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Abstract 
 
 In this paper we report results of a 
supervised machine-learning approach to 
Chinese word segmentation. First, a maximum 
entropy tagger is trained on manually annotated 
data to automatically labels the characters with 
tags that indicate the position of character within 
a word. An error-driven transformation-based 
tagger is then trained to clean up the tagging 
inconsistencies of the first tagger. The tagged 
output is then converted into segmented text. 
The preliminary results show that this approach 
is competitive compared with other supervised 
machine-learning segmenters reported in 
previous studies. 
 
1 Introduction 
 
It is generally agreed among researchers that 
word segmentation is a necessary first step in 
Chinese language processing. Most of the 
previous work in this area views a good 
dictionary as the cornerstone of this task. Several 
word segmentation algorithms have been 
developed using a dictionary as an essential tool. 
Most notably, variants of the maximum 
matching algorithm have been applied to word 
segmentation with considerable success.  The 
results that have been reported are generally in 
the upper 90 percentile range.  However, the 
success of such algorithms is premised on a large, 
exhaustive dictionary. The accuracy of word 
segmentation degrades sharply as new words 
appear. Since Chinese word formation is a 
highly productive process, new words are bound 
to appear in substantial numbers in realistic 

scenarios (Wu and Jiang 1998, Xue 2001), and it 
is virtually impossible to list all the words in a 
dictionary. In recent years, as annotated Chinese 
corpora have become available, various 
machine-learning approaches have been applied 
to Chinese word segmentation, with different 
levels of success. Compared with dictionary-
based approaches, machine-learning approaches 
have the advantage of not needing a dictionary 
and thus are more suitable for use on naturally 
occurring Chinese text. In this paper we report 
results of a supervised machine-learning 
approach towards Chinese word segmentation 
that combines two fairly standard machine 
learning models. We show that this approach is 
very promising compared with dictionary-based 
approaches as well as other machine-learning 
approaches that have been reported in the 
literature.  
 
2 Combining Classifiers for 
Chinese word segmentation 
 
The two machine-learning models we use in this 
work are the maximum entropy model 
(Ratnaparkhi 1996) and the error-driven 
transformation-based learning model (Brill 
1994). We use the former as the main workhorse 
and the latter to correct some of the errors 
produced by the former. 
 
2.1 Reformulating word segmentation 
as a tagging problem 
 
Before we apply the machine-learning 
algorithms we first convert the manually 
segmented words in the corpus into a tagged 



 

sequence of Chinese characters. To do this, we 
tag each character with one of the four tags, LL, 
RR, MM and LR, depending on its position 
within a word. It is tagged LL if it occurs on the 
left boundary of a word, and forms a word with 
the character(s) on its right. It is tagged RR if it 
occurs on the right boundary of a word, and 
forms a word with the character(s) on its left. It 
is tagged MM if it occurs in the middle of a word. 
It is tagged LR if it forms a word by itself. We 
call such tags position-of-character (POC) tags 
to differentiate them from the more familiar part-
of-speech (POS) tags. For example, the manually 
segmented string in (1)a will be tagged as shown 
in (1)b: 
 
(1) a. 

���
 ���  �  �  �
	  �  ��
  ���  ���  ���

 ���  ���  ���   
    b. 

�
/LL 
�

/RR � /LL � /RR � /LR � /LR 
� /LL 	 /RR � /LR � /LL 
 /RR � /LL � /RR 
� /LL � /RR 

�
/LL 
�

/RR � /LL � /RR � /LL 
� /RR � /LL � /RR  
    c. Shanghai plans to reach the goal of 5,000 
dollars in per capita GDP by the end of the 
century. 
 
Given a manually segmented corpus, a POC-
tagged corpus can be derived trivially with 
perfect accuracy. The reason that we use such 
POC-tagged sequences of characters instead of 
applying n-gram rules to a segmented corpus 
directly (Hockenmaier and Brew 1998, Xue 
2001) is that they are much easier to manipulate 
in the training process.  Naturally, while some 
characters will have only one POC tag, most 
characters will receive multiple POC tags, in the 
same way that words can have multiple POS tags. 
The example in (2) shows how all four of the 
POC tags can be assigned to the character

�
 

(‘produce’): 
 
(2) 
�

 LL  
���

 'product'   
     
�

 LR  
�

 'produce' 
     
�

 MM  
���
 

 'productivity'  
     
�

 RR  ! �   'start production' 
 
Also as in POS tags, the way the character is 
POC-tagged in naturally occurring text is 
affected by the context in which it occurs. For 
example, if the preceding character is tagged a 

LR or RR, then the next character can only be 
tagged LL or LR. How a character is tagged is 
also affected by the surrounding characters. For 
example,  "  (‘close’) should be tagged RR if the 
previous character is #  (‘open’) and neither of 
them forms a word with other characters, while it 
should be tagged LL if the next character is $  
(‘heart’) and neither of them forms a word with 
other characters. This state of affairs closely 
resembles the familiar POS tagging problem and 
lends itself naturally to a solution similar to that 
of POS tagging. The task is one of ambiguity 
resolution in which the correct POC tag is 
determined among several possible POC tags in 
a specific context. Our next step is to train a 
maximum entropy model on the perfectly POC-
tagged data derived from a manually segmented 
corpus and use the model to automatically POC-
tag unseen text. 
 
2.2 The maximum entropy tagger 
 
The maximum entropy model used in POS-
tagging is described in detail in Ratnaparkhi 
(1996) and the POC tagger here uses the same 
probability model. The probability model is 
defined over H x T, where H is the set of 
possible contexts or "histories" and T is the set of 
possible tags. The model's joint probability of a 
history h and a tag t is defined as 
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where %  is a normalization constant, { & , ' 1, ..., ' k} 
are the model parameters and {f1, ..., fk} are 
known as features, where fj (h, t) ( {0,1}. Each 
feature fj has a corresponding parameter ) j, 
which effectively serves as a "weight" of this 
feature. In the training process, given a sequence  
n of characters  {c1,…,cn} and their POC tags 
{t1,...,tn} as training data, the purpose is to 
determine the parameters { * , + 1, ..., + k} that 
maximize the likelihood L of the training data 
using p: 
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The success of the model in tagging depends to a 
large extent on the selection of suitable features. 
Given (h,t), a feature must encode information 
that helps to predict t. The features we used in 
this experiment are instantiations of the 
following feature templates: 
 
(3) Feature templates used in this tagger: 
      a. The current character 
      b.The previous (next) character and the 
current character 
      c. The previous (next) two characters 
      d. The tag of the previous character 
      e. The tag of the character two before the 
current character 
      f. Whether the current character is a 
punctuation mark 
      g. Whether the current character is a numeral 
      h. Whether the current character is a Latin 
letter 
 
In general, given (h,t), these features are in the 
form of co-occurrence relations between t and 
some type of context. For example, 
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This feature will map to 1 and contribute 
towards p(hi,ti) if c(i-1) is tagged LL and ci is 
tagged RR. 
 
The feature templates in (3) encode three types 
of contexts. First, features based on the current 
and surrounding characters are extracted. Given 
a character in a sentence, this model will look at 
the current character, the previous two and next 
two characters. For example, if the current 
character is�  (‘-ize’), it is very likely that it will 
occur as a suffix in a word, thus receiving the tag 
RR. On the other hand, other characters might be 
equally likely to appear on the left, on the right 
or in the middle. In those cases, where a 
character occurs within a word depends on its 
surrounding characters. For example, if the 
current character is �  (‘love’), it should perhaps 
be tagged LL if the next character is �  
(‘protect’). However, if the previous character is �

 (‘warm’), then it should perhaps be tagged 
RR.  

In the second type of context, features based on 
the previous tags are extracted. Information like 
this is useful in predicting the POC tag for the 
current character just as the POS tags are useful 
in predicting the POS tag of the current word in 
a similar context. For example, if the previous 
character is tagged LR or RR, this means that the 
current character must start a word, and should 
be tagged either LL or LR. Finally, limited POS-
tagging information can also be used to predict 
how the current character should be POC-tagged. 
For example, a punctuation mark is generally 
treated as one segment in the CTB corpus.  
Therefore, if a character is a punctuation mark, 
then it should be POC-tagged LR. This also 
means that the previous character should close a 
word and the following character should start a 
word.  When the training is complete, the 
features and their corresponding parameters will 
be used to calculate the probability of the tag 
sequence of a sentence when the tagger tags 
unseen data. Given a sequence of characters 
{c1,...,cn}, the tagger searches for the tag 
sequence {t1, ..., tn} with the highest conditional 
probability 
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in which the conditional probability for each 
POC tag t given its history h is calculated as   
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2.3 The transformation-based 
tagger 
 
The error-driven transformation-based tagger we 
used in this paper is Brill's POS tagger (1994) 
with minimal modification. The way this tagger 
is set up makes it easy for it to work in 
conjunction with other taggers. When it is used 
for its original task of POS tagging, the model is 
trained in two phases. In the first phase lexical 
information, such as the affixes of a word, is 
learned to predict POS tags. The rules learned in 
this phase are then applied to the training corpus. 
In the second phase, contextual information is 
learned to correct the wrong tags produced in the 



 

first phase. In the segmentation task, since we 
are dealing with single characters, by definition 
there is no lexical information as such. Instead, 
the training data are first POC-tagged by the 
maximum entropy model and then used by the 
error-driven transformation-based model to learn 
the contextual rules. The error-driven 
transformation-based model learns a ranked set 
of rules by comparing the perfectly POC-tagged 
corpus (the reference corpus) with the same 
corpus tagged by the maximum entropy model 
(the maxent-tagged corpus). At each iteration, 
this model tries to find the rule that achieves the 
maximum gain if it is applied. The rule with the 
maximum gain is the one that makes the maxent-
tagged corpus most like the reference corpus. 
The maximum gain is calculated with an 
evaluation function which quantifies the gain 
and takes the largest value. The rules are 
instantiations of a set of pre-defined rule 
templates. After the rule with the maximum gain 
is found, it is applied to the maxent-tagged 
corpus, which will better resemble the reference 
corpus as a result. This process is repeated until 
the maximum gain drops below a pre-defined 
threshold, which indicates improvement 
achieved through further training will no longer 
be significant. The training will then be 
terminated. The rule templates are the same as 
those used in Brill (1994), except that these rule 
templates are now defined over characters rather 
than words. 
 
(4) Rule templates used to learn contextual 
information: 
 
Change tag a to tag b when: 
      a. The preceding (following) character is 
tagged z. 
      b. The character two before (after) is tagged z. 
      c. One of the two preceding (following) 
characters is tagged z. 
      d. One of the three preceding (following) 
characters is tagged z. 
      e. The preceding character is tagged z and the 
following character is tagged w. 
      f. The preceding (following) character is 
tagged z and the character two before (after) was 
tagged w. 
      g. The preceding (following) character is c. 
      h. The character two before (after) is c. 

      i. One of the two preceding (following) 
characters is c. 
      j. The current character is c and the 
preceding (following) character is x. 
      k. The current character is c and the 
preceding (following) character is tagged z. 
 
where a, b, z and w are variables over the set of 
four tags (LL, RR, LR, MM) 
 
The ranked set of rules learned in this training 
process will be applied to the output of the 
maximum entropy tagger. 
 

 
3 Experimental results 
 
We conducted three experiments. In the first 
experiment, we used the maximum matching 
algorithm to establish a baseline, as comparing 
results across different data sources can be 
difficult. This experiment is also designed to 
demonstrate that even with a relatively small 
number of new words in the testing data, the 
segmentation accuracy drops sharply. In the 
second experiment, we applied the maximum 
entropy model to the problem of Chinese word 
segmentation. The results will show that this 
approach alone outperforms the state-of-the-art 
results reported in previous work in supervised 
machine-learning approaches. In the third 
experiment we combined the maximum entropy 
model with the error-driven transformation-
based model. We used the error-driven 
transformation-based model to learn a set of 
rules to correct the errors produced by the 
maximum entropy model. The data we used are 
from the Penn Chinese Treebank (Xia et al. 2000, 
Xue et al. 2002) and they consist of Xinhua 
newswire articles. We took 250,389 words 
(426,292 characters or hanzi) worth of manually 
segmented data and divided them into two 
chunks. The first chunk has 237,791 words 
(404,680 Chinese characters) and is used as 
training data.  The second chunk has 12,598 
words (21,612 characters) and is used as testing 
data. These data are used in all three of our 
experiments. 
 
 



 

3.1 Experiment One 
 
In this experiment, we conducted two sub-
experiments. In the first sub-experiment, we 
used a forward maximum matching algorithm to 
segment the testing data with a dictionary 
compiled from the training data. There are 497 
(or 3.95%) new words (words that are not found 
in the training data) in the testing data. In the 
second sub-experiment, we used the same 
algorithm to segment the same testing data with 
a dictionary that was compiled from BOTH the 
training data and the testing data, so that  there 
are no “new” words in the testing data.  
 

 
3.2 Experiment Two 
 
In this experiment, a maximum entropy model 
was trained on a POC-tagged corpus derived 
from the training data described above. In the 
testing phase, the sentences in the testing data 
were first split into sequences of characters and 
then tagged this maximum entropy tagger. The 
tagged testing data are then converted back into 
word segments for evaluation. Note that 
converting a POC-tagged corpus into a 
segmented corpus is not entirely straightforward 
when inconsistent tagging occurs. For example it 
is possible that the tagger assigns a LL-LR 
sequence to two adjacent characters. We made 
no effort to ensure the best possible conversion. 
The character that is POC-tagged LL is 
invariably combined with the following 
character, no matter how it is tagged. 
 
3.3 Experiment Three 
 
In this experiment, we used the maximum 
entropy model trained in experiment two to 
automatically tag the training data. The training 
accuracy of the maximum entropy model is 
97.54% in terms of the number of characters 
tagged correctly and there are 9940 incorrectly 
tagged characters, out of 404,680 characters in 
total. We then used this output and the correctly 
tagged data derived from the manually 
segmented training data (as the reference corpus) 
to learn a set of transformation rules. 214 rules 

were learned in this phase. These 214 rules were 
then used to correct the errors of the testing data 
that was first tagged by maximum entropy model 
in experiment two. As a final step, the tagged 
and corrected testing data were converted into 
word segments. Again, no effort was made to 
optimize the segmentation accuracy during the 
conversion. 
 

3.4 Evaluation 
 
In evaluating our model, we calculated both the 
tagging accuracy and segmentation accuracy. 
The calculation of the tagging accuracy is 
straightforward. It is simply the total number of 
correctly POC-tagged characters divided by the 
total number of characters. In evaluating 
segmentation accuracy, we used three measures: 
precision, recall and balanced F-score. Precision 
(p) is defined as the number of correctly 
segmented words divided by the total number of 
words in the automatically segmented corpus. 
Recall (r) is defined as the number of correctly 
segmented words divided by the total number of 
words in the gold standard, which is the 
manually annotated corpus. F-score (f) is defined 
as follows: 
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The results of the three experiments are tabulated 
as follows: 
 
tagger tagging 

accuracy 
segmentation accuracy 

 training   testing testing 

   p(%) r(%) f(%) 
1 n/a n/a 87.34 92.34 89.77 
2 n/a n/a 94.51 95.80 95.15 
3 97.55 95.95 94.90 94.88 94.89 
4 97.81 96.07 95.21 95.13 95.17 

 
Table 1 

1 = maximum matching algorithm applied to 
testing data with new words 
2 = maximum matching algorithm applied to 
testing data without new words 
3 = maximum entropy tagger 



 

4 = maximum entropy tagger combined with 
the transformation-based tagger 
 
 
4 Discussion 
 
The results from Experiment one show that the 
accuracy of the maximum matching algorithm 
degrades sharply when there are new words in 
the testing data, even when there is only a small 
proportion of them. Assuming an ideal scenario 
where there are no new words in the testing data, 
the maximum matching algorithm achieves an F-
score of 95.15%. However, when there are new 
words (words not found in the training data), the 
accuracy drops to only 89.77% in F-score. In 
contrast, the maximum entropy tagger achieves 
an accuracy of 94.89% measured by the 
balanced F-score even when there are new words 
in the testing data. This result is only slightly 
lower than the 95.15% that the maximum 
matching algorithm achieved when there are no 
new words. The transformation-based tagger 
improves the tagging accuracy by 0.12% from 
95.95% to 96.07%. The segmentation accuracy 
jumps to 95.17% (F-score) from 94.89%, an 
increase of 0.28%. That fact that the 
improvement in segmentation accuracy is higher 
than the improvement in tagging accuracy shows 
that the transformation-based tagger is able to 
correct some of the inconsistent tagging errors 
produced by the maximum entropy tagger. This 
is clearly demonstrated in the five highest-
ranked transformation rules learned by this 
model: 
 
(5) Top five transformation rules  
 
 RR MM NEXTTAG RR 
 LL LR NEXTTAG LL 
 LL LR NEXTTAG LR 
 MM RR NEXTBIGRAM LR LR 
 RR LR PREVBIGRAM RR LR 
 
For example, the first rule says that if the next 
character is tagged RR, then change the current 
tag to MM from RR, since an RR RR sequence 
is inconsistent. 
 

Incidentally, the combined segmentation 
accuracy is almost the same as that of the 
maximum matching method when there are no 
new words. 
 
Evaluating this approach against previous results 
can be a tricky matter. There are several reasons 
for this. One is that the source of data can affect 
the segmentation accuracy. Since the results of 
machine-learning approaches are heavily 
dependent on the type of training data, 
comparison of segmenters trained on different 
data is not exactly valid. The second reason is 
that the amount of training data also affects the 
accuracy of segmenters.  Still some preliminary 
observations can be made in this regard. Our 
accuracy is much higher that those reported in 
Hockenmaier and Brew (1998) and Xue (2001), 
who used error-driven transformation-based 
learning to learn a set of n-gram rules to do a 
series of merge and split operations on data from 
Xinhua news, the same data source as ours.  The 
results they reported are 87.9% (trained on 
100,000 words) and 90.2% (trained on 80,000 
words) respectively, measured by the balanced 
F-score.  
 
Using a statistical model called prediction by 
partial matching (PPM), Teahan et al (2000) 
reported a significantly better result. The model 
was trained on a million words from Guo Jin's 
Mandarin Chinese PH corpus and tested on five 
500-segment files. The reported F-scores are in a 
range between 89.4% and 98.6%, averaging 
94.4%. Since the data are also from Xinhua 
newswire, some comparison can be made 
between our results and this model. With less 
training data, our results are slightly higher (by 
0.48%) when using just the maximum entropy 
model. When this model is combined with the 
error-driven transformation-based learning 
model, our accuracy is higher by 0.77%. Still, 
this comparison is just preliminary since 
different segmentation standards can also affect 
segmentation accuracy.  
 

5 Conclusion 
 
The preliminary results show that our approach 
is more robust than the dictionary-based 
approaches. They also show that the present 



 

approach outperforms other state-of-the-art 
machine-learning models. We can also conclude 
that the maximum entropy model is a promising 
supervised machine learning alternative that can 
be effectively applied to Chinese word 
segmentation. 
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