]
H-M: NeYear [1991]

win
V-S: NePerson [John Smith]
V-O: NP [the Nobel Prize]
H-M: NeYear [1991]

The template matching will match the asking point 
Who with the answer point John Smith because for 
all the dependency links in the trees, the
information is all compatible (in this case, exact
match). This is the ideal case of full template
matching and guarantees the high precision of the 
extracted answer point.

However, in practice, full template matching is 
neither realistic for most of cases nor necessary for 
achieving the objective of extracting answer points 
in a two-stage approach. It is not realistic because 
natural language semantic parsing is such a
challenging problem that a perfect dependency tree 
(or full template) which pieces together every
linguistic unit is not always easy to decode. For



InfoXtract,, in most cases, the majority, but not 
all, of the decoded binary dependency links are 
accurate, as shown in the benchmarks above. In 
such situations, insisting on checking every
dependency link of a template tree is too strong a 
condition to meet. On the other hand, it is actually 
not necessary to check all the links in the
dependency trees for full template matching. With 
the modular design and work division between
sentence level candidate answer string generation 
module (Stage One) and answer-point extraction 
from the candidate answer strings (Stage Two), 
all the candidate answer strings are already
determined by previous modules as highly
relevant. In this situation, a simplified partial
template matching, namely, ‘asking/answer point 
binary relation matching’, will be sufficient to 
select the answer-point, if present, from the
candidate answer string. In other words, the
system only needs to check this one dependency 
link in extracting the answer-point. For the
previous example, only the asking/answer point 
binary dependency links need to be matched as 
illustrated below:

V-S win [Who]/NePerson
V-S win [John Smith]/NeMan

Some sample results are given in section 4 to
illustrate how answer-points are identified based 
on matching binary relations involving
asking/answer points. 

4 Experiments and Results

In order to conduct the feasibility study on the 
proposed method, we selected the first 100
questions from the TREC-8 QA track pool and 
the corresponding first candidate answer
sentences for this preliminary experiment. The 
Stage One processing for generating candidate 
answer sentences was conducted by the existing 
ranking module of our QA system. The Stage
Two processing for answer-point identification
was accomplished by using the algorithm
described in Section 3.

As shown in Table 1, out of the 100 question-
answer pairs we selected, 9 have detected
association links involving asking/answer points, 
44 are found to have grammar links involving 

asking/answer points. 

Table 1: Experiment Results
detected correct fail precision recall

Association
Links 9 8 1 89% 8%
Grammar
Links 44 39 6 89% 39%
NE Points 
(Baseline) 76 41 35 54% 41%
Overall
performance 86 71 14 83% 71%

As for NE asking points, 76 questions were
identified to require some type of NE as answers.
Assume that a baseline answer-point identification 
system only uses NE asking points as constraints, 
out of the 76 questions requiring NEs as answers, 
41 answer-points were identified successfully
because there was only one NE in the answer
string which matches the required NE type. The 
failed cases in matching NE asking point
constraints include two situations: (i) no NE exists 
in the answer string; (ii) multiple NEs satisfy the 
type constraints of NE asking points (i.e. more 
than one candidate answer-points found from the 
answer string) or there is type conflict during the 
matching of NE asking/answer points. Therefore, 
the baseline system would achieve 54% precision 
and 41% recall based on the standard precision and 
recall formulas: 

Precision = Correct / Detected
Recall = Correct / Relevant. 

In comparison, in our answer-point identification 
system which leverages structural support from
both the entity association links and grammar links 
as well as the NE asking points, both the precision 
and recall are raised: from the baseline 54% to 
83% for precision and from 41% to 71% for recall. 
The significant improvement in precision and
recall is attributed to the performance of structural 
matching in identifying exact answers. This
demonstrates the benefits of making use of
sophisticated NLP/IE technology, beyond NE and 
shallow parsing.

Using grammar links alone, exact answers were
identified for 39 out of the 44 candidate answer-
points satisfying the types of grammar links in 100 
cases. During matching, 6 cases failed either due to 
the parsing error or due to the type conflict



between the asking/answer points (e.g. violating 
the type constraints such as manner-modifier on 
the answer-point for ‘how’ question). The high 
precision and modest recall in using the grammar 
constraints is understandable as the grammar links 
impose very strong constraints on both the nodes 
and the structural type. The high precision
performance indicates that grammar links not
only have the distinguishing power to identify
exact answers in the presence of multiple NE 
options but also recognize answers in the absence 
of asking point types.

Even stronger structural support comes from the 
semantic relations decoded by the entity
association extraction module.  In this case, the 
performance is naturally high-precision (89%)
low-recall (8%) as predefined association links 
are by nature more sparse than generic
grammatical relations.

In the following, we illustrate with some
examples with questions from the TREC-8 QA 
task on how the match function identified in
Section 3 applies to different question types.

Q4: How much did Mercury spend on
advertising in 1993?  asking-point grammar 
link:
V-O spend  [How much]/NeMoney
A: Last year the company spent Pounds 12m
on advertising.  candidate answer-point
grammar link:
V-O spent [Pounds 12m]/NeMoney
Answer-point Output: Pounds 12m

This case requires (i) exact match in its original 
verb form between spend and spent; (ii) V-O type 
match; and (iii) asking/answer point type
NeMoney match through direct link.

Q63: What nuclear-powered Russian
submarine sank in the Norwegian Sea on April 
7, 1989?  asking-point grammar link: 
H-M submarine [What]
A: NEZAVISIMAYA GAZETA on the
Komsomolets nuclear-powered submarine
which sank in the Norwegian Sea five years 
ago:  candidate answer-point grammar link:
H-M submarine Komsomolets
Answer-point Output: Komsomolets

This case requires (i) exact match of submarine;
(ii) H-M type match; and (iii) asking/answer point 
match through direct link:  there are no asking
point type constraints because the asking point 
goes beyond existing NE. This case highlights the 
power of semantic parsing in answer-point
extraction. Since there are no type constraints on 
answer point,1 candidate answer points cannot be 
extracted without bringing in structural context by 
checking the NE type. Most of what-related asking 
points such as those in the patterns
‘what/which…N’, ‘what type/kind of …N’ go
beyond NE and require this type of structural
relation checking to locate the exact answer. The 
case below is another example.

Q79: What did Shostakovich write for
Rostropovich?  asking-point grammar link: 
V-O write [What]
A: The Polonaise from Tchaikovsky’s opera
Eugene was a brief but cracking opener and its 
brilliant bluster was no sooner in our ears than 
forcibly contradicted by the bleak depression of 
Shostakovich’s second cello concerto, Op. 126,
a late work written for Rostropovich in 1966 
between the thirteenth and fourteenth
symphonies.  candidate answer-point
grammar link:
V-O written [a late work]/NP
S-P [Op. 126]/NP [a late work]/NP
Answer-point Output: Op. 126

This case requires (i) exact match in its original 
verb form between ‘written’ and ‘write’;
(ii) V-O type match; and (iii) asking/answer point 
match through indirect link based on equivalence 
link S-P. When there are no NE constraints on the 
answer point, a proper name or an initial-
capitalized NP is preferred over an ordinary,
lower-case NP as an answer point. This heuristic is 
built-in so that ‘Op. 126’ is output as the answer-
point in this case instead of ‘a late work’.

1 Strictly speaking, there are some type constraints on 
the answer point. The type constraints are something to 
the effect of ‘a name for a kind of ship’ which goes 
beyond the existing NE types defined.



Conclusion

This paper presented an approach to exact answer 
identification to questions using only binary
structural links involving the question-phrases.
Based on the experiments conducted, some
preliminary conclusions can be arrived at.

• The Entity Association extraction helps in 
pinpointing exact answers precisely

• Grammar dependency links enable the
system to not only identify exact answers 
but answer questions not covered by the 
predefined set of available
NEs/Associations

• Binary dependency links instead of full 
structural templates provide sufficient and 
effective structural leverage for extracting 
exact answers 

Some cases remain difficult however, beyond the 
current level of NLP/IE.  For example,

Q92: Who released the Internet worm in the 
late 1980s?  asking point link: 
V-S (released, NePerson[Who])
A: Morris, suspended from graduate studies at 
Cornell University at Syracuse, N,Y,, is
accused of designing and disseminating in
November, 1988, a rogue program or “worm” 
that immobilized some 6,000 computers linked 
to a research network, including some used by 
NASA and the Air Force.  answer point link:
V-S (disseminating, NePerson[Morris]) 

In order for this case to be handled, the following 
steps are required: (i) the semantic parser should 
be able to ignore the past participle postmodifier 
phrase headed by ‘suspended’; (ii) the V-O
dependency should be decoded between ‘is
accused’ and ‘Morris’; (iii) the V-S dependency 
should be decoded between ‘designing and
disseminating’ and ‘Morris’ based on the pattern 
rule ‘accuse NP of Ving’  V-S(Ving, NP); (iv) 
the conjunctive structure should map the V-S
(‘designing and disseminating’, ‘Morris’) into two 
V-S links; (v)  ‘disseminate’ and ‘release’ should
be linked somehow for synonym expansion.  It 
may be unreasonable to expect an NLP/IE system 
to accomplish all of these, but each of the above 
challenges indicates some directions for further 

research in this topic.

We would like to extend the experiments on a 
larger set of questions to further investigate the 
effectiveness of structural support in extracting
exact answers. The TREC-9 and TREC 2001 QA 
pool and the candidate answer sentences generated 
by both NLP-based or IR-based QA systems would 
be ideal for further testing this method.
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