
Extracting Exact Answers to Questions Based on Structural Links∗

Wei Li, Rohini K. Srihari, Xiaoge Li, M. Srikanth, Xiuhong Zhang, Cheng Niu
Cymfony Inc.

600 Essjay Road, Williamsville, NY 14221. USA.
{wei, rohini, xli, srikanth, xzhang, cniu}@cymfony.com

Keywords: Question Answering, Information Extraction, Semantic Parsing, Dependency Link

∗ This work was partly supported by a grant from the Air Force Research Laboratory’s Information Directorate
(AFRL/IF), Rome, NY, under contracts F30602-00-C-0037 and F30602-00-C-0090.

Abstract

This paper presents a novel approach to
extracting phrase-level answers in a question
answering system. This approach uses
structural support provided by an integrated
Natural Language Processing (NLP) and
Information Extraction (IE) system. Both
questions and the sentence-level candidate
answer strings are parsed by this NLP/IE
system into binary dependency structures.
Phrase-level answer extraction is modelled by
comparing the structural similarity involving
the question-phrase and the candidate answer-
phrase.

There are two types of structural support. The
first type involves predefined, specific entity
associa tions such as Affiliation, Position, Age
for a person entity. If a question asks about
one of these associations, the answer-phrase
can be determined as long as the system
decodes such pre-defined dependency links
correctly, despite the syntactic difference
used in expressions between the question and
the candidate answer string. The second type
involves generic grammatical relationships
such as V-S (verb-subject), V-O (verb-
object).

Preliminary experimental results show an
improvement in both precision and recall in
extracting phrase-level answers, compared
with a baseline system which only uses Named
Entity constraints. The proposed methods are
particularly effective in cases where the
question-phrase does not correspond to a
known named entity type and in cases where
there are multiple candidate answer-phrases
satisfying the named entity constraints.

Introduction

Natural language Question Answering (QA) is
recognized as a capability with great potential.
The NIST-sponsored Text Retrieval Conference
(TREC) has been the driving force for developing
this technology through its QA track since TREC-8
(Voorhees 1999). There has been significant
progress and interest in QA research in recent
years (Voorhees 2000, Pasca and Harabagiu 2001).

QA is different than search engines in two aspects:
(i) instead of a string of keyword search terms, the
query is a natural language question, necessitating
question parsing, (ii) instead of a list of documents
or URLs, a list of candidate answers at phrase level
or sentence level are expected to be returned in
response to a query, hence the need for text
processing beyond keyword indexing, typically
supported by Natural Language Processing (NLP)
and Information Extraction (IE) (Chinchor and
Marsh 1998, Hovy, Hermjakob and Lin 2001, Li
and Srihari 2000). Examples of the use of NLP and
IE in Question Answering include shallow parsing
(Kupiec, 1993), semantic parsing (Litkowski

1999), Named Entity tagging (Abney et al. 2000,
Srihari and Li 1999) and high-level IE (Srihari
and Li, 2000).

Identifying exact or phrase-level answers is a
much more challenging task than sentence-level
answers. Good performance on the latter can be
achieved by using sophisticated passage retrieval
techniques and/or shallow level NLP/IE
processing (Kwok et al. 2001, Clarke et al. 2001).
The phrase-level answer identification involves
sophisticated NLP/IE and it is difficult to apply
only IR techniques for this task (Prager et al.
1999). These two tasks are closely related. Many
systems (e.g. Prager et al 1999; Clark et al 2001)
take a two-stage approach. The first stage
involves retrieving sentences or paragraphs in
documents as candidate answer strings. Stage
Two focuses on extracting phrase-level exact
answers from the candidate answer strings.

This paper focuses on methods involving Stage
Two. The input is a sentence pair consisting of a
question and a sentence-level candidate answer
string. The output is defined to be a phrase, called
answer-point, extracted from the candidate
answer string. In order to identify the answer-
point, the pair of strings are parsed by the same
system to generate binary dependency structures
for both specific entity associations and generic
grammatical relationships. An integrated Natural
Language Processing (NLP) and Information
Extraction (IE) engine is used to extract named
entities (NE) and their associations and to decode
grammatical relationships. The system searches
for an answer-point by comparing the structural
similarity involving the question-phrase and a
candidate answer-phrase. Generic grammatical
relationships are used as a back-off for specific
entity associations when the question goes beyond
the scope of the specific associations or when the
system fails to identify the answer-point which
meets the specific entity association constraints.
The proposed methods are particularly helpful in
cases where the question-phrase does not
correspond to a known named entity type and in
cases where there are multiple candidate answer-
points to select from.

The rest of the paper is structured as follows:
Section 1 presents the NLP/IE engine used,

sections 2 discusses how to identify and formally
represent what is being asked, section 3 presents
the algorithm on identifying exact answers
leveraging structural support, section 4 presents
case studies and benchmarks, and section 5 is the
conclusion.

Kernel IE Modules Linguistic Modules

Entity
Association

Named
Entity

Part-Of-
Speech

Asking-point
Identification

O
ut

pu
t(

En
ti

ty
,

Ph
ra

se
 a

nd
 S

tr
uc

tu
ra

l
Li

nk
s)

Shallow
Parsing

Semantic
Parsing

Tokenizer

Input

Figure 1: InfoXtract™ NLP/IE System Architecture

1 NLP/IE Engine Description

The NLP/IE engine used in the QA system
described here is named InfoXtract™. It consists
of an NLP component and IE component, each
consisting of a set of pipeline modules (Figure 1).
The NLP component serves as underlying support
for IE. A brief description of these modules is
given below.

• Part-of-Speech Tagging: tagging syntactic
categories such as noun, verb, adjective, etc.

• Shallow Parsing: grouping basic linguistic
units as building blocks for structural links,
such as Basic Noun Phrase, Verb Group, etc.

• Asking-point Identification: analysis of
question sentences to determine what is being
asked

• Semantic Parsing: decoding grammatical
dependency relationships at the logical level
between linguistic units, such as Verb-Subject
(V-S), Verb-Object (V-O), Head-Modifier
(H-M) relationships; both active patterns and
passive patterns will be parsed into the same
underlying logical S-V-O relationships

• Named Entity Tagger: classifying proper
names and other phrases to different
categories such as Person, Organization,
Location, Money, etc.

• Entity Association Extractor: relating named
entities with predefined associations such as
Affiliation, Position, Age, Spouse, Address,
etc.

The NE tagger in our system is benchmarked to
achieve close to human performance, around or
above 90% precision and recall for most
categories of NE. This performance provides
fundamental support to QA. Many questions
require a named entity or information associated
with a named entity as answers. A subset of the
NE hierarchy used in our system is illustrated
below:

Person: woman, man
Organization: company, government,

association, school, army, mass-media
Location: city, province, country, continent,

ocean, lake, etc.
Time Expressions: hour, part-of-day, day-of-

week, date, month, season, year, decade,
century, duration

Numerical Expressions: percentage, money,
number, weight, length, area, etc.

Contact expressions: email, address,
telephone, etc.

The Entity Association module correlates named
entities and extracts their associations with other
entities or phrases. These are specific, predefined
relationships for entities of person and
organization. Currently, our system can extract
the following entity associations with high
precision (over 90%) and modest recall ranging
from 50% to 80% depending on the size of
grammars written for each specific association.

Person: affiliation, position, age, spouse,
birth-place, birth-time, etc.

Organization: location, staff, head, products,
found-time, founder, etc.

Entity associations are semantic structures very
useful in supporting QA. For example, from the
sentence Grover Cleveland , who in June 1886
married 21-year-old Frances Folsom,…the IE
engine can identify the following associations:

Spouse: Grover Cleveland Frances Folsom
Spouse: Frances Grover Cleveland
Age: Frances Folsom 21-year-old

A question asking about such an association, say,
Q11: Who was President Cleveland ’s wife, will be
parsed into the following association link between
a question-phrase ‘Who’ and the entity ‘Cleveland’
(see Section 2): Spouse: Cleveland Who. The
semantic similarity between this structure and the
structure Spouse: Grover Cleveland Frances
Folsom can determine the answer point to be
‘Frances Folsom’.

The Semantic Parsing module decodes the
grammatical dependency relationships: V-S, V-O,
V-C (Verb-Complement), H-M of time, location,
reason, manner, purpose, result, etc. This module
extends the shallow parsing module through the
use of a cascade of handcrafted pattern matching
rules. Manual benchmarking shows results with
the following performance:

H-M: Precision 77.5%
V-O: Precision 82.5%
V-S: Precision 74%
V-C: Precision 81.4%

In our semantic parsing, not only passive patterns
will be decoded into the same underlying
structures as active patterns, but structures for
verbs such as acquire and for de-verbal nouns such
as acquisition lead to the same dependency links,
as shown below.

AOL acquired Netscape in 1998.
V-S: acquired AOL
V-O: acquired Netscape
H-M: acquired in 1998 (time-modifier)

Netscape was acquired by AOL in 1998.
V-S: was acquired by AOL

V-O: was acquired Netscape
H-M: was acquired in 1998 (time-modifier)

the acquisition of Netscape by AOL in 1998…
V-S: acquisition by AOL
V-O: acquisition of Netscape
H-M: acquired in 1998 (time-modifier)

These links can be used as structural support to
answer questions like Who acquired Netscape or
which company was acquired by AOL.

Obviously, our semantic parser goes one step
further than parsers which only decode syntactic
relationships. It consumes some surface structure
variations to provide the power of comparing the
structural similarity at logical level. However,
compared with the entity association structures
which sits at deep semantic level, the logical SVO
(Subject-Verb-Object) structures still cannot
capture semantic relations which are expressed
using different head verbs with different
structures. An example is the pair : X borrows Y
from Z versus Z lends Y to X.

2 Asking Point Link Identification

Asking point link identification is a crucial step in
a QA system. It provides the necessary
information decoded from question processing for
a system to locate the corresponding answer-
points from candidate answer strings.

The Asking-point (Link) Identification Module is
charged with the task of parsing wh-phrases in
their context into three categories: NE Asking-
point, Asking-point Association Link and
Asking-point Grammar Link. Asking Point refers
to the question phrases with its constraints that a
corresponding answer-point should satisfy in
matching. Asking-point Link is the decoded binary
relationship from the asking point to another unit
in the question.

The identification of the NE asking point is
essentially mapping the wh-phrase to the NE
types or subtypes. For example, which year is
mapped to [which year]/NeYear, how old mapped
to [how old]/NeAge, and how long mapped to
[how long]/NeLength or [how long]/NeDuration,
etc.

The identification of the Asking-point Association
Link is to decide whether the incoming question
asks about a predefined association relationship.
For Asking-point Association Link, the module
needs to identify the involved entity and the asked
association. For example, the Asking-point
Association Link for How old is John Smith is the
AGE relationship of the NePerson John Smith,
represented as AGE: John Smith [how
old]/NeAge.

The wh-phrases which may or may not be mapped
to NE asking points and whose dependency links
are beyond predefined associations lead to Asking-
point Grammar Links, e.g. How did Julian Hill
discover nylon? This asking-point link is
represented as H-M: discover [How]/manner-
modifier. As seen, an asking-point grammar link
only involves generic grammatical constraints: in
this case, the constraints for a candidate answer-
point to satisfy during matching are H-M link with
‘discover’ as head and a phrase which must be a
modifier of manner.

These three types of asking points and their
possible links form a natural hierarchy that can be
used to facilitate the backoff strategy for the
answer-point extraction module (see Section 3):
Asking-point Association Link Asking-point
Grammar Link NE Asking Point. This
hierarchy defines the sequence of matching steps
which should be followed during the answer-point
extraction.

The backoff from Asking-point Association Link
to Asking-point Grammar Link is necessary as the
latter represents more generic structural constraints
than the former. For example, in the sentence
where is IBM located, the Asking-point
Association Link is LOCATION: IBM
[where]/NeLocation while the default Grammar
Link is H-M: located [where]/location-
modifier. When the specific association constraints
cannot be satisfied, the system should attempt to
locate an answer-point by searching for a location-
modifier of the key verb ‘located’.

The NE asking point constraints are also marked
for asking-point association links and those asking-
point grammar links whose wh-phrases can be

mapped to NE asking points. Backing off to the
NE asking point is required in cases where the
asking-point association constraints and
grammatical structural constraints cannot be
satisfied. For How old is John Smith, the asking-
point grammar link is represented as H-M: John
Smith [how old]/NeAge. If the system cannot
find a corresponding AGE association or a
modifier of NeAge for the entity John Smith to
satisfy the structural constraints, it will at least
attempt to locate a candidate answer-point by
enforcing the NE asking point constraints NeAge.
When there is only one NeAge in the answer
string, the system can extract it as the only
possible answer-point even if the structural
constraints are not honored.

3 Answer Point Identification

The answer-point identification is accomplished
through matching the asking-point to candidate
answer-points using the following back-off
algorithm based on the processing results of the
question and the sentence-level candidate answer
string.

(1) if there is Asking-point Association
Link, call Match(asking-point association
link, candidate answer-point association
link) to search for the corresponding
association to locate answer-point

(2) if step (1) fails and there is an asking-
point grammar link, call Match(asking-
point grammar link, candidate answer-
point grammar link) to search for the
corresponding grammar link to locate the
answer-point

(3) if step (2) fails and there is an NE asking
point, search for the corresponding NEs:
if there is only one corresponding NE,
then extract this as the answer-point else
mark all corresponding NEs as candidate
answer-points

The function Match(asking-point link, candidate
answer-point link) is defined as (i) exact match or
synonym match of the related units (synonym
match currently confined to verb vs. de-verbal
noun); (ii) match the relation type directly (e.g. V-
S matches V-S, AGE matches AGE, etc.); (iii)
match the type of asking point and answer point

(e.g. NePerson asking point matches NePerson and
its sub-types NeMan and NeWoman; ‘how’
matches manner-modifier; etc.): either through
direct link or indirect link based on conjunctive
link (ConjLink) or equivalence link (S-P, subject-
predicative or appositive relations between two
NPs).

Step (1) and Step (2) attempt to leverage the
structural support from parsing and high-level
information extraction beyond NE. It is worth
noticing that in our experiment, the structural
support used for answer-point identification only
checks the binary links involving the asking point
and the candidate answer points, instead of full
template matching as proposed in (Srihari and Li,
2000).

Full template matching is best exemplified by the
following example. If the incoming question is
Who won the Nobel Prize in 1991, and the
candidate answer string is John Smith won the
Nobel Prize in 1991, the question template and
answer template are shown below:

win
V-S: NePerson [Who]
V-O: NP [the Nobel Prize]
H-M: NeYear [1991]

win
V-S: NePerson [John Smith]
V-O: NP [the Nobel Prize]
H-M: NeYear [1991]

The template matching will match the asking point
Who with the answer point John Smith because for
all the dependency links in the trees, the
information is all compatible (in this case, exact
match). This is the ideal case of full template
matching and guarantees the high precision of the
extracted answer point.

However, in practice, full template matching is
neither realistic for most of cases nor necessary for
achieving the objective of extracting answer points
in a two-stage approach. It is not realistic because
natural language semantic parsing is such a
challenging problem that a perfect dependency tree
(or full template) which pieces together every
linguistic unit is not always easy to decode. For

InfoXtract,, in most cases, the majority, but not
all, of the decoded binary dependency links are
accurate, as shown in the benchmarks above. In
such situations, insisting on checking every
dependency link of a template tree is too strong a
condition to meet. On the other hand, it is actually
not necessary to check all the links in the
dependency trees for full template matching. With
the modular design and work division between
sentence level candidate answer string generation
module (Stage One) and answer-point extraction
from the candidate answer strings (Stage Two),
all the candidate answer strings are already
determined by previous modules as highly
relevant. In this situation, a simplified partial
template matching, namely, ‘asking/answer point
binary relation matching’, will be sufficient to
select the answer-point, if present, from the
candidate answer string. In other words, the
system only needs to check this one dependency
link in extracting the answer-point. For the
previous example, only the asking/answer point
binary dependency links need to be matched as
illustrated below:

V-S win [Who]/NePerson
V-S win [John Smith]/NeMan

Some sample results are given in section 4 to
illustrate how answer-points are identified based
on matching binary relations involving
asking/answer points.

4 Experiments and Results

In order to conduct the feasibility study on the
proposed method, we selected the first 100
questions from the TREC-8 QA track pool and
the corresponding first candidate answer
sentences for this preliminary experiment. The
Stage One processing for generating candidate
answer sentences was conducted by the existing
ranking module of our QA system. The Stage
Two processing for answer-point identification
was accomplished by using the algorithm
described in Section 3.

As shown in Table 1, out of the 100 question-
answer pairs we selected, 9 have detected
association links involving asking/answer points,
44 are found to have grammar links involving

asking/answer points.

Table 1: Experiment Results
detected correct fail precision recall

Association
Links 9 8 1 89% 8%
Grammar
Links 44 39 6 89% 39%
NE Points
(Baseline) 76 41 35 54% 41%
Overall
performance 86 71 14 83% 71%

As for NE asking points, 76 questions were
identified to require some type of NE as answers.
Assume that a baseline answer-point identification
system only uses NE asking points as constraints,
out of the 76 questions requiring NEs as answers,
41 answer-points were identified successfully
because there was only one NE in the answer
string which matches the required NE type. The
failed cases in matching NE asking point
constraints include two situations: (i) no NE exists
in the answer string; (ii) multiple NEs satisfy the
type constraints of NE asking points (i.e. more
than one candidate answer-points found from the
answer string) or there is type conflict during the
matching of NE asking/answer points. Therefore,
the baseline system would achieve 54% precision
and 41% recall based on the standard precision and
recall formulas:

Precision = Correct / Detected
Recall = Correct / Relevant.

In comparison, in our answer-point identification
system which leverages structural support from
both the entity association links and grammar links
as well as the NE asking points, both the precision
and recall are raised: from the baseline 54% to
83% for precision and from 41% to 71% for recall.
The significant improvement in precision and
recall is attributed to the performance of structural
matching in identifying exact answers. This
demonstrates the benefits of making use of
sophisticated NLP/IE technology, beyond NE and
shallow parsing.

Using grammar links alone, exact answers were
identified for 39 out of the 44 candidate answer-
points satisfying the types of grammar links in 100
cases. During matching, 6 cases failed either due to
the parsing error or due to the type conflict

between the asking/answer points (e.g. violating
the type constraints such as manner-modifier on
the answer-point for ‘how’ question). The high
precision and modest recall in using the grammar
constraints is understandable as the grammar links
impose very strong constraints on both the nodes
and the structural type. The high precision
performance indicates that grammar links not
only have the distinguishing power to identify
exact answers in the presence of multiple NE
options but also recognize answers in the absence
of asking point types.

Even stronger structural support comes from the
semantic relations decoded by the entity
association extraction module. In this case, the
performance is naturally high-precision (89%)
low-recall (8%) as predefined association links
are by nature more sparse than generic
grammatical relations.

In the following, we illustrate with some
examples with questions from the TREC-8 QA
task on how the match function identified in
Section 3 applies to different question types.

Q4: How much did Mercury spend on
advertising in 1993? asking-point grammar
link:
V-O spend [How much]/NeMoney
A: Last year the company spent Pounds 12m
on advertising. candidate answer-point
grammar link:
V-O spent [Pounds 12m]/NeMoney
Answer-point Output: Pounds 12m

This case requires (i) exact match in its original
verb form between spend and spent; (ii) V-O type
match; and (iii) asking/answer point type
NeMoney match through direct link.

Q63: What nuclear-powered Russian
submarine sank in the Norwegian Sea on April
7, 1989? asking-point grammar link:
H-M submarine [What]
A: NEZAVISIMAYA GAZETA on the
Komsomolets nuclear-powered submarine
which sank in the Norwegian Sea five years
ago: candidate answer-point grammar link:
H-M submarine Komsomolets
Answer-point Output: Komsomolets

This case requires (i) exact match of submarine;
(ii) H-M type match; and (iii) asking/answer point
match through direct link: there are no asking
point type constraints because the asking point
goes beyond existing NE. This case highlights the
power of semantic parsing in answer-point
extraction. Since there are no type constraints on
answer point,1 candidate answer points cannot be
extracted without bringing in structural context by
checking the NE type. Most of what-related asking
points such as those in the patterns
‘what/which…N’, ‘what type/kind of …N’ go
beyond NE and require this type of structural
relation checking to locate the exact answer. The
case below is another example.

Q79: What did Shostakovich write for
Rostropovich? asking-point grammar link:
V-O write [What]
A: The Polonaise from Tchaikovsky’s opera
Eugene was a brief but cracking opener and its
brilliant bluster was no sooner in our ears than
forcibly contradicted by the bleak depression of
Shostakovich’s second cello concerto, Op. 126,
a late work written for Rostropovich in 1966
between the thirteenth and fourteenth
symphonies. candidate answer-point
grammar link:
V-O written [a late work]/NP
S-P [Op. 126]/NP [a late work]/NP
Answer-point Output: Op. 126

This case requires (i) exact match in its original
verb form between ‘written’ and ‘write’;
(ii) V-O type match; and (iii) asking/answer point
match through indirect link based on equivalence
link S-P. When there are no NE constraints on the
answer point, a proper name or an initial-
capitalized NP is preferred over an ordinary,
lower-case NP as an answer point. This heuristic is
built-in so that ‘Op. 126’ is output as the answer-
point in this case instead of ‘a late work’.

1 Strictly speaking, there are some type constraints on
the answer point. The type constraints are something to
the effect of ‘a name for a kind of ship’ which goes
beyond the existing NE types defined.

Conclusion

This paper presented an approach to exact answer
identification to questions using only binary
structural links involving the question-phrases.
Based on the experiments conducted, some
preliminary conclusions can be arrived at.

• The Entity Association extraction helps in
pinpointing exact answers precisely

• Grammar dependency links enable the
system to not only identify exact answers
but answer questions not covered by the
predefined set of available
NEs/Associations

• Binary dependency links instead of full
structural templates provide sufficient and
effective structural leverage for extracting
exact answers

Some cases remain difficult however, beyond the
current level of NLP/IE. For example,

Q92: Who released the Internet worm in the
late 1980s? asking point link:
V-S (released, NePerson[Who])
A: Morris, suspended from graduate studies at
Cornell University at Syracuse, N,Y,, is
accused of designing and disseminating in
November, 1988, a rogue program or “worm”
that immobilized some 6,000 computers linked
to a research network, including some used by
NASA and the Air Force. answer point link:
V-S (disseminating, NePerson[Morris])

In order for this case to be handled, the following
steps are required: (i) the semantic parser should
be able to ignore the past participle postmodifier
phrase headed by ‘suspended’; (ii) the V-O
dependency should be decoded between ‘is
accused’ and ‘Morris’; (iii) the V-S dependency
should be decoded between ‘designing and
disseminating’ and ‘Morris’ based on the pattern
rule ‘accuse NP of Ving’ V-S(Ving, NP); (iv)
the conjunctive structure should map the V-S
(‘designing and disseminating’, ‘Morris’) into two
V-S links; (v) ‘disseminate’ and ‘release’ should
be linked somehow for synonym expansion. It
may be unreasonable to expect an NLP/IE system
to accomplish all of these, but each of the above
challenges indicates some directions for further

research in this topic.

We would like to extend the experiments on a
larger set of questions to further investigate the
effectiveness of structural support in extracting
exact answers. The TREC-9 and TREC 2001 QA
pool and the candidate answer sentences generated
by both NLP-based or IR-based QA systems would
be ideal for further testing this method.

5 Acknowledgement
The authors wish to thank Walter Gadz and Carrie
Pine of AFRL for supporting this work. Thanks
also go to anonymous reviewers for their valuable
comments.

References

Abney, S., Collins, M and Singhal, A. (2000) Answer
Extraction. In Proceedings of ANLP -2000, Seattle.

Chinchor, N. and Marsh, E. (1998) MUC -7 Information
Extraction Task Definition (version 5.1), In
“Proceedings of MUC-7”. Also published at
http://www.muc.saic.com/

Clarke, C. L. A., Cormack, G. V. and Lynam, T. R.
(2001), Exploiting Redundancy in Question
Answering. In Proceedings of SIGIR’01, New
Orleans, LA.

Hovy, E.H., U. Hermjakob, and Chin-Yew Lin. 2001.
The Use of External Knowledge of Factoid QA. In
Proceedings of the 10th Text Retrieval Conference
(TREC 2001), Gaithersburg, MD, U.S.A., November
13-16, 2001

Kupiec, J. (1993) MURAX: A Robust Linguistic
Approach For Question Answering Using An On-Line
Encyclopaedia . In Proceedings of SIGIR-93,
Pittsburgh, PA.

Kwok, K. L., Grunfeld, L., Dinstl, N. and Chan, M.
(2001), TREC2001 Question-Answer, Web and Cross
Language Experiments using PIRCS. In Proceedings
of TREC-10, Gaithersburg, MD.

Li, W. and Srihari, R. (2000) A Domain Independent
Event Extraction Toolkit , Phase 2 Final Technical
Report, Air Force Research Laboratory/Rome, NY.

Litkowski, K. C. (1999) Question-Answering Using
Semantic Relation Triples. In Proceedings of TREC-
8, Gaithersburg, MD.

Pasca, M. and Harabagiu, S. M. High Performance
Question/Answering. In Proceedings of SIGIR 2001:
pages 366-374

Prager, J., Radev, D., Brown, E., Coden, A. and Samn,
V., The use of predictive annotation for question

answering in TREC8. In Proceedings of TREC-8,
Gaithersburg, MD.

Srihari, R. and Li, W. (1999) Information Extraction
supported Question Answering. In Proceedings of
TREC-8, Gaithersberg, MD.

Srihari, R and Li, W. (2000b). A Question Answering
System Supported by Information Extraction. In
Proceedings of ANLP 2000, Seattle.

Voorhees, E. (1999), The TREC-8 Question Answering
Track Report, In Proceedings of TREC-8,
Gaithersburg, MD.

Voorhees, E. (2000), Overview of the TREC-9
Question Answering Track , In Proceedings of
TREC-9, Gaithersburg, MD.

	Table of Content
	Workshops
	Authors

