
Multilingual Question Answering with High Portability on
Relational Databases

Hanmin Jung

Department of Computer Science and
Engineering

Pohang University of Science and Technology
San 31, Hyoja-dong, Nam-gu, Pohang,

Kyungbuk, Korea (790-784)
Telephone: +82-54-279-5581

jhm@postech.ac.kr

Gary Geunbae Lee
Department of Computer Science and Engineering

Pohang University of Science and Technology
San 31, Hyoja-dong, Nam-gu, Pohang, Kyungbuk,

Korea (790-784)
Telephone: +82-54-279-5581

gblee@postech.ac.kr

Abstract

This paper describes a highly-portable
multilingual question answering system on
multiple relational databases. We apply
semantic category and pattern-based
grammars, into natural language interfaces to
relational databases. Lexico-semantic pattern
(LSP) and multi-level grammars achieve
portability of languages, domains, and
DBMSs. The LSP-based linguistic
processing does not require deep analysis
that sacrifices robustness and flexibility, but
can handle delicate natural language
questions. To maximize portability, we drive
various dependent parts into two tight
corners, i.e., language-dependent part into
front linguistic analysis, and
domain-dependent and database-dependent
parts into backend SQL query generation.
Experiments with 779 queries generate only
constraint-missing errors, which can be
easily corrected by adding new terms, of
2.25% for English and 5.67% for Korean.

Introduction

As a natural language (NL) interface, question
answering [7] on relational databases 1 allows
users to access information stored in databases by
requests in natural language [16], and generates
as output natural language sentences, tables, and
graphical representation. The NL interface can be
combined with other interfaces to databases: a

1 We also call it NLIDB (Natural Language Interface to
DataBases).

formal query language interface directly using
SQL, a form-based interface with fields to input
query patterns, and a graphical interface using a
keyboard and a mouse to access tables. The NL
interface does not require the learning of formal
query languages, and it easily represents negation
and quantification [4], and provides discourse
processing [8].

The use of natural language has both advantages
and disadvantages. Including general NLP
problems such as quantifier scoping, PP
attachment, anaphora resolution, and elliptical
questions, current NLIDB has many
shortcomings [1]: First, as a frequent complaint,
it is difficult for users to understand which kinds
of questions are actually allowed or not. Second,
the user assumes that the system is intelligent; he
or she thinks NLIDB has common sense, and can
deduce facts. Finally, users do not know whether
a failure is caused by linguistic coverage or by
conceptual mismatch. Nevertheless, natural
language does not need training in any
communication media or predefined access
patterns.

NLIDB systems [2], one of the first applications
of natural language processing, including
“LUNAR” were developed from the 1970s [23].
In the 1980s, research focuses on intermediate
representation and portability, and attempts to
interface with various systems. CHAT-80 [22]
transforms an English query into PROLOG
representation, and ASK [20] teaches users new
words and concepts. From 1990s, commercial
systems based on linguistic theories such as
GPSG, HPSG, and PATR-II appear [13], and
some systems attempt to semi-automatically

construct domain knowledge. MASQUE/SQL
[1] uses a semi-automatic domain editor, and
LOQUI [3], a commercial system, adopts GPSG
grammar. Meanwhile, Demers introduces a
lexicalist approach for natural language to SQL
translation [6], and as the CoBase project of
UCLA, Meng and Chu combine information
retrieval and a natural language interface [14].

The major problems of the previous systems are
as follows. First, they do not effectively reflect
the vocabulary used in the description of database
attributes into linguistic processing. Second, they
require users to pose natural language queries at
one time using a single sentence rather than give
the flexibility by dialog-based query processing.
The discordance between attribute vocabulary
and linguistic processing vocabulary causes the
portability problem of domain knowledge from
knowledge acquisition bottleneck; the systems
need extensive efforts by some experts who are
highly experienced in linguistics as well as in the
domain and the task.

Androutsopoulos [1] [2], which are mainly
referenced for this section, classifies NLIDB
approaches into the following four major
categories.

Pattern matching systems: Some of the early
systems exclude linguistic processing. They are
easy to implement, but have many critical
limitations caused by linguistic shallowness [17].

Syntax-based systems: They syntactically
analyze user questions, and use grammars that
transform parsed trees to SQL queries [23].
However, the mapping rules are difficult and
tedious to devise, which drops the portability of
languages and domains.

Semantic grammar systems: The systems adopt
techniques interleaving syntactic and semantic
processing, and generate SQL queries from the
result [19] [21]. They are useful to rapidly
develop parsers in limited domains, but are not
ported well to new domains due to hard-wired
and domain-dependent semantic information
[18].

Intermediate representation language
systems: Most current systems place an
intermediate logical query between NL question
and SQL [5]. The processes before the
intermediate query are defined as the linguistic

front-end (LFE), and the other processes as the
database back-end (DBE). This architecture has
the merits that LFE is DBMS-independent and an
inference module can be placed between LFE and
DBE. However, the limitation of parsing and
semantic analysis requires semantic
post-processing. Nevertheless, it is difficult to
achieve high quality analysis for database
applications.

On the contrary, we apply linguistic processing
based on lexico-semantic patterns (LSP), a
prominent method verified in text-based question
answering [10] [12], into NLIDB, and propose
multi-level grammars to represent query
structures and to translate into SQL queries. Our
system is a hybridization of the pattern matching
system and the intermediate representation
language system. However, our LSP-based
pattern covers lexical to semantic matching, and
the multi-level grammars for intermediate
representation evidently separate the database
back-end from the linguistic front-end. Thus, our
method has the ability to divide LFE and DBE,
but promises greater adaptability due to the
hybrid linguistic analysis and the
pattern-matching characteristics.

The LSP-based linguistic processing does not
require deep analysis that sacrifices robustness
and flexibility, but handles delicate NL questions.
To maximize portability of languages, domains,
and DBMSs, we drive the various dependent
parts into two tight corners, i.e., the
language-dependent part into front linguistic
analysis, and the domain-dependent and
database-dependent parts into backend SQL
query generation. In our LSP description,
attribute vocabularies are also represented as
semantic classes that represent semantic meaning
of words. Thus, the domain-dependent attributes
and values are automatically extracted from
databases, and get registered in a semantic
category dictionary.

1 LSP-based Linguistic Processing and
Multi-level Grammars

A lexico-semantic pattern (LSP) is the structure
where linguistic entries and semantic types can
be used in combinations to abstract certain
sequences of words in a text [12] [15]. Linguistic
entries consist of words, phrases and

part-of-speech tags, such as “television,” “3D
Surround,” and “NP2.” Semantic types consist of
attribute names, semantic tags (categories) 3 and
user-defined semantic classes 4 , such as
“@model,” “@person,” and “%each.”

LSP-based language processing simplifies the
natural language interface due to the following
characteristics: First, linguistic elements from
lexicons to semantic categories offer flexibility in
representing natural language. Second, simple
LSP matching without fragile high-level analyses
assures a robust linguistic model. Third, the use
of common semantic types among different
languages reduces the burden of cross-linguistic
portability, i.e., enhances multilingual expansion.
Finally, separation between dictionary and rules
easily enriches domain knowledge by
minimizing the conflict to describe the rules.

Multi-level grammars are designed to construct
intermediate representation as the source of SQL
query generation. The grammars interpret
lexico-semantic patterns obtained from the
linguistic front-end, i.e., morphological analysis,
and build attribute-value trees for database
back-end. We introduce three-level grammars
that include lexico-semantic patterns to describe
their rules: a QT5 grammar to determine question
types, an AV 6 -TYPE grammar to construct
attribute-value nodes (see section 2.1), and an
AV-OP grammar to find the relations between
the nodes (see section 2.2). Using the QT
grammar, query-to-LSP transfer makes a
lexico-semantic pattern from a given question [9].
The lexico-semantic patterns enhance
information abstraction through many-to-one
mapping between questions and a
lexico-semantic pattern.

2 System Configuration

To handle the two major problems of previous
NLIDB systems, i.e., 1) the discordance between
attribute vocabulary and linguistic processing

2 Part-of-speech tag for a proper noun
3 “@” is the start symbol for the semantic tags.
4 “%” is the start symbol for the user-defined semantic
classes.
5 Question type
6 Attribute and value

vocabulary, which causes laborious low
portability in multiple environments, and 2) the
absence of query refinement supporting
session-based dialog, our system effectively
develops LSP-based linguistic processing,
multi-level grammars, and SQL query refinement.
To maximize portability of multiple
environments, such as languages, domains, and
DBMSs, each environment-dependent module is
clearly defined and confined.

Our system consists of four phases (figure 2.1):
morphological analysis, QT/AV Processing,
AV-tree construction, and SQL query generation.
The QT/AV processing determines the question
types for a given question, and constructs
attribute-value nodes from the question. This
phase includes linguistic front-end processes,
such as morphological analysis and named entity
recognition. The AV-tree construction phase
finds the relation between the nodes obtained
from the previous phase, and produces an
attribute-value tree that is independent of
DBMSs. The last phase, SQL query generation,
translates the attribute-value tree into a
DBMS-dependent SQL query.

[Figure 2.1] System Architecture

2.1 Morphological Analysis and QT/AV
Processing

We separate all processes and resources using a
linguistic dependency approach. Morphological
analysis and all the resources, including
grammars and dictionaries, are all language
dependent. Morphological analysis for each
language produces a sequence of (word, lemma,
POS) pairs. After the analysis, system shares all

processes independent of the source language;
this increases linguistic portability by pushing the
language-dependent processes to the earlier
stage.

To acquire the named entities for target databases,
the system looks up the category dictionary
which includes main semantic information. The
category dictionary consists of four components:
semantic tags, user-defined semantic classes,
part-of-speech (POS) tags, and lexical forms. The
structure of semantic tags is a flat form. In a
lexico-semantic pattern, each semantic tag
follows a “@” symbol. For example, a semantic
tag “@item 7 ” includes the words, such as
“비디오,” “비데오,” and “브이티알” in Korean,
and “VCR” and “video” in English. User-defined
semantic classes are the tags for syntactically or
semantically similar lexical groups. For example,
a user-defined semantic class “%each” includes
the words, such as “각,” “각품목,” “개별,” and
“별” in Korean, and “each” and “every” in
English. The category dictionary has the highest
priority to construct the lexico-semantic pattern
for a sentence. In the absence of an entry, the
part-of-speech tag of the current morpheme
becomes the component of the LSP.

A question type indicates ordering clauses,
including “ASC” and “DESC,” or column
functions such as “SUM(),” “AVG(),” and
“MIN().” By applying a QT grammar, a question
type and a target attribute, i.e., the argument of
the question type, are obtained. The following
shows the process from user query to SQL
template.

[User query]
“How much is the cheapest among 34 inches?”
[LSP pattern]
%how %much %be %dt %most-cheap %among
num @unit_length sent
[QT grammar]
……
^8%how%much%bedt%most-cheap

qo_min|qt_price
@corpin%asc

qo_aso|qt_corp

7 “item” attribute for “audio-video” product database
8 Symbol designating the beginning position of a regular
expression

%corp%make@type%and@type%together
 qo_intersect|qt_corp
……
[Question type]
MIN(price)
[SQL template]
SELECT MIN(price) FROM … WHERE …

AV-TYPE grammar finds all the pairs of
attributes and values by applying lexico-semantic
patterns. Like QT grammar, LSP-based condition
and action exist. The action consists of an
attribute and a value operator. In SQL, the two
components are represented like ([attribute]
[value operator] [value]) in WHERE clauses, for
example, (price > 300,000). The pairs of attribute
and value become the nodes of the AV-tree,
which is the source to generate the SQL query.
The following examples demonstrate the method
to obtain pairs using the AV-TYPE grammar.

[User query]
“Choose only Samsung’s among 25 inches, 21
inches, and 29 inches products.”
[LSP pattern]
… @corp … num @unit_length … num
@unit_length … num @unit_length …
[AV-TYPE grammar]
……
engj%start

@model|vo_begin
num@unit_length

@size|vo_like
%betweennum%andnum
 @price|vo_between
%each%price
 @price|vo_group
@corp
 @corp|vo_like
@price%elower
 @vop_mod9|vo_elower
……
[Pairs of attribute and value]
(corp like ‘%Samsung%’)
(size like ‘25inch’)
(size like ‘21inch’)
(size like ‘29inch’)

9 Action to modify the current value operation

2.2 AV-tree Construction

Binary operators (AND, OR, NOR, NAND …)
connect the pairs of attributes and values that are
the nodes of the AV-tree. AV-OP grammar
describes the relations using lexico-semantic
patterns like other grammars. The condition part
of the grammar consists of attributes and
conjunctions (see examples below), whereas the
action part consists of binary operators and the
attributes’ index in postfix notation.

[Pairs of attribute and value from section 2.1]
(corp like ‘%Samsung%’)
(size like ‘25inch’)
(size like ‘21inch’)
(size like ‘29inch’)
[AV-OP grammar]
……
@corp@size@size%and@size
 1|2|3|5|bo_or|bo_or|bo_and
@model%and@model@type
 1|3|bo_or|4|bo_and
@type@model@pname
 1|2|bo_and|3|bo_and
……

[Prefix notation and AV-tree]

To handle negative expressions, we follow the
two steps: First, we determine each negation’s
scope from the input sentence. Second, we insert
a “NOT” unary operator into the maximal AV
subtree that the negation’s scope covers. For
example, the input sentence “0 no 1 LG 2
Electronics 3 and 4 Philips 5” has a negation with
[0, 5] scope, and three subtrees: [1, 5] for “LG
Electronics and Philips,” [1, 3] for “LG
Electronics,” and [4, 5] for “Philips.” Since the
negation’s scope covers all the subtrees, “NOT”
operator is put onto the subtree with [1, 5].

Therefore, (NOT ((corp like ‘%LG
Electronics%’) OR (corp like ‘%Philips%’)))
becomes the constraint of the “WHERE” clause.

A query expansion dictionary defines the
conceptual sets of values, where the set can
definitely determine its values in a given DB,
such as “imported product” and “Japanese
companies.” The conceptual sets are different
from user-defined terms in that the meaning of
user-defined terms varies with users, such as
“large size of TV” and “high-priced audio.” For
the user-defined terms, we maintain the user’s
profile for each user, and for the conceptual sets,
maintain a query expansion dictionary for the
system.

2.3 SQL Query Generation

Domains and DBMSs affect the generation of
SQL queries. For multiple domains, our system
automatically determines the domain that the
user requests; first, find the domains to which
each attribute-value node belongs. Second, select
one or more domains using the combination of
domains from the first step. When two or more
domains are chosen, the domains get combined
with attributes in the SQL query to be generated,
such as “(saa.size >= ‘29inch’)” and “(bb.corp
like ‘%SONY%’).” Where the attribute of
question type is ambiguous, the selected domains
also help to fix the attribute. We generate an SQL
query in the order of question types (SELECT …
FROM), tables (FROM … WHERE), constraints
(WHERE …), sub-query, and connection with
two SQLs.

For supporting session-based dialog, we preserve
the SQL query created from the previous
questions, and re-generate new SQL query for the
current successive question. First, the system
checks whether the current question has the same
domain as the previous question or not. When the
two domains are equal, the previous generated
SQL query becomes a constraint part of the
current SQL query, for example, “… FROM
(SELECT …) WHERE … .” Otherwise, a default
SQL query10 will be generated.

10 “SELECT * FROM table-name WHERE 1 (or id>=0),”
where id is the primary key.

3 Portability of Languages, Domains, and
DBMSs

Natural language interfaces to databases should
consider the portability of languages, domains,
and DBMSs. Previous systems are short of one or
more portability factors; systems with heavy
linguistic components have trouble in expanding
into other languages, and systems with simple
pattern matching are insufficient to deal with
multiple domains and DBMSs. On the other hand,
our system adopts robust LSP-based language
processing and multi-level grammars to
structurally analyze the user’s query.

Portability of languages: In our system, only
both morphological analysis and the resources
including dictionaries and grammars are
language-dependent. Because the resources
include lexico-semantic patterns that represent
linguistic characteristics, both the linguistic
front-end and the database back-end can be
clearly divided. Where the languages to handle
are similar to each other, as in word order and
linguistic structure, many rules of grammars can
be shared without consideration of the specific
languages. Like English and Korean11, however,
if the two languages are quite different, then the
shared portion naturally decreases. We separate
out the language-dependent morphological
analysis and the subsequent processes as soon as
possible to easily expand to other languages. To
add another language, only new morphological
analysis and linguistic resources need to be
appended to the existing system. Heavy linguistic
processes like syntactic and semantic analysis
used by the previous systems inevitably delay the
point of linguistic separation.

Portability of domains: A new domain with the
new DB schema affects both the linguistic
front-end and the database back-end. To reduce
the influence, our system deals with the
domain-related information only in resources and
SQL query generation. The other processes, such
as morphological analysis, QT/AV processing,
and AV-tree construction are all
domain-independent. Domain category
dictionary and grammars localize the attribute

11 Korean and Japanese are very similar in that the two are
agglutinative languages and have SOV structures, whereas,
English and some of the European languages are inflective
and have SVO structures.

names, but the general category dictionary is
independent of domains because it is designed to
handle common named entities. In order to
manage the multiple domains, SQL query
generation should consider domain information.
However, a single domain reduces the burden of
domain portability because the processing has no
relation with the SQL query.

Portability of DBMSs: The format and the
descriptive power of SQL queries vary from
DBMSs, such as in attribute names, sub-query
operation, types of operations, case sensitivity,
and constraint syntax. In our system, any
linguistic processes and resources do not involve
SQL query generation, which eventually
increases DBMS portability. SQL query
generation has alternatives to produce
DBMS-dependent SQL only in some sub-parts,
such as sub-query generation and combination
with SQL queries. Until an SQL query begins to
be generated, current DBMS does not influence
any processes and resources.

4 Experiment Results

Pursuing high portability in languages, domains,
and DBMSs, we implemented a multi-lingual
question answering system on relational
databases. The target languages are English and
Korean, which are completely different in
linguistic structures. Our system dealt with two
domains for Korean: first, an audio-video product
database with 418 entries automatically
populated from an information extraction system
[11], and second, a price comparison database
with 1964 entries and multiple schemas from a
BestBuyer 12 comparison shopping mall. For
multiple languages, we manually translated all
the Korean entries into English. Oracle 8.0.5 and
MySQL 3.23.22 were used as two different
DBMSs.

Our system processes the user question from a
Web browser, and produces an SQL query. Next,
CGI (Common Gateway Interface) sends the
query to DBMSs. For the result retrieved from
databases, the user can ask a new question or
make a context-based refinement of the question.

12 http://www.bestbuyer.co.kr/mainbbr/index.php3

For training, five graduate students prepare 192
questions for each language (see appendix A).
The questions include negation, quantifiers,
multiple conjunctions, multiple question types,
various lexicography, user-defined terms,
synonyms, and many value operators. Table 4.1
shows the current linguistic resources
constructed from the training set for both
languages.

Resources English Korean
Domain category

dictionary13
2,612
entries

2,847
entries

General category
dictionary14

63,121
entries

67,280
entries

QT grammar 56 entries 14 entries
AV-TYPE
grammar

96 entries 70 entries

AV-OP grammar 94 entries 93 entries
[Table 4.1] Resources for the training set

For the test, we gather 779 unique queries (355
for English and 424 for Korean) and 111
refinement queries (19 for English and 92 for
Korean) from the system log for about four
months (see appendix A and B). Our system does
not fail for the questions because of the
LSP-based robustness15, but some SQL queries
with wrong constraints (2.25% for English) are
caused by undefined terms, such as “wide TV”
and “voice multiplex,” and by an illegal unit such
as “cm” and “mm.” 16 In Korean, the rate of
wrong constraints rises to 5.67% that are mainly
caused by the irregular transiterations of the
foreign words, for example, “텔레비,”
“텔레비전,” “텔레비전,” “테레비,”
“테레비젼,” “테레비젼,” “티브이,” and “티비”
for “TV.” However, all the above errors can be
easily corrected by adding new terms. This
phenomenon is also true for multi-level
grammars. For a new linguistic expression, we
simply decompose it and disperse the
components throughout the grammars.

13 Most of the entries are automatically extracted from target
databases.
14 Reuse the existing dictionaries used for open-domain text
question answering
15 When the system does not find any proper constraint, it
produces a default SQL query with null constraint.
16 Our databases use only “inch” for the size, thus a unit
converter needs to cover the errors.

Conclusion

We developed a multilingual question answering
system on relational databases and demonstrated
high performance and high portability in
languages, domains, and DBMSs. LSP-based
linguistic processing and multi-level grammars
preserve robustness and adaptability without
losing the precise interpretation of user queries.
In order to overcome previous problems,
including the discordance between attribute
vocabulary and linguistic processing vocabulary,
and the absence of query refinement supporting
session-based dialog, we introduced automatic
linguistic dictionary construction from database
attribute terms, LSP-based linguistic processing,
multi-level grammars, and SQL query
refinement.

By using lexico-semantic patterns, we separate
language-dependent processes from the others at
the earliest stage, and use the multi-level
grammars to produce sophisticated
attribute-value tree structures to connect the
attribute vocabulary and the linguistic processing
vocabulary. To treat the multiple domains and
DBMSs, only SQL query generation and related
resources are involved. This minimization of the
environment-dependent parts enables our system
to be widely ported on multiple environments.
Future works include expansion to other
languages, including Japanese and Chinese.

References

[1] I. Androutsopoulos, G. Ritchie and P.
Thanisch, “MASQUE/SQL – An Efficient and
Portable Natural Language Query Interface for
Relational Databases,” Proc. of the 6th
International Conference on Industrial &
Engineering Applications of Artificial
Intelligence and Expert Systems, 1993.

[2] I. Androutsopoulos, G. Ritchie, and P.
Thanisch, “Natural Language Interfaces to
Databases – An Introduction,” Natural
Language Engineering, Vol. 1, No. 1, 1995.

[3] J. Binot, L. Debille, D. Sedlock, and B.
Vandecapelle, “Natural Language Interfaces:
A New Philosophy,” SunExpert Magazine,
January, 1991.

[4] P. Cohen, The Role of Natural Language in a
Multimodal Interface, Technical Note 514,

Computer Dialogue Laboratory, SRI
International, 1991.

[5] R. Dale, H. Moisl, and H. Somers (Eds.), “A
Handbook of Natural Language Processing,”
Marcel Dekker Inc., 2000.

[6] P. Demers, A Lexical Approach to Natural
Language Front-end Database,
http://www.cs.stu.ca/research/groups/NLL,
1999.

[7] S. Harabagiu, D. Moldovan, M. Pasca, R.
Mihalcea, M. Surdeanu, R. Bunescu, R. Girju,
V. Rus, and P. Morarescu, “The Role of
Lexico-Semantic Feedback in Open-Domain
Textual Question-Answering,” Proc. of the 39th
Annual Meeting and 10th Conference of the
European Chapter, 2001.

[8] G. Hendrix, “Natural Language Interface
(Panel),” Computational Linguistics, Vol. 8,
No. 2, 1982.

[9] H. Jung, G. Lee, W. Choi, K. Min and J. Seo,
“A Multi-lingual Question answering System
on Relational Databases,” Proc. of the 13th
Conference on Hangeul and Korean
Information Processing (Korean), 2001.

[10] H. Kim, K. Kim, G. Lee, and J. Seo,
“MAYA: A Fast Question-answering System
Based on a Predictive Answer Indexer,” Proc.
of the Workshop Open-Domain Question
Answering, the 39th Annual Meeting of ACL,
2001.

[11] D. Kim, J. Cha and G. Lee, Learning
Information Extraction Patterns for the Web
Data Mining, Proc. of the 13th Conference on
Hangeul and Korean Information Processing
(Korean), 2001.

[12] G. Lee, J. Seo, S. Lee, H. Jung, B. Cho, C.
Lee, B. Kwak, J. Cha, D. Kim, J. Ahn, H. Kim
and K. Kim, “SiteQ: Engineering High
Performance QA System Using
Lexico-Semantic Pattern Matching and
Shallow NLP,” Proc. of the 10th Text REtrieval
Conference, 2001.

[13] P. McFetridge, F. Popowich and D. Fass,
“An Analysis of Compounds in HPSG
(Head-driven Phrase Structure Grammar) for
Database Queries,” Data & Knowledge
Engineering, Vol. 20, 1996.

[14] F. Meng and W. Chu, Database Query
Formation from Natural Language using
Semantic Modeling and Statistical Keyword

Meaning Disambiguation, CSD-TR 990003,
University of California, 1999.

[15] A. Mikheev and S. Finch, “Towards a
Workbench for Acquisition of Domain
Knowledge from Natural Language,” Proc. of
the 7th Conference of the European Chapter of
the Association for Computational Linguistics,
1995.

[16] C. Senturk, Natural Language Interfaces to
Databases, In the course of Digital Libraries,
E6998-003, 1997.

[17] A. Shankar and W. Yung, gNarLI: A
practical Approach to Natural Language
Interfaces to Databases, Term Report, Harvard
University, 2000.

[18] D. Silberberg and R. Semmel, “Role-Based
Semantics for Conceptual-Level Queries,”
Proc. of the 5th KRDB Workshop, 1998.

[19] M. Templeton and J. Burger, “Problems in
Natural Language Interface to DBMS with
Examples from EUFID,” Proc. of the 1st
Conference on Applied Natural Language
Processing, 1983.

[20] B. Thompson and F. Thompson, “ASK is
Transportable in Half a Dozen Ways,” ACM
Transactions on Office Information Systems,
Vol. 3, No. 2, 1985.

[21] D. Waltz, “An English Language Question
Answering System for a Large Relational
Database,” Communications of the ACM, Vol.
21, No. 7, 1978.

[22] D. Warren and F. Pereira, “An Efficient
Easily Adaptable System for Interpreting
Natural Language Queries,” Computational
Linguistics, Vol. 8, 1982.

[23] W. Woods, R. Kaplan, and B. Webber, The
Lunar Sciences Natural Language Information
System: Final Report, BBN Report 2378, Bolt
Beranek and Newman Inc., Cambridge,
Massachusetts, 1972.

	Table of Content
	Workshops
	Authors

