
A Reliable Indexing Method for a Practical QA System

Harksoo Kim
Diquest Inc.

Sindo B/D, 1604-22, Seocho-dong
Seocho-gu, Seoul, Korea, 137-070

hskim@diquest.com

Jungyun Seo
Department of Computer Science
Sogang University, 1 Sinsu-dong,
Mapo-gu, Seoul, Korea, 121-742

seojy@ccs.sogang.ac.kr

Abstract

We propose a fast and reliable
Question-answering (QA) system in Korean,
which uses a predictive answer indexer based on
2-pass scoring method. The indexing process is
as follows. The predictive answer indexer first
extracts all answer candidates in a document.
Then, using 2-pass scoring method, it gives
scores to the adjacent content words that are
closely related with each answer candidate. Next,
it stores the weighted content words with each
candidate into a database. Using this technique,
along with a complementary analysis of
questions, the proposed QA system saves
response time and enhances the precision.

Introduction

Traditional Information Retrieval (IR) focuses
on searching and ranking a list of documents in
response to a user’s question. However, in many
cases, a user has a specific question and want for
IR systems to return the answer itself rather than
a list of documents (Voorhees and Tice (2000)).
To satisfy this need, the concept of Question
Answering (QA) comes up, and a lot of
researches have been carried out, as shown in
the proceedings of AAA I (AAA I (n.d.)) and
TREC (Text REtrieval Conference) (TREC
(n.d.)). A QA system searches a large collection
of texts, and filters out inadequate phrases or
sentences within the texts. Owing to the filtering
process, a user can promptly approach to his/her
answer phrases without troublesome tasks.
Unfortunately, most of the previous researches
have passed over the following problems that
occurs in real fields like World Wide Web
(WWW):

�
Users want to find answers as soon as
possible. If a QA system does not respond
to their questions within a few seconds, they
will keep a suspicious eye on usefulness of
the system.

�
Users express their intentions by using
various syntactic forms. The fact makes it
difficult that a QA system performs well at
any domains. Ultimately, the QA system
cannot be easily converted into any
domains.

�
A QA system cannot correctly respond to
all of the users’ questions. It can answer the
questions that are included in the predefined
categories such as person, date, and time.

To solve the problems, we propose a practical
QA system using a predictive answer indexer in
Korean - MAYA (MAke Your Answer). MAYA
focuses on resolving the practical problems such
as real-time response and domain portabil ity.
We can easily add new categories to MAYA by
only supplementing domain dictionaries and
rules. We do not have to revise the searching
engine of MAYA because the indexer is
designed as a separate component that extracts
candidate answers. Users can promptly obtain
answer phrases on retrieval time because
MAYA indexes answer candidates in advance.

This paper is organized as follows. First, we
review the previous works of the QA systems.
Second, we present our system, and describe the
applied NLP techniques. Third, we analyze the
result of our experiments. Finally, we draw
conclusions.

1 Previous works

The current QA approaches can be classified
into two groups; text-snippet extraction methods
and noun-phrase extraction methods (also called
closed-class QA) (Vicedo and Ferrándex (2000)).
The text-snippet extraction methods are based
on locating and extracting the most relevant
sentences or paragraphs to the query by
assuming that this text will probably contain the
correct answer to the query. These methods have
been the most commonly used by participants in
last TREC QA Track (Moldovan et al. (1999);
Prager, Radev, Brown and Coden (1999)). The

noun-phrase extraction methods are based on
finding concrete information, mainly noun
phrases, requested by users’ closed-class
questions. A closed-class question is a question
stated in natural language, which assumes a
definite answer typified by a noun phrase rather
than a procedural answer.

ExtrAns (Berri, Molla and Hess (1998)) is a
representative QA system using the text-snippet
extraction method. The system locates the
phrases in a document from which a user can
infer an answer. However, it is difficult for the
system to be converted into other domains
because the system uses syntactic and semantic
information that only covers a very limited
domain (Vicedo and Ferrándex (2000)).
FALCON (Harabagiu et al. (2000)) is another
text-snippet system. The system returns answer
phrases with high precision because it integrates
different forms of syntactic, semantic and
pragmatic knowledge for the goal of archiving
better performance. The answer engine of
FALCON handles question reformulations of
previously posed questions, finds the expected
answer type from a large hierarchy that
incorporates the WordNet (Miller (1990)), and
extracts answers after performing unifications on
the semantic forms of the question and its
answer candidates. Although FALCON archives
good performance, the system is not appropriate
for a practical QA system because it is difficult
to construct domain-specific knowledge like a
semantic net.

MURAX (Kupiec (1993)) is one of the
noun-phrase extraction systems. MURAX uses
modules for the shallow linguistic analysis: a
Part-Of-Speech (POS) tagger and finite-state
recognizer for matching lexico-syntactic pattern.
The finite-state recognizer decides users’
expectations and filters out various answer
hypotheses. For example, the answers to
questions beginning with the word Who are
likely to be people’s name. Some QA systems
participating in TREC use a shallow linguistic
knowledge and start from similar approaches as
used in MURAX (Vicedo and Ferrándex (2000)).
These QA systems use specialized shallow
parsers to identify the asking point (who, what,
when, where, etc). However, these QA systems
take a long response time because they apply
some rules to each sentence including answer
candidates and give each answer a score on

retrieval time. To overcome the week point,
GuruQA system (Prager, Brown and Coden
(2000)), one of text-snippet systems, uses a
method for indexing answer candidates in
advance (so-called Predictive Annotation).
Predictive Annotation identifies answer
candidates in a text, annotates them accordingly,
and indexes them. Although the GuruQA system
quickly replies to users’ queries and has good
performance, the system passed over useful
information out of a document boundary. In
other words, the system restricts the size of a
context window containing an answer candidate
from a sentence to a whole document, and
calculates a similarity between the keywords in a
query and the keywords in the window. The
system does not consider any information out of
the window at all.

2 Approach of MAYA

MAYA has been designed as a separate
component that interfaces with a traditional IR
system. In other words, it can be run without IR
system. As shown in Figure 1, it consists of two
engines; an indexing engine and a searching
engine.

� � � � � � � 	 �
 �
 	 � � � � �
 � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � ! � " � " � � # � � $ � ! � %

& � � � � � � � � � � �

' () * + , , - .' () * + , , - .

/ 0 1 2 3 4 5 6 7 8 2 1/ 0 1 2 3 4 5 6 7 8 2 1

9 : ; < = > ? @

A B C
D E F G E H I J K L

M N O P Q R S T U

V W X Y Z W [\] X ^ _ Z ` [X \

a b
c d e f f e d

g h i j k

l m n o p q r s t u v w p v o p x w y s m y

z u s { m y s p q y o u |

} ~ � � � � � � ~ � � ~ �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � � �� � � � � � ¡ � � ¡ � �

¢ £ ¤ ¥ ¥ ¤ £

Figure 1. A basic architecture of MAYA

2.1 Predictive answer indexing

The answer indexing phase can be separated in 2
stages; answer-finding and term-scoring. For
answer-finding, we classify users’ asking points
into 105 semantic categories. As shown in Table
1, The 105 semantic categories consist of 2
layers; the first layer and the second layer. The

semantic categories in the first layer have
broader meanings than those in the second layer.
To define the 105 categories, we referred to the
categories of QA systems participating in TREC
and analyzed users’ query logs that are collected
by a commercial IR system (DiQuest.com
(n.d.)).

Table 1. A part of 105 semantic categories

The first layer The second layer

bird fish mammal animal
person reptile
address building city
continent country state

location

town
day month season date
weekday year

time hour minute second
company department family
group laboratory school

organization

team

To extract answer candidates belonging to each
category from documents, the indexing engine
uses a POS tagger and a NE recognizer. The NE
recognizer consists of a named entity dictionary
(so-called PLO dictionary) and a pattern matcher.
The PLO dictionary contains not only the names
of people, countries, cities, and organizations,
but it also contains a lot of units such as the unit
of the length (e.g. cm, m, km) and the units of
weight (e.g. mg, g, kg). After looking up the
dictionary, the NE recognizer assigns a semantic
category to each answer candidate after
disambiguation using POS tagging. For example,
the NE recognizer extracts 4 answer candidates
annotated with 4 semantic categories in the
sentence, “Yahoo Korea (CEO Jinsup Yeom
www.yahoo.co.kr) expanded the size of the
storage for free email service to 6 mega-bytes.” .
Yahoo Korea belongs to company, and Jinsup
Yeom is person. www.yahoo.co.kr means URL,
and 6 mega-bytes is size. The complex lexical
candidates such as www.yahoo.co.kr are
extracted by the pattern matcher. The pattern
matcher extracts formed answers such as
telephone number, email address, and URL. The
patterns are described as regular expressions.

In the next stage, the indexing engine gives
scores to content words within a context window
that occur with answer candidates. The
maximum size of the context window is 3

sentences; a previous sentence, a current
sentence, and a next sentence. The window size
can be dynamically changed. When the indexing
engine decides the window size, it checks
whether neighboring sentences have anaphors or
lexical chains. If the next sentence has anaphors
or lexical chains of the current sentence and the
current sentence does not have anaphors or
lexical chains of the previous sentence, the
indexing engine sets the window size as 2.
Unless neighboring sentences have anaphors or
lexical chains, the window size is 1. Figure 2
shows an example in which the window size is
adjusted.

¦ § ¨ © ¨ ª « ¬ ­ ® ¬ ¨ ¯ ° ¨ « ± ² ° © ¬ ¨ ­ © ¨ ¬ ³ ± ­ ¬ ® ´ µ ± ¶ ³ ® © ° ¨ « ·

¸ ¹ º » » ¼ » ½ ¾ ¹ ¿ À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Í Í Î Ï Ð Ñ Ò Ò Î Ó Ò Î Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß à á Ø Ø â â ã ã ä ä å å æ æ ç ç â â è é å ê âè é å ê â ë

ì í î ï î ï ð î ñ ò ó ô õ í î ç ç â â è é å ê âè é å ê â ö ÷ ø ù ú û ü ý û þ ÿ û û ú ü � ÿ ÷ � û ú � þ � � û � ÷ � � � � � 	
 � �
 � � � �
 � � � � �

� � � � � � � � � � � � � � � � � � ! � " #

Figure 2. An example with the adjusted window
size

After setting the context window, the
indexing engine assigns scores to the content
words in the window by using a 2-pass scoring
method. In the first pass, the indexing engine
calculates local scores of the content words. The
scores indicate the magnitude of influences that
each content word causes to answer candidates
in a document. For example, when
www.yahoo.co.kr is an answer candidate in the
sentence, “Yahoo Korea (www.yahoo.co.kr)
starts a new service.” , Yahoo Korea has the
higher score than service since it has much more
strong clue to www.yahoo.co.kr. We call the
score a local score because the score is obtained
from information between two adjacent words in
a document. The indexing engine assigns local
scores to content words according to 2 scoring
features described below.

$
Term frequency: the frequency of each
content word in a context window. The
indexing engine give high scores to content

words that frequently occurs with answer
candidates For example, email receives a
higher score than members in Figure 2. %
Distance: the distance between an answer
candidate and a target content word. The
indexing engine gives high scores to content
words that are near to answer candidates.
For example, when Jinsup Yeom is an
answer candidate in Figure 2, CEO obtains
a higher score than service.

The indexing engine does not use high-level
information li ke definition characteristics (IS-A
relation between words in a sentence) and
grammatical roles because it is difficult for the
indexing engine to correctly extract the
high-level information from documents in real
fields. In other words, most of the web
documents are described in a user’s free style
with additional tags and includes a lot of images
and tables. The fact makes it more diff icult for
the indexing engine to detect sentence
boundaries and to extract topic words from
sentences. Therefore, the indexing engine uses
law-level information like the term frequencies
and the distances after considering the cost for
the additional analysis and indexing time.

The indexing engine calculates local scores
by two steps. It first calculates the distance
weight between an answer candidate and a target
content word, as shown in Equation 1.

cjidist

c
wadistw jikd +

=
)),(log(

),(,
 (1)

In Equation 1,),(, jikd wadistw is the distance

weight of the content word w that is located at
the jth position in the kth context window of a
document d.),(jidist is the distance between

the answer candidate ia , which is located at the

ith position, and the content word jw , which is

located at the jth position. c is a constant value,
and we set c to 1 on experiment. The indexing
engine then adds up the distance weights of
content words with an identical lexical form in
each context window, as shown in Equation 2.

()
.0),(

),,(),(1

),(),(

)0(
0
,

)1(
1

,)(,

)(,)(,

=

×−

+=

−
−

posikd

nposi
n

kdnposikd

nposikdnposi
n

kd

waLSwhere

waLSwadistw

wadistwwaLS

 (2)

Equation 2 is described as a well-known
dynamic programming method. According to
Equation 2, the more frequent content words are,
the higher scores the content words receive. In
Equation 2,),()(, nposi

n
kd waLS is the local score of

the nth content word w when n identical content
words exist in the kth context window of a
document d, and pos(n) is the position of the nth
content word. After recursively solving Equation
2, the indexing engine receives a local score,

),(, waLS ikd
, between the ith answer candidate and

the content word w in the kth context window.
Figure 3 shows the calculation process of local
scores. After calculating the local scores, the
indexing engine saves the local scores with the
position information of the relevant answer
candidate in the answer DB.

& ' () (* + , - . , (/ 0 (+ 1 2 0) , (-) (, 3 1 - , . 4 5 1 6 3 .) 0 (+ 7

8 8 9 9 : : ; ; ; ; < ;< ; = = > > 9 9 ? @ A B C D E F G H I J K L M M M N O P Q R R N S R N T U V W X Y Z [\
] ^ _ ` a b b b c _ d e f b a g d h b i

j k b c b c l b a f ^ `] k b f b a g d h b h _ m n f b] k b ` a b b f] ^ a _ o b f ^ `
p q r s t u v w x y z { | } y ~ � � � �

� �� � � � � �
� �

� � � � � � � � � � � �� � � � � � � � ¡ ¢ £ ¤ � � � ¥ � ¦ � � � � � � § ¨ � � � � § � � § © � ª « � � � � �
� � � � � � � � � � � � � � � ¬ � � � §

� � � � � � « � � � � � � � � � � � ¬ � � � � � � ¥ � � � � � � � � � � � � � � � � � � �
­ � � � � ® « ¨ � � � � � � � � � � � §

¯ °¯ ° ± ± � �

Answer
candidate

Process

Measure the distances between
Yahoo Korea and each service that is
located in the two adjacent sentences.

dist(1, 7) = 6, dist(1, 9) = 8

Calculate each distance weight.

distw(Yahoo Korea1, service7) =
1/(log(6)+1)=0.358

distw(Yahoo Korea1, service9) =
1/(log(8)+1)=0.325

Yahoo
Korea

Add up the distance weights.

LS(Yahoo Korea1, service) =
0.358+(1.0-0.358)*0.325=0.567

Figure 3. An example of the local scores

The second pass is divided into three
steps; construction of pseudo-documents,
calculation of global scores, and summation
of global scores and local scores. In the first
step, the indexing engine constructs
pseudo-documents. A pseudo-document is a
virtual document that consists of content

words occurring with an answer candidate in
some documents. The pseudo-document is
named after the answer candidate. Figure 4
shows an example of the pseudo-documents.

² ³ ´ µ ¶ · ¸ ¹ º » ¼
½ ¾ ¿ À Á Â Ã Ä Å Ã Æ Â Ç È É Ê Ë Ì Í È Ê Î Ï Ð Ñ

Ò Ò Ó ÔÓ Ô Õ Õ

Ö × Ø Ù Ú Û Ü Ý Þ ß à
á â ã ä å æ ç è é ç ê æ ë ç ì í î ï ð ç í ñ ò ó ô

õ õ ö ÷ö ÷ Õ Õ
Ö × Ø ø ù ú û ü ý þ
ÿ � � � � �
� � � � 	
 � �
 � � � � � � � � � � � � � � � �

� �
 � �
 � � � � ! " " # $

% % & '& ' ((
) * + + , - . / 0 .
1 2 3 + 4 5
6 7 8 9 : ; < = > ? @ ; A < < B C @ ; 9 < D ; E F

G < 9 H 8 = I < H ? J F K A = C C ; 9 I L
M 8 9 > ; < 9 H N ; ; O P

% % & '& ' ((

Q . R S T U V W T X Y T
Z [\] T ^ _ `
a b c d e f g h c e i j k l f d m n c d e o n n k
d c p n q k b c d e f g h c e i j k r n s c t

u u v v w w x x y y z z { | }{ | } ~ ~

� � � � � � � � � � � �
� � � � � � � �
� �
� �

 ¡ ¡ ¢ ¢ £ £ ¤ ¤ ¥ ¥ ¦ § ¨¦ § ¨ ~ ~

© ª© ª « « ¬ ¬ ­ ® ¯ ° ± ª ²­ ® ¯ ° ± ª ² ³ ³ ´ ´

µ µ ¶ ¶ · ¸· ¸ ¹ ¹ º º » » ¼ ¼ ½ ¾½ ¾ ¿ ¿ À À Á Á Â Â Ã Ã Ä Ä

…

Å Æ Ç È É Ç Ê Ë Ì Í Ç Î Ï Ð
Ñ Ò Ó Ô Õ Ö × Ø Ô × Ù Ö Ú Ø Û × Ô Ü Ó Ý Þ × Ü ß à Ø

á Ö â × ã

ä ä å å æ æ ç ç è è é é ê ê ë ë ì ì í í ê îê î ï ð ð ñï ð ð ñ

ò ó ô õ ö ô ÷ ø ù ú ô û ü ý
þ ÿ � � � � � � � � � � � � � � � 	 �
 � � 	 �
 �

� � � � �

� � � � � � � � � � � � � � � � ð ð � � � �� � ï ð ð ñï ð ð ñ

Figure 4. An example of the pseudo-documents

In the next step, the indexing engine calculates
global scores of each answer candidate, as
shown in Equation (3). The global score mean
how much the answer candidate is associated
with each term that occurs in several documents.

()
0 0

0 ,
log

)/log(

_
5.05.0

),_(

=

>





+

=

w
 tf if,

w
 tfif

N

nN

tfMax
wtf

w
a

dpseudoGS

 (3)

Equation 3 is similar to a well-known TF⋅IDF
equation (Fox (1983)). However, the equation is
different when it comes to the concept of a
document. We assume that there is no difference
between a pseudo-document and a real
document. Therefore, the TF component,

))_/(5.05.0(tfMaxtfw⋅+ in Equation 3, means

the normalized frequency of the content word w
in the pseudo-document

adpseudo_ that is

named after the answer candidate a. The IDF
component,)log(/)/log(NnN , means the
normalized reciprocal frequency of the
pseudo-documents including the content word w.
The value of TF⋅IDF,),_(wdpseudoGS a

, means

the global score between the answer candidate a
and the content word w. In detail , tf

w
 is the term

frequency of the content word w in
adpseudo_ .

Max_tf is the maximum value among the
frequencies of content words in

adpseudo_ . n is

the number of the pseudo-documents that
include the content word w. N is the total
number of the pseudo-documents. Figure 5
shows a calculation process of the global scores.

� � � � � � � �� � ! ! � "� " # $# $ % % & �& � � � ' ' # # (()) * +* + , - . /, - . / 0 0 1 1 2 2 3 3

4 5 6 7 8 9 : ; < = > ?
@ A B C ? D E F
G H I J K L M N I K O P Q R S T U V W T X Y Z Z [

\] ^ _ ` a b] \ c d e f] c g h i j k l m n

o o p p q q r r s ts t u u v v w w x x

y z { | } ~ � � } � � }
y z { | } � � �
� �

� �

� � � � � � � � � �� � ¡ ¡ ¢ ¢ x x

£ ¤ ¥ ¦ § ¥ ¨ © ª « ¥ ¬ ­ ®
¯ ° ± ² ³ ´ µ ¶ · µ ¸ ´ ¹ ¶ º µ · » ¼ ½ ¾ µ » ¿ À ¶

Á ´ Â µ Ã

Ä Ä Å Å Æ Æ Ç Ç È ÉÈ É Ê Ê Ë Ë Ì Ì Í ÊÍ Ê Î Î Ï Ð ÐÏ Ð Ð Ñ Ñ

Ò Ó Ô Õ Ö Ô × Ø Ù Ú Ô Û Ü Ý
Þ ß à á â ã ä å á ä æ ã ç å è ä á é à ê ë ä é ì í å

î ã ï ä ð

ñ ñ ò ò ó ó ô ô õ öõ ö ÷ ÷ ø ø Ð Ð ù ÷ù ÷ ú ú Ï Ð ÐÏ Ð Ð Ñ Ñ

…

GS(Jun Heo,Donguibogam) =

(0.5+0.5*(2/2))* (log(3/2)/log(3)) = 0.369

GS(Jun Heo,Eunseong Lee) =

(0.5+0.5*(1/2))* (log(3/2)/log(3)) = 0.277

GS(Jun Heo,novel) =

(0.5+0.5*(1/2))* (log(3/2)/log(3)) = 0.277

û ü

(Jun Heo)

GS(Jun Heo,hero) =

(0.5+0.5*(1/2))* (log(3/2)/log(3)) = 0.277

Figure 5. An example of the global scores

In the last step, the indexing engine adds up the
global scores and the local scores, as shown in
Equation (4).

βα
βα

+
⋅+⋅

=

),_(),(

),(

,

,

wdpseudoGSwaLS

waS

iaikd

ikd (4)

In Equation 4,),(, waLS ikd is the local score

between the answer candidate ai and the content
word w in the kth content window of the
document d, and),_(wdpseudoGS

ia
 is the

global score. α and β are weighting factors.
After summing up two scores, the indexing
engine updates the answer DB with the scores.

2.2 Lexico-syntactic query processing

For identifying users’ asking points, the
searching engine takes a user’s query and

converts it into a suitable form using the PLO
dictionary. The PLO dictionary contains the
semantic markers of words. Query words are
converted into semantic markers before pattern
matching. For example, the query “Who is the
CEO of Yahoo Korea?” is translated into “%who
auxili ary-verb %person preposition Yahoo
Korea symbol” . In the example, %person
and %who are the semantic markers. The
content words out of the PLO dictionary keep
their lexical forms. The functional words (e.g.
auxili ary verb, preposition) are converted into
POS’s. After conversion, the searching engine
matches the converted query against one of
predefined lexico-syntactic patterns, and
classifies the query into the one of the 105
semantic categories. When two or more patterns
match the query, the searching engine returns
the first matched category. Table 2 shows some
lexico-syntactic patterns. The above sample
query matches the first pattern in Table 2.

Table 2. Lexico-syntactic patterns

Semantic
category

Lexico-syntactic patterns

person %who (j|ef)?
(%person|@person) j? (sf)* $
(%person|@person) j? %ident j? (sf)* $
(%person|@person) j? (%about)? @req
(%person|@person) j? (%ident)? @req
(%person|@person) jp ef (sf)* $
%which (%person|@person)

tel_num (%tel_num|@tel_num) (%num)? j? (sf)*$
(%tel_num|@tel_num) (%num)? j? %what
(%tel_num|@tel_num) j? (%about)? @req
(%tel_num|@tel_num) j? (%what_num)

2.3 Answer scor ing and ranking

The searching engine calculates the similarities
between query and answer candidates, and ranks
the answer candidates according to the
similarities. To check the similarities, the
searching engine uses the AND operation of a
well -known p-Norm model (Salton, Fox and Wu
(1983)), as shown in Equation 5.

p
p
i

pp

p
i

p
i

pppp

and

qqq

atqatqatq

QASim

+++
−++−+−−

=

ý
ý

21

2211)1()1()1(
1

),(
 (5)

In Equation 5, A is an answer candidate, and at
i

is the ith term score in the context window of the
answer candidate. q

i
 is the ith term score in the

query. p is the P-value in the p-Norm model.

MAYA consumes a relatively short time for
answer scoring and ranking phase because the
indexing engine has already calculated the
scores of the terms that affect answer candidates.
In other words, the searching engine simply adds
up the weights of co-occurring terms, as shown
in Equation 5. Then, the engine ranks answer
candidates according to the similarities. The
method for answer scoring is similar to the
method for document scoring of traditional IR
engines. However, MAYA is different in that it
indexes, retrieves, and ranks answer candidates,
but not documents.

3 Evaluation

3.1 The Experiment data

To experiment on MAYA , we use two sorts of
document collections. One is a collection of
documents that are collected from two web sites;
korea.internet.com and www.sogang.ac.kr. The
former gives the members on-line articles on
Information Technology (IT). The latter is a
homepage of Sogang University. We call the
collection WEBTEC (WEB TEst Collection).
The other is KorQATeC 1.0 (Korean Test
Collection for evaluation of QA system) (Lee,
Kim and Choi (2000)). WEBTEC consists of
22,448 documents (110,004 kilobytes), and
KorQATeC 1.0 consists of 207,067 balanced
documents (368,768 kilobytes). WEBTEC and
KorQATeC 1.0 each include 50 pairs of
question-answers (QAs).

To experiment on MAYA, we compute the
performance score as the Reciprocal Answer
Rank (RAR) of the first correct answer given by
each question. To compute the overall
performance, we use the Mean Reciprocal
Answer Rank (MRAR), as shown in Equation 6
(TREC (n.d.); Voorhees and Tice (1999)).






= ∑

i
iranknMRAR /1/1 (6)

In Equation 6, rank
i
 is the rank of the first

correct answer given by the ith question. n is the
number of questions.

3.2 The analysis of experiment results

For ranking answer candidates, MAYA uses the
weighted sums of global scores and local scores,
as shown in Equation 4. To set the weighting
factors, we evaluated performances of MAYA

according to the values of the weighting factors.
Table 3 shows overall MRAR as the values of
the weighting factors are changed. In Table 3,
the boldface MRARs are the highest scores in
each test bed. We set α and β to 0.1 and 0.9 on
the basis of the experiment.

Table 3. The performances of MAYA according
to the values of the weighting factors

α β WEBTEC KorQATeC TOTAL
1.0 0.0 0.354 0.506 0.435
0.9 0.1 0.341 0.506 0.430
0.8 0.2 0.350 0.520 0.444
0.7 0.3 0.365 0.524 0.452
0.6 0.4 0.379 0.526 0.462
0.5 0.5 0.388 0.515 0.466
0.4 0.6 0.388 0.516 0.471
0.3 0.7 0.385 0.519 0.461
0.2 0.8 0.405 0.524 0.471
0.1 0.9 0.395 0.540 0.473
0.0 1.0 0.349 0.475 0.438

To evaluate the performance of MAYA , we
compared MAYA w ith Lee2000 (Lee, Kim and
Choi (2000)) and Kim2001 (Kim, Kim, Lee and
Seo (2000)) in KorQATeC 1.0 because we could
not obtain any experimental results on Lee2000
in WEBTEC. As shown in Table 4, the
performance of MAYA is higher than those of
the other systems. The fact means that the
scoring features of MAYA are useful. In Table 4,
Lee2000 (50-byte) returns 50-byte span of
phrases that include answer candidates, and the
others return answer candidates in themselves.
MRAR-1 is MRAR except questions for which
the QA system fails in finding correct answers.

Table 4. The performances of the QA systems in
KorQATeC 1.0

 Lee2000
(object)

Lee2000
(50-byte)

Kim2001
(object)

MAYA
(object)

MRAR 0.322 0.456 0.485 0.540

MRAR-1 0.322 0.456 0.539 0.600

MAYA could not extract correct answers for 5
questions. The failure cases are the following:

þ
The query classifier failed to identify users’
asking points. We think that most of these
failure queries can be dealt with by
supplementing additional lexico-syntactic
grammars.

þ
The NE recognizer failed to extract answer
candidates. To resolve this problem, we
should supplement the entries in the PLO
dictionary and regular expressions. We also
should endeavor to improve the precision of
the NE recognizer.

Table 5. The difference of response times

Response time

per query
(seconds)

Indexing time per
mega byte
(seconds)

IR system 0.026 2.830

MAYA 0.048 19.120

Incomplete
-MAYA

5.300 2.830

As shown in Table 5, the average retrieval time
of the IR system (Lee, Park and Won (1999)) is
0.026 second per query on a PC server with dual
Intel Pentium III . MAYA consumes 0.048
second per query. The difference of the retrieval
times between the IR system and MAYA is not
so big, which means that the retrieval speed of
MAYA is fast enough to be negligible. Table 5
also shows the difference of the response times
between MAYA and a QA system without a
predictive answer indexer. We call the QA
system without an answer indexer
Incomplete-MAYA . Incomplete-MAYA finds
and ranks answer candidates on retrieval time.
Hence, it does not need additive indexing time
except indexing time for the underlying IR
system. In the experiment on the response time,
we made Incomplete-MAYA process answer
candidates just in top 30 documents that are
retrieved by the underlying IR system. If
Incomplete-MAYA finds and ranks answer
candidates in the whole retrieved documents, it
will take longer response time than the response
time in Table 5. As shown in Table 5, the
response time of MAYA is about 110 times
faster than that of Incomplete-MAYA . Although
MAYA consumes 19.120 seconds per mega byte
for creating the answer DB, we conclude that
MAYA is more efficient because most of the
users are impatient for a system to show answers
within a few milli seconds.

4 Conclusion

We presented a fast and high-precision QA
system using a predictive answer indexer in

Korean. The predictive answer indexer extracts
answer candidates and terms adjacent to the
candidates on the indexing time. Then, using the
2-pass scoring method, the indexer stores each
candidate with the adjacent terms that have
specific scores in the answer DB. On the
retrieval time, the QA system just calculates the
similarities between a user’s query and the
answer candidates. Therefore, the QA system
minimizes the retrieval time and enhances the
precision. Moreover, our system can easily
converted into other domains because it is based
on shallow NLP and IR techniques such as POS
tagging, NE recognizing, pattern matching and
term weighting with TF⋅IDF.

References

AAAI Fall Symposium on Question Answering (n.d.)
Retrieved April 22, 2002, from
http://www.aaai.org/Press/Reports/Symposia/
Fall/fs-99-02.html

Berri J., Molla D., and Hess M. (1998) Extraction
automatique de réponses: implémentations du
systéme ExtrAns. In “Proceedings of the fifth
conference TALN 1998” , pp. 10-12.

DiQuest.com (n.d.) http://www.diquest.com

Fox E. A. (1983) Extending the Boolean and Vector
Space Models of Information Retrieval with
P-norm Queries and Multiple Concept Types, Ph.D.
Thesis, CS, Cornell University.

Harabagiu S., Moldovan D., Pasca M., Mihalcea R.,
Surdeanu M., Bunescu R., Gîrju R., Rus V. and
Morarescu P. (2000) FALCON: Boosting
Knowledge for Answer Engines. In “Proceedings of
the Eighth Text REtrieval Conference (TREC-9)” ,
from
http://trec.nist.gov/pubs/trec9/t9_proceedings.
html

Kim H., Kim K., Lee G. G. and Seo J. (2001) MAYA:
A Fast Question-answering System Based On A
Predictive Answer Indexer. In “Proceedings of the
ACL Workshop Open-Domain Question
Answering”, pp. 9-16.

Kupiec J. (1993) Murax: A Robust Linguistic
Approach for Question Answering Using an
On-line Encyclopedia. In “Proceedings of
SIGIR’93” .

Lee G., Park M. and Won H. (1999) Using syntactic
information in handling natural language queries
for extended boolean retrieval model. In
“Proceedings of the 4th international workshop on
information retrieval with Asian languages
(IRAL99)” , Academia Sinica, Taipei, pp. 63-70.

Lee K., Kim J. and Choi, K. (2000) Answer
Extraction based on Named Entity in Korean
Question Answering System. (in Korean) In
“Proceedings of the 12th Conference on Hangul
and Korean Language Processing” , pp. 184-189.

Lee K., Kim J. and Choi, K. (2000) Construction of
Test Collection for Evaluation of Question
Answering System. (in Korean) In “Proceedings of
the 12th Conference on Hangul and Korean
Language Processing” , pp. 190-197.

Miller G. (1990) WordNet: An on-line lexical
database. International Journal of Lexicography,
3/4.

Moldovan D., Harabagiu S., Pasca M., Mihalcea R.,
Goodrum R., Gîrju R. and Rus V. (1999) LASSO:
A Tool for Surfing the Answer Net. In “Proceedings
of The Eighth Text REtrieval Conference
(TREC-8)” , from
http://trec.nist.gov/pubs/trec8/t8_proceedings.
html

Prager J., Brown E. and Coden A. (2000)
Question-Answering by Predictive Annotation. In
“Proceedings of SIGIR 2000” , pp. 184-191.

Prager J., Radev D., Brown E. and Coden A. (1999)
The Use of Predictive Annotation for Question
Answering in TREC8. In “Proceedings of The
Eighth Text REtrieval Conference (TREC-8)” ,
from
http://trec.nist.gov/pubs/trec8/t8_proceedings.
html

Salton G., Fox E. A. and Wu H. (1983) Extended
Boolean Information Retrieval. Communication of
the ACM, 26/12, pp. 1022-1036.

TREC (Text REtrieval Conference) Overview. (n.d.)
Retrieved April 22, 2002, from
http://trec.nist.gov/overview.html

Vicedo J. L. and Ferrándex A. (2000) Importance of
Pronominal Anaphora resolution in Question
Answering systems. In “Proceeding of ACL 2000”,
pp. 555-562.

Voorhees E. and Tice D. M. (2000) Building a
Question Answering Test Collection. In
“Proceedings of SIGIR 2000” , pp. 200-207.

Voorhees E. and Tice D. M. (1999) The TREC-8
Question Answering Track Evaluation. In
“Proceedings of the Eighth Text REtrieval
Conference (TREC-8)” , from
http://trec.nist.gov/pubs/trec8/t8_proceedings.
html

	Table of Content
	Workshops
	Authors

