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Abstract  

This paper describes a highly-portable 
multilingual question answering system on 
multiple relational databases. We apply 
semantic category and pattern-based 
grammars, into natural language interfaces to 
relational databases. Lexico-semantic pattern 
(LSP) and multi-level grammars achieve 
portability of languages, domains, and 
DBMSs. The LSP-based linguistic 
processing does not require deep analysis 
that sacrifices robustness and flexibility, but 
can handle delicate natural language 
questions. To maximize portability, we drive 
various dependent parts into two tight 
corners, i.e., language-dependent part into 
front linguistic analysis, and 
domain-dependent and database-dependent 
parts into backend SQL query generation. 
Experiments with 779 queries generate only 
constraint-missing errors, which can be 
easily corrected by adding new terms, of 
2.25% for English and 5.67% for Korean. 

Introduction 

As a natural language (NL) interface, question 
answering [7] on relational databases 1  allows 
users to access information stored in databases by 
requests in natural language [16], and generates 
as output natural language sentences, tables, and 
graphical representation. The NL interface can be 
combined with other interfaces to databases: a 

                                                   
1  We also call it NLIDB (Natural Language Interface to 
DataBases). 

formal query language interface directly using 
SQL, a form-based interface with fields to input 
query patterns, and a graphical interface using a 
keyboard and a mouse to access tables. The NL 
interface does not require the learning of formal 
query languages, and it easily represents negation 
and quantification [4], and provides discourse 
processing [8]. 

The use of natural language has both advantages 
and disadvantages. Including general NLP 
problems such as quantifier scoping, PP 
attachment, anaphora resolution, and elliptical 
questions, current NLIDB has many 
shortcomings [1]: First, as a frequent complaint, 
it is difficult for users to understand which kinds 
of questions are actually allowed or not. Second, 
the user assumes that the system is intelligent; he 
or she thinks NLIDB has common sense, and can 
deduce facts. Finally, users do not know whether 
a failure is caused by linguistic coverage or by 
conceptual mismatch. Nevertheless, natural 
language does not need training in any 
communication media or predefined access 
patterns. 

NLIDB systems [2], one of the first applications 
of natural language processing, including 
“LUNAR” were developed from the 1970s [23]. 
In the 1980s, research focuses on intermediate 
representation and portability, and attempts to 
interface with various systems. CHAT-80 [22] 
transforms an English query into PROLOG 
representation, and ASK [20] teaches users new 
words and concepts. From 1990s, commercial 
systems based on linguistic theories such as 
GPSG, HPSG, and PATR-II appear [13], and 
some systems attempt to semi-automatically 



construct domain knowledge. MASQUE/SQL 
[1] uses a semi-automatic domain editor, and 
LOQUI [3], a commercial system, adopts GPSG 
grammar. Meanwhile, Demers introduces a 
lexicalist approach for natural language to SQL 
translation [6], and as the CoBase project of 
UCLA, Meng and Chu combine information 
retrieval and a natural language interface [14]. 

The major problems of the previous systems are 
as follows. First, they do not effectively reflect 
the vocabulary used in the description of database 
attributes into linguistic processing. Second, they 
require users to pose natural language queries at 
one time using a single sentence rather than give 
the flexibility by dialog-based query processing. 
The discordance between attribute vocabulary 
and linguistic processing vocabulary causes the 
portability problem of domain knowledge from 
knowledge acquisition bottleneck; the systems 
need extensive efforts by some experts who are 
highly experienced in linguistics as well as in the 
domain and the task. 

Androutsopoulos [1] [2], which are mainly 
referenced for this section, classifies NLIDB 
approaches into the following four major 
categories. 

Pattern matching systems: Some of the early 
systems exclude linguistic processing. They are 
easy to implement, but have many critical 
limitations caused by linguistic shallowness [17]. 

Syntax-based systems: They syntactically 
analyze user questions, and use grammars that 
transform parsed trees to SQL queries [23]. 
However, the mapping rules are difficult and 
tedious to devise, which drops the portability of 
languages and domains. 

Semantic grammar systems: The systems adopt 
techniques interleaving syntactic and semantic 
processing, and generate SQL queries from the 
result [19] [21]. They are useful to rapidly 
develop parsers in limited domains, but are not 
ported well to new domains due to hard-wired 
and domain-dependent semantic information 
[18]. 

Intermediate representation language 
systems: Most current systems place an 
intermediate logical query between NL question 
and SQL [5]. The processes before the 
intermediate query are defined as the linguistic 

front-end (LFE), and the other processes as the 
database back-end (DBE). This architecture has 
the merits that LFE is DBMS-independent and an 
inference module can be placed between LFE and 
DBE. However, the limitation of parsing and 
semantic analysis requires semantic 
post-processing. Nevertheless, it is difficult to 
achieve high quality analysis for database 
applications. 

On the contrary, we apply linguistic processing 
based on lexico-semantic patterns (LSP), a 
prominent method verified in text-based question 
answering [10] [12], into NLIDB, and propose 
multi-level grammars to represent query 
structures and to translate into SQL queries. Our 
system is a hybridization of the pattern matching 
system and the intermediate representation 
language system. However, our LSP-based 
pattern covers lexical to semantic matching, and 
the multi-level grammars for intermediate 
representation evidently separate the database 
back-end from the linguistic front-end. Thus, our 
method has the ability to divide LFE and DBE, 
but promises greater adaptability due to the 
hybrid linguistic analysis and the 
pattern-matching characteristics. 

The LSP-based linguistic processing does not 
require deep analysis that sacrifices robustness 
and flexibility, but handles delicate NL questions. 
To maximize portability of languages, domains, 
and DBMSs, we drive the various dependent 
parts into two tight corners, i.e., the 
language-dependent part into front linguistic 
analysis, and the domain-dependent and 
database-dependent parts into backend SQL 
query generation. In our LSP description, 
attribute vocabularies are also represented as 
semantic classes that represent semantic meaning 
of words. Thus, the domain-dependent attributes 
and values are automatically extracted from 
databases, and get registered in a semantic 
category dictionary. 

1 LSP-based Linguistic Processing and 
Multi-level Grammars 

A lexico-semantic pattern (LSP) is the structure 
where linguistic entries and semantic types can 
be used in combinations to abstract certain 
sequences of words in a text [12] [15]. Linguistic 
entries consist of words, phrases and 



part-of-speech tags, such as “television,” “3D 
Surround,” and “NP2.” Semantic types consist of 
attribute names, semantic tags (categories) 3 and 
user-defined semantic classes 4 , such as 
“@model,” “@person,” and “%each.” 

LSP-based language processing simplifies the 
natural language interface due to the following 
characteristics: First, linguistic elements from 
lexicons to semantic categories offer flexibility in 
representing natural language. Second, simple 
LSP matching without fragile high-level analyses 
assures a robust linguistic model. Third, the use 
of common semantic types among different 
languages reduces the burden of cross-linguistic 
portability, i.e., enhances multilingual expansion. 
Finally, separation between dictionary and rules 
easily enriches domain knowledge by 
minimizing the conflict to describe the rules. 

Multi-level grammars are designed to construct 
intermediate representation as the source of SQL 
query generation. The grammars interpret 
lexico-semantic patterns obtained from the 
linguistic front-end, i.e., morphological analysis, 
and build attribute-value trees for database 
back-end. We introduce three-level grammars 
that include lexico-semantic patterns to describe 
their rules: a QT5 grammar to determine question 
types, an AV 6 -TYPE grammar to construct 
attribute-value nodes (see section 2.1), and an 
AV-OP grammar to find the relations between 
the nodes (see section 2.2). Using the QT 
grammar, query-to-LSP transfer makes a 
lexico-semantic pattern from a given question [9]. 
The lexico-semantic patterns enhance 
information abstraction through many-to-one 
mapping between questions and a 
lexico-semantic pattern. 

2 System Configuration 

To handle the two major problems of previous 
NLIDB systems, i.e., 1) the discordance between 
attribute vocabulary and linguistic processing 

                                                   
2 Part-of-speech tag for a proper noun 
3 “@” is the start symbol for the semantic tags. 
4  “%” is the start symbol for the user-defined semantic 
classes. 
5 Question type 
6 Attribute and value 

vocabulary, which causes laborious low 
portability in multiple environments, and 2) the 
absence of query refinement supporting 
session-based dialog, our system effectively 
develops LSP-based linguistic processing, 
multi-level grammars, and SQL query refinement. 
To maximize portability of multiple 
environments, such as languages, domains, and 
DBMSs, each environment-dependent module is 
clearly defined and confined. 

Our system consists of four phases (figure 2.1): 
morphological analysis, QT/AV Processing, 
AV-tree construction, and SQL query generation. 
The QT/AV processing determines the question 
types for a given question, and constructs 
attribute-value nodes from the question. This 
phase includes linguistic front-end processes, 
such as morphological analysis and named entity 
recognition. The AV-tree construction phase 
finds the relation between the nodes obtained 
from the previous phase, and produces an 
attribute-value tree that is independent of 
DBMSs. The last phase, SQL query generation, 
translates the attribute-value tree into a 
DBMS-dependent SQL query. 

 

 
[Figure 2.1] System Architecture 

2.1 Morphological Analysis and QT/AV 
Processing 

We separate all processes and resources using a 
linguistic dependency approach. Morphological 
analysis and all the resources, including 
grammars and dictionaries, are all language 
dependent. Morphological analysis for each 
language produces a sequence of (word, lemma, 
POS) pairs. After the analysis, system shares all 



processes independent of the source language; 
this increases linguistic portability by pushing the 
language-dependent processes to the earlier 
stage. 

To acquire the named entities for target databases, 
the system looks up the category dictionary 
which includes main semantic information. The 
category dictionary consists of four components: 
semantic tags, user-defined semantic classes, 
part-of-speech (POS) tags, and lexical forms. The 
structure of semantic tags is a flat form. In a 
lexico-semantic pattern, each semantic tag 
follows a “@” symbol. For example, a semantic 
tag “@item 7 ” includes the words, such as 
“비디오,” “비데오,” and “브이티알” in Korean, 
and “VCR” and “video” in English. User-defined 
semantic classes are the tags for syntactically or 
semantically similar lexical groups. For example, 
a user-defined semantic class “%each” includes 
the words, such as “각,” “각품목,” “개별,” and 
“별” in Korean, and “each” and “every” in 
English. The category dictionary has the highest 
priority to construct the lexico-semantic pattern 
for a sentence. In the absence of an entry, the 
part-of-speech tag of the current morpheme 
becomes the component of the LSP. 

A question type indicates ordering clauses, 
including “ASC” and “DESC,” or column 
functions such as “SUM(),” “AVG(),” and 
“MIN().” By applying a QT grammar, a question 
type and a target attribute, i.e., the argument of 
the question type, are obtained. The following 
shows the process from user query to SQL 
template. 

[User query] 
“How much is the cheapest among 34 inches?” 
[LSP pattern] 
%how %much %be %dt %most-cheap %among 
num @unit_length sent 
[QT grammar] 
…… 
^8%how%much%bedt%most-cheap 

qo_min|qt_price 
@corpin%asc 

qo_aso|qt_corp 

                                                   
7 “item” attribute for “audio-video” product database 
8 Symbol designating the beginning position of a regular 
expression 

%corp%make@type%and@type%together
 qo_intersect|qt_corp 
…… 
[Question type] 
MIN(price) 
[SQL template] 
SELECT MIN(price) FROM … WHERE … 

AV-TYPE grammar finds all the pairs of 
attributes and values by applying lexico-semantic 
patterns. Like QT grammar, LSP-based condition 
and action exist. The action consists of an 
attribute and a value operator. In SQL, the two 
components are represented like ([attribute] 
[value operator] [value]) in WHERE clauses, for 
example, (price > 300,000). The pairs of attribute 
and value become the nodes of the AV-tree, 
which is the source to generate the SQL query. 
The following examples demonstrate the method 
to obtain pairs using the AV-TYPE grammar. 

[User query] 
“Choose only Samsung’s among 25 inches, 21 
inches, and 29 inches products.” 
[LSP pattern] 
… @corp … num @unit_length … num 
@unit_length … num @unit_length … 
[AV-TYPE grammar] 
…… 
engj%start 

@model|vo_begin 
num@unit_length 

@size|vo_like 
%betweennum%andnum  
 @price|vo_between 
%each%price   
 @price|vo_group 
@corp    
 @corp|vo_like 
@price%elower   
 @vop_mod9|vo_elower 
…… 
[Pairs of attribute and value] 
(corp like ‘%Samsung%’) 
(size like ‘25inch’) 
(size like ‘21inch’) 
(size like ‘29inch’) 

                                                   
9 Action to modify the current value operation 



2.2 AV-tree Construction 

Binary operators (AND, OR, NOR, NAND …) 
connect the pairs of attributes and values that are 
the nodes of the AV-tree. AV-OP grammar 
describes the relations using lexico-semantic 
patterns like other grammars. The condition part 
of the grammar consists of attributes and 
conjunctions (see examples below), whereas the 
action part consists of binary operators and the 
attributes’ index in postfix notation. 

[Pairs of attribute and value from section 2.1] 
(corp like ‘%Samsung%’) 
(size like ‘25inch’) 
(size like ‘21inch’) 
(size like ‘29inch’) 
[AV-OP grammar] 
…… 
@corp@size@size%and@size
 1|2|3|5|bo_or|bo_or|bo_and 
@model%and@model@type
 1|3|bo_or|4|bo_and 
@type@model@pname
 1|2|bo_and|3|bo_and 
…… 

[Prefix notation and AV-tree] 

 
To handle negative expressions, we follow the 
two steps: First, we determine each negation’s 
scope from the input sentence. Second, we insert 
a “NOT” unary operator into the maximal AV 
subtree that the negation’s scope covers. For 
example, the input sentence “0 no 1 LG 2 
Electronics 3 and 4 Philips 5” has a negation with 
[0, 5] scope, and three subtrees: [1, 5] for “LG 
Electronics and Philips,” [1, 3] for “LG 
Electronics,” and [4, 5] for “Philips.” Since the 
negation’s scope covers all the subtrees, “NOT” 
operator is put onto the subtree with [1, 5]. 

Therefore, (NOT ((corp like ‘%LG 
Electronics%’) OR (corp like ‘%Philips%’))) 
becomes the constraint of the “WHERE” clause. 

A query expansion dictionary defines the 
conceptual sets of values, where the set can 
definitely determine its values in a given DB, 
such as “imported product” and “Japanese 
companies.” The conceptual sets are different 
from user-defined terms in that the meaning of 
user-defined terms varies with users, such as 
“large size of TV” and “high-priced audio.” For 
the user-defined terms, we maintain the user’s 
profile for each user, and for the conceptual sets, 
maintain a query expansion dictionary for the 
system. 

2.3 SQL Query Generation 

Domains and DBMSs affect the generation of 
SQL queries. For multiple domains, our system 
automatically determines the domain that the 
user requests; first, find the domains to which 
each attribute-value node belongs. Second, select 
one or more domains using the combination of 
domains from the first step. When two or more 
domains are chosen, the domains get combined 
with attributes in the SQL query to be generated, 
such as “(saa.size >= ‘29inch’)” and “(bb.corp 
like ‘%SONY%’).” Where the attribute of 
question type is ambiguous, the selected domains 
also help to fix the attribute. We generate an SQL 
query in the order of question types (SELECT … 
FROM), tables (FROM … WHERE), constraints 
(WHERE …), sub-query, and connection with 
two SQLs. 

For supporting session-based dialog, we preserve 
the SQL query created from the previous 
questions, and re-generate new SQL query for the 
current successive question. First, the system 
checks whether the current question has the same 
domain as the previous question or not. When the 
two domains are equal, the previous generated 
SQL query becomes a constraint part of the 
current SQL query, for example, “… FROM 
(SELECT …) WHERE … .” Otherwise, a default 
SQL query10 will be generated. 

 

                                                   
10 “SELECT * FROM table-name WHERE 1 (or id>=0),” 
where id is the primary key. 



3 Portability of Languages, Domains, and 
DBMSs 

Natural language interfaces to databases should 
consider the portability of languages, domains, 
and DBMSs. Previous systems are short of one or 
more portability factors; systems with heavy 
linguistic components have trouble in expanding 
into other languages, and systems with simple 
pattern matching are insufficient to deal with 
multiple domains and DBMSs. On the other hand, 
our system adopts robust LSP-based language 
processing and multi-level grammars to 
structurally analyze the user’s query. 

Portability of languages: In our system, only 
both morphological analysis and the resources 
including dictionaries and grammars are 
language-dependent. Because the resources 
include lexico-semantic patterns that represent 
linguistic characteristics, both the linguistic 
front-end and the database back-end can be 
clearly divided. Where the languages to handle 
are similar to each other, as in word order and 
linguistic structure, many rules of grammars can 
be shared without consideration of the specific 
languages. Like English and Korean11, however, 
if the two languages are quite different, then the 
shared portion naturally decreases. We separate 
out the language-dependent morphological 
analysis and the subsequent processes as soon as 
possible to easily expand to other languages. To 
add another language, only new morphological 
analysis and linguistic resources need to be 
appended to the existing system. Heavy linguistic 
processes like syntactic and semantic analysis 
used by the previous systems inevitably delay the 
point of linguistic separation. 

Portability of domains: A new domain with the 
new DB schema affects both the linguistic 
front-end and the database back-end. To reduce 
the influence, our system deals with the 
domain-related information only in resources and 
SQL query generation. The other processes, such 
as morphological analysis, QT/AV processing, 
and AV-tree construction are all 
domain-independent. Domain category 
dictionary and grammars localize the attribute 
                                                   
11 Korean and Japanese are very similar in that the two are 
agglutinative languages and have SOV structures, whereas, 
English and some of the European languages are inflective 
and have SVO structures. 

names, but the general category dictionary is 
independent of domains because it is designed to 
handle common named entities. In order to 
manage the multiple domains, SQL query 
generation should consider domain information. 
However, a single domain reduces the burden of 
domain portability because the processing has no 
relation with the SQL query. 

Portability of DBMSs: The format and the 
descriptive power of SQL queries vary from 
DBMSs, such as in attribute names, sub-query 
operation, types of operations, case sensitivity, 
and constraint syntax. In our system, any 
linguistic processes and resources do not involve 
SQL query generation, which eventually 
increases DBMS portability. SQL query 
generation has alternatives to produce 
DBMS-dependent SQL only in some sub-parts, 
such as sub-query generation and combination 
with SQL queries. Until an SQL query begins to 
be generated, current DBMS does not influence 
any processes and resources. 

4 Experiment Results 

Pursuing high portability in languages, domains, 
and DBMSs, we implemented a multi-lingual 
question answering system on relational 
databases. The target languages are English and 
Korean, which are completely different in 
linguistic structures. Our system dealt with two 
domains for Korean: first, an audio-video product 
database with 418 entries automatically 
populated from an information extraction system 
[11], and second, a price comparison database 
with 1964 entries and multiple schemas from a 
BestBuyer 12  comparison shopping mall. For 
multiple languages, we manually translated all 
the Korean entries into English. Oracle 8.0.5 and 
MySQL 3.23.22 were used as two different 
DBMSs. 

Our system processes the user question from a 
Web browser, and produces an SQL query. Next, 
CGI (Common Gateway Interface) sends the 
query to DBMSs. For the result retrieved from 
databases, the user can ask a new question or 
make a context-based refinement of the question. 

                                                   
12 http://www.bestbuyer.co.kr/mainbbr/index.php3 



For training, five graduate students prepare 192 
questions for each language (see appendix A). 
The questions include negation, quantifiers, 
multiple conjunctions, multiple question types, 
various lexicography, user-defined terms, 
synonyms, and many value operators. Table 4.1 
shows the current linguistic resources 
constructed from the training set for both 
languages. 

Resources English Korean 
Domain category 

dictionary13 
2,612 
entries 

2,847 
entries 

General category 
dictionary14 

63,121 
entries 

67,280 
entries 

QT grammar 56 entries 14 entries 
AV-TYPE 
grammar 

96 entries 70 entries 

AV-OP grammar 94 entries 93 entries 
[Table 4.1] Resources for the training set 

For the test, we gather 779 unique queries (355 
for English and 424 for Korean) and 111 
refinement queries (19 for English and 92 for 
Korean) from the system log for about four 
months (see appendix A and B). Our system does 
not fail for the questions because of the 
LSP-based robustness15, but some SQL queries 
with wrong constraints (2.25% for English) are 
caused by undefined terms, such as “wide TV” 
and “voice multiplex,” and by an illegal unit such 
as “cm” and “mm.” 16  In Korean, the rate of 
wrong constraints rises to 5.67% that are mainly 
caused by the irregular transiterations of the 
foreign words, for example, “텔레비,” 
“텔레비전,” “텔레비전,” “테레비,” 
“테레비젼,” “테레비젼,” “티브이,” and “티비” 
for “TV.” However, all the above errors can be 
easily corrected by adding new terms. This 
phenomenon is also true for multi-level 
grammars. For a new linguistic expression, we 
simply decompose it and disperse the 
components throughout the grammars. 

                                                   
13 Most of the entries are automatically extracted from target 
databases. 
14 Reuse the existing dictionaries used for open-domain text 
question answering 
15 When the system does not find any proper constraint, it 
produces a default SQL query with null constraint. 
16 Our databases use only “inch” for the size, thus a unit 
converter needs to cover the errors. 

Conclusion 

We developed a multilingual question answering 
system on relational databases and demonstrated 
high performance and high portability in 
languages, domains, and DBMSs. LSP-based 
linguistic processing and multi-level grammars 
preserve robustness and adaptability without 
losing the precise interpretation of user queries. 
In order to overcome previous problems, 
including the discordance between attribute 
vocabulary and linguistic processing vocabulary, 
and the absence of query refinement supporting 
session-based dialog, we introduced automatic 
linguistic dictionary construction from database 
attribute terms, LSP-based linguistic processing, 
multi-level grammars, and SQL query 
refinement. 

By using lexico-semantic patterns, we separate 
language-dependent processes from the others at 
the earliest stage, and use the multi-level 
grammars to produce sophisticated 
attribute-value tree structures to connect the 
attribute vocabulary and the linguistic processing 
vocabulary. To treat the multiple domains and 
DBMSs, only SQL query generation and related 
resources are involved. This minimization of the 
environment-dependent parts enables our system 
to be widely ported on multiple environments. 
Future works include expansion to other 
languages, including Japanese and Chinese. 
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