
SALT: An XML Application for Web-based Multimodal Dialog
Management

Kuansan Wang

Speech Technology Group, Microsoft Research
One Microsoft Way, Microsoft Corporation

Redmond, WA, 98006, USA
http://research.microsoft.com/stg

Abstract

This paper describes the Speech
Application Language Tags, or SALT, an
XML based spoken dialog standard for
multimodal or speech-only applications. A
key premise in SALT design is that
speech-enabled user interface shares a lot
of the design principles and computational
requirements with the graphical user
interface (GUI). As a result, it is logical to
introduce into speech the object-oriented,
event-driven model that is known to be
flexible and powerful enough in meeting
the requirements for realizing
sophisticated GUIs. By reusing this rich
infrastructure, dialog designers are
relieved from having to develop the
underlying computing infrastructure and
can focus more on the core user interface
design issues than on the computer and
software engineering details. The paper
focuses the discussion on the Web-based
distributed computing environment and
elaborates how SALT can be used to
implement multimodal dialog systems.
How advanced dialog effects (e.g.,
cross-modality reference resolution,
implicit confirmation, multimedia
synchronization) can be realized in SALT
is also discussed.

Introduction
Multimodal interface allows a human user to
interaction with the computer using more than
one input methods. GUI, for example, is
multimodal because a user can interact with the
computer using keyboard, stylus, or pointing

devices. GUI is an immensely successful concept,
notably demonstrated by the World Wide Web.
Although the relevant technologies for the
Internet had long existed, it was not until the
adoption of GUI for the Web did we witness a
surge on its usage and rapid improvements in
Web applications.

GUI applications have to address the issues
commonly encountered in a goal-oriented dialog
system. In other words, GUI applications can be
viewed as conducting a dialog with its user in an
iconic language. For example, it is very common
for an application and its human user to undergo
many exchanges before a task is completed. The
application therefore must manage the interaction
history in order to properly infer user’s intention.
The interaction style is mostly system initiative
because the user often has to follow the
prescribed interaction flow where allowable
branches are visualized in graphical icons. Many
applications have introduced mixed initiative
features such as type-in help or search box.
However, user-initiated digressions are often
recoverable only if they are anticipated by the
application designers. The plan-based dialog
theory (Sadek et al 1997, Allen 1995, Cohen et al
1989) suggests that, in order for the mixed
initiative dialog to function properly, the
computer and the user should be collaborating
partners that actively assist each other in planning
the dialog flow. An application will be perceived
as hard to use if the flow logic is obscure or
unnatural to the user and, similarly, the user will
feel frustrated if the methods to express intents
are too limited. It is widely believed that spoken
language can improve the user interface as it
provides the user a natural and less restrictive
way to express intents and receive feedbacks.

The Speech Application Language Tags (SALT
2002) is a proposed standard for implementing
spoken language interfaces. The core of SALT is
a collection of objects that enable a software
program to listen, speak, and communicate with
other components residing on the underlying
platform (e.g., discourse manager, other input
modalities, telephone interface, etc.). Like their
predecessors in the Microsoft Speech
Application Interface (SAPI), SALT objects are
programming language independent. As a result,
SALT objects can be embedded into a HTML or
any XML document as the spoken language
interface (Wang 2000). Introducing speech
capabilities to the Web is not new (Aron 1991, Ly
et al 1993, Lau et al 1997). However, it is the
utmost design goal of SALT that advanced dialog
management techniques (Sneff et al 1998,
Rudnicky et al 1999, Lin et al 1999, Wang 1998)
can be realized in a straightforward manner in
SALT.

The rest of the paper is organized as follows. In
Sec. 1, we first review the dialog architecture on
which the SALT design is based. It is argued that
advanced spoken dialog models can be realized
using the Web infrastructure. Specifically,
various stages of dialog goals can be modeled as
Web pages that the user will navigate through.
Considerations in flexible dialog designs have
direct implications on the XML document
structures. How SALT implements these
document structures are outlined. In Sec. 2, the
XML objects providing spoken language
understanding and speech synthesis are described.
These objects are designed using the event driven
architecture so that they can included in the GUI
environment for multimodal interactions. Finally
in Sec. 3, we describe how SALT, which is based
on XML, utilizes the extensibility of XML to
allow new extensions without losing document
portability.

1 Dialog Architecture Overview
With the advent of XML Web services, the Web
has quickly evolved into a gigantic distributed
computer where Web services, communicating in
XML, play the role of reusable software
components. Using the universal description,
discovery, and integration (UDDI) standard, Web

services can be discovered and linked up
dynamically to collaborate on a task. In other
words, Web services can be regarded as the
software agents envisioned in the open agent
architecture (Bradshaw 1996). Conceptually, the
Web infrastructure provides a straightforward
means to realize the agent-based approach
suitable for modeling highly sophisticated dialog
(Sadek et al 1997). This distributed model shares
the same basis as the SALT dialog management
architecture.

1.1 Page-based Dialog Management
An examination on human to human
conversation on trip planning shows that
experienced agents often guide the customers in
dividing the trip planning into a series of more
manageable and relatively untangled subtasks
(Rudnicky et al 1999). Not only the observation
contributes to the formation of the plan-based
dialog theory, but the same principle is also
widely adopted in designing GUI-based
transactions where the subtasks are usually
encapsulated in visual pages. Take a travel
planning Web site for example. The first page
usually gathers some basic information of the trip,
such as the traveling dates and the originating and
destination cities, etc. All the possible travel
plans are typically shown in another page, in
which the user can negotiate on items such as the
price, departure and arrival times, etc. To some
extent, the user can alter the flow of interaction. If
the user is more flexible for the flight than the
hotel reservation, a well designed site will allow
the user to digress and settle the hotel reservation
before booking the flight. Necessary
confirmations are usually conducted in separate
pages before the transaction is executed.

The designers of SALT believe that spoken
dialog can be modeled by the page-based
interaction as well, with each page designed to
achieve a sub-goal of the task. There seems no
reason why the planning of the dialog cannot
utilize the same mechanism that dynamically
synthesizes the Web pages today.

1.2 Separation of Data and Presentation
SALT preserves the tremendous amount of
flexibility of a page-based dialog system in

dynamically adapting the style and presentation
of a dialog (Wang 2000). A SALT page is
composed of three portions: (1) a data section
corresponding to the information the system
needs to acquire from the user in order to achieve
the sub-goal of the page; (2) a presentation
section that, in addition to GUI objects, contains
the templates to generate speech prompts and the
rules to recognize and parse user’s utterances; (3)
a script section that includes inference logic for
deriving the dialog flow in achieving the goal of
the page. The script section also implements the
necessary procedures to manipulate the
presentation sections.

This document structure is motivated by the
following considerations. First, the separation of
the presentation from the rest localizes the natural
language dependencies. An application can be
ported to another language by changing only the
presentation section without affecting other
sections. Also, a good dialog must dynamically
strike a balance between system initiative and
user initiative styles. However, the needs to
switch the interaction style do not necessitate
changes in the dialog planning. The SALT
document structure maintains this type of
independence by separating the data section from
the rest of the document, so that when there are
needs to change the interaction style, the script
and the presentation sections can be modified
without affecting the data section. The same
mechanism also enables the app to switch among
various UI modes, such as in the mobile
environments where the interactions must be able
to seamlessly switching between a GUI and
speech-only modes for hand-eye busy situations.
The presentation section may vary significantly
among the UI modes, but the rest of the document
can remain largely intact.

1.3 Semantic Driven Multimodal
Integration
SALT follows the common GUI practice and
employs an object-oriented, event-driven model
to integrate multiple input methods. The
technique tracks user’s actions and reports them
as events. An object is instantiated for each event
to describe the causes. For example, when a user
clicks on a graphical icon, a mouse click event is
fired. The mouse-click event object contains

information such as coordinates where the click
takes place. SALT extends the mechanism for
speech input, in which the notion of semantic
objects (Wang 2000, Wang 1998) is introduced
to capture the meaning of spoken language.
When the user says something, speech events,
furnished with the corresponding semantic
objects, are reported. The semantic objects are
structured and categorized. For example, an
utterance “Send mail to John” is composed of
two nested semantic objects: “John” representing
the semantic type “Person” and the whole
utterance the semantic type “Email command.”
SALT therefore enables a multimodal integration
algorithm based on semantic type compatibility
(Wang 2001). The same command can be
manifest in a multimodal expression, as in “Send
email to him [click]” where the email recipient is
given by a point-and-click gesture. Here the
semantic type provides a straightforward way to
resolve the cross modality reference: the handler
for the GUI mouse click event can be
programmed into producing a semantic object of
the type “Person” which can subsequently be
identified as a constituent of the “email
command” semantic object. Because the notion
of semantic objects is quite generic, dialog
designers should find little difficulty employing
other multimodal integration algorithms, such as
the unification based approach described in
(Johnston et al 1997), in SALT.

2 Basic Speech Elements in SALT

SALT speech objects encapsulate speech
functionality. They resemble to the GUI objects
in many ways. Because they share the same high
level abstraction, SALT speech objects
interoperate with GUI objects in a seamless and
consistent manner. Multimodal dialog designers
can elect to ignore the modality of
communication, much the same way as they are
insulated from having to distinguish whether a
text string is entered to a field through a keyboard
or cut and pasted with a pointing device.

2.1 The Listen Object
The “listen” object in SALT is the speech input
object. The object must be initialized with a
speech grammar that defines the language model

and the lexicon relevant to the recognition task.
The object has a start method that, upon
invocation, collects the acoustic samples and
performs speech recognition. If the language
model is a probabilistic context free grammar
(PCFG), the object can return the parse tree of the
recognized outcome. Optionally, dialog
designers can embed XSLT templates or scripts
in the grammar to shape the parse tree into any
desired format. The most common usage is to
transform the parse tree into a semantic tree
composed of semantic objects.

A SALT object is instantiated in an XML
document whenever a tag bearing the object
name is encountered. For example, a listen object
can be instantiated as follows:

<listen id=”foo” onreco=”f()”

onnoreco=”g()” mode=”automatic”>
 <grammar src=”../meeting.xml”/>
</listen>

The object, named “foo,” is given a speech
grammar whose universal resource indicator
(URI) is specified via a <grammar> constituent.
As in the case of HTML, methods of an object are
invoked via the object name. For example, the
command to start the recognition is foo.start() in
the ECMAScript syntax. Upon a successful
recognition and parsing, the listen object raises
the event “onreco.” The event handler, f(), is
associated in the HTML syntax as shown above.
If the recognition result is rejected, the listen
object raises the “onnoreco” event, which, in the
above example, invokes function g(). As
mentioned in Sec. 0, these event handlers reside
in the script section of a SALT page that manages
the within-page dialog flow. Note that SALT is
designed to be agnostic to the syntax of the
eventing mechanism. Although the examples
through out this article use HTML syntax, SALT
can operate with other eventing standards, such
as World Wide Web Consortium (W3C) XML
Document Object Model (DOM) Level 2, ECMA
Common Language Infrastructure (CLI), or the
upcoming W3C proposal called XML Events.

The SALT listen object can operate in one of the
three modes designed to meet different UI
requirements. The automatic mode, shown above,

automatically detects the end of utterance and cut
off the audio stream. The mode is most suitable
for push-to-talk UI or telephony based systems.
Reciprocal to the start method, the listen object
also has a stop method for forcing the recognizer
to stop listening. The designer can explicitly
invoke the stop method and not rely on the
recognizer’s default behavior. Invoking the stop
method becomes necessary when the listen object
operates under the single mode, where the
recognizer is mandated to continue listening until
the stop method is called. Under the single mode,
the recognizer is required to evaluate and return
hypotheses based on the full length of the audio,
even though some search paths may have reached
a legitimate end of sentence token in the middle
of the audio stream. In contrast, the third multiple
mode allows the listen object to report
hypotheses as soon as it sees fit. The single mode
is designed for push-hold-and-talk type of UI,
while the multiple mode is for real-time or
dictation type of applications.

The listen object also has methods to modify the
PCFG it contains. Rules can be dynamically
activated and deactivated to control the
perplexity of the language model. The semantic
parsing templates in the grammar can be
manipulated to perform simple reference
resolution. For example, the grammar below (in
SAPI format) demonstrates how a deictic
reference can be resolved inside the SALT listen
object:

<rule propname=”drink” …>
 <option> the </option>
 <list>
 <phrase propvalue=”coffee”> left </phrase>
 <phrase propvalue=”juice”> right </phrase>
 </list>
 <option> one </option>
</rule>

In this example, the propname and propvalue
attributes are used to generate the semantic
objects. If the user says “the left one,” the above
grammar directs the listen object to return the
semantic object as <drink text=”the left
one”>coffee</drink>. This mechanism for
composing semantic objects is particularly useful
for processing expressions closely tied to how

data are presented. The grammar above may be
used when the computer asks the user for choice
of the drink by displaying the pictures of the
choices side by side. However, if the display is
tiny, the choices may be rendered as a list, to
which a user may say “the first one” or “the
bottom one.” SALT allows dialog designers to
approach this problem by dynamically adjusting
the speech grammar.

2.2 The prompt object
The SALT “prompt” object is the speech output
object. Like the listen object, the prompt object
has a start method to begin the audio playback.
The prompt object can perform text to speech
synthesis (TTS) or play pre-recorded audio. For
TTS, the prosody and other dialog effects can be
controlled by marking up the text with synthesis
directives.

Barge-in and bookmark are two events of the
prompt object particularly useful for dialog
designs. The prompt object raises a barge-in
event when the computer detects user utterance
during a prompt playback. SALT provides a rich
program interface for the dialog designers to
specify the appropriate behaviors when the
barge-in occurs. Designers can choose whether to
delegate SALT to cut off the outgoing audio
stream as soon as speech is detected. Delegated
cut-off minimizes the barge-in response time, and
is close to the expected behavior for users who
wish to expedite the progress of the dialog
without waiting for the prompt to end. Similarly,
non-delegated barge-in let the user change
playback parameters without interrupting the
output. For example, the user can adjust the speed
and volume using speech commands while the
audio playback is in progress. SALT will
automatically turn on echo cancellation for this
case so that the playback has minimal impacts on
the recognition.

The timing of certain user action or the lack
thereof often bears semantic implications.
Implicit confirmation is a good example, where
the absence of an explicit correction from the
user is considered as a confirmation. The prompt
object introduces an event for reporting the
landmarks of the playback. The typical way of

catching the playback landmarks in SALT is as
such:

<prompt id=”bar” onbookmark=”f()” …>
 Traveling to New York?
 <bookmark name=”imp_confirm”/>
 There are <emph> 3 </emph> flights available
 …
</prompt>

When the synthesizer reaches the TTS markup
<bookmark>, the onbookmark event is raised and
the event hander f() is invoked. When a barge-in
is detected, the dialog designer can determine if
the barge-in occurs before or after the bookmark
by inspecting whether the function f() has been
called or not.

Multimedia synchronization is another main
usage for TTS bookmarks. When the speech
output is accompanied with, for example,
graphical animations, TTS bookmarks are an
effective mechanism to synchronize these
parallel outputs.
To include dynamic content in the prompt, SALT
adopts a simple template-based approach for
prompt generation. In other words, the carrier
phrases can be either pre-recorded or hard-coded,
while the key phrases can be inserted and
synthesized dynamically. The prompt object that
confirms a travel plan may appear as the
following in HTML:

<input name=”origin” type=”text” />
<input name=”destination” type=”text” />
<input name=”date” type=”text” />
…
<prompt …> Do you want to fly from
 <value targetElement=”origin”/> to
 <value targetElement=”destination”/> on
 <value targetElement=”date”/>?
</prompt>

As shown above, SALT uses a <value> tag inside
a prompt object to refer to the data contained in
other parts of the SALT page. In this example, the
prompt object will insert the values in the HTML
input objects in synthesizing the prompt.

2.3 Declarative Rule-based Programming
Although the examples use procedural
programming in managing the dialog flow
control, SALT designers can practice inference
programming in a declarative rule-based fashion
in which rules are attached to the SALT objects
capturing user’s actions, e.g., the listen object.
Instead of authoring procedural event handlers,
designers can declare inside the listen object rules
that will be evaluated and invoked when the
semantic objects are returned. This is achieved
through a SALT <bind> element as demonstrated
below:

<listen …> <grammar …/>
 <bind test=”/@confidence lt 50”
 targetElement=”prompt_confirm”
 targetMethod=”start”
 targetElement=”listen_confirm”
 targetMethod=”start” />
 <bind test=”/@confidence ge 50”
 targetElement=”origin”
 value=”/city/origin”
 targetElement=”destination”
 value=”/city/destination”
 targetElement=”date”

value=”/date” /> …
</listen>

The predicate of each rule is applied in turns
against the result of the listen object. They are
expressed in the standard XML Pattern language
in the “test” clause of the <bind> element. In this
example, the first rule checks if the confidence
level is above the threshold. If not, the rule
activates a prompt object (prompt_confirm) for
explicit confirmation, followed by a listen object
listen_confirm to capture the user’s response. The
speech objects are activated via the start method
of the respective object. Object activations are
specified in the targetElement and the
targetMethod clauses of the <bind> element.
Similarly, the second rule applies when the
confidence score exceeds the prescribed level.
The rule extracts the relevant semantic objects
from the parsed outcome and assigns them to the
respective elements in the SALT page. As shown
above, SALT reuses the W3C XPATH language
for extracting partial semantic objects from the
parsed outcome.

3 SALT Extensibilities
Naturally spoken language is a modality that can
be used in widely diverse environments where
user interface constraints and capabilities vary
significantly. As a result, it is only practical to
define into SALT the speech functions that are
universally applicable and implementable. For
example, the basic speech input function in
SALT only deals with speaker independent
recognition and understanding, even though
speaker dependent recognition or speaker
verification are in many cases very useful. As a
result, extensibility is crucial to a natural
language interface like SALT.

SALT follows the XML standards that allow
extensions being introduced on demand without
sacrificing document portability. Functions that
are not already defined in SALT can be
introduced at the component level, or as a new
feature of the markup language. In addition,
SALT requires the standard of XML be followed
so that extensions can be identified and the
methods to process the extensions can be
discovered and integrated.

3.1 Component extensibility
SALT components can be extended with new
functions individually through the component
configuration mechanism of the <param>
element. For example, the <listen> element has
an event to signal when speech is detected in the
incoming audio stream. However, the standard
does not specify an algorithm for detecting
speech. A SALT document author, however, can
declare reference cues so that the document can
be rendered in the similar way among different
processors. The <param> element can be used to
set the reference algorithm and threshold for
detecting speech in the <listen> object:

<listen onspeechdetected = “handler()” …>
 <param xmlns:xyz=”urn://xyz.edu/algo-1”>
 <xyz:method>energy</xyz:method>
 <xyz:threshold>0.7</xyz:threshold>
 </param> …
</listen>

Here the parameters are set using an algorithm
whose uniform resource name (URN),

xyz.edu/algo-1, is declared as an attribute of the
XML namespace of <param>. The parameters for
configuring this specific speech detection method
are further specified in the child elements. A
document processor can perform a schema
translation on the URN namespace into any
schema the processor understands. For example,
if the processor implements the speech detection
algorithm where the detection threshold has a
different range, the adjustment can be easily
made when the document is parsed.

The same mechanism is used to extend the
functionality. For instance, the <listen> object
can be used for speaker verification because the
algorithm used for verification and the
programmatic interfaces share a lot in common
with the recognition. In SALT, a <listen> object
can be extended for speaker verification through
configuration parameters:

<listen onreco=”success()” onerror=”na()”

onnoreco=”failed()”>
 <param xmlns:v=”urn:abc.com/spkrveri”>
 <v:cohort>../../data</v:cohort>
 <v:threshold>0.85</v:threshold> …
 </param> …
</listen>

In this example, the <listen> object is extended
for speaker verification that compares a user’s
voice against a cohort set. The events “onreco”
and “onnoreco” are invoked when the voice
passes or fails the test, respectively. As in the
previous case, the extension must be decorated
with URN that specifies the intended behavior of
the document author. Being an extension, the
document processor might not be able to discern
the semantics implied by the URN natively.
However, XML based protocols allow the
processor to query and employ Web services that
can either (1) transform the extended document
segment into an XML schema the processor
understands, or (2) perform the function
described by the URN. By closely following
XML standards, SALT documents fully enjoy the
benefits of extensibility and portability of XML
with SALT.

3.2 Language extensibility
In addition to component extensibility, the whole
language of SALT can be enhanced with new
functionality using XML. Communicating with
other modalities, input devices, and advanced
discourse and context management are just a few
potential use for language-wise extension.

SALT message extension, or the <smex> element,
is the standard conduit between a SALT
document and the outside world. The message
element takes <param> as its child element to
forge a connection to an external component.
Once a link is established, SALT document can
communicate with the external component by
exchanging text messages. The <smex> element
has a “sent” attribute to which a text message can
be assigned to. When its value is changed, the
new value is regarded as a message intended for
the external component and immediately
dispatched. When an incoming message is
received, the object places the message on a
property called “received” and raises the
“onreceive” event.

3.2.1 Telephony Interface
Telephones are one of the most important access
devices for spoken language enabled Web
applications. Call control functions play a central
role in a telephony SALT application. The
<smex> element in SALT is a perfect match with
the telephony call standard known as ECMA 323.
ECMA 323 defines the standard XML schemas
for messages of telephony functions, ranging
from simple call answering, disconnecting,
transferring to switching functionality suitable
for large call centers. ECMA 323 employs the
same message exchange model as the design of
<smex>. This allows SALT application to tap
into a rich telephony call controls without
needing a complicated SALT processor. As
shown in (SALT 2002), sophisticated telephony
applications can be authored in SALT in a very
straightforward manner.

3.2.2 Advanced Context Management
In addition to devices such as telephones, SALT
<smex> object may also be employed to connect
to Web services or other software components to
facilitate advanced discourse semantic analysis
and context managements. Such capabilities, as

described in (Wang 2001), empower the user to
realize the full potential of interacting with
computers in natural language. For example, the
user can simply say “Show driving directions to
my next meeting” without having to explicitly
and tediously instruct the computer to first look
up the next meeting, obtain its location, copy the
location to another program that maps out a
driving route.

The customized semantic analysis can be
achieved in SALT as follows:

<listen id=”first_pass” …>
 <grammar src=”…” /> <!-- basic grammar -->
 <bind targetElement=”contextManager”
 targetAttribute=”sent” value=”/” />
 …
</listen>

<smex id=”contextManager” …>
 <param xmlns:ws=”WebServices”>
 <ws:url>http://personal.com</ws:url>
 <ws:user>…</ws:user> …
 </param>
 <bind targetElement=”realTarget” … />
</smex>

Here the <listen> element includes a rudimentary
grammar to analyze the basic sentence structure
of user utterance. Instead of resolving every
reference (e.g. “my next meeting”), the result is
cascaded to the <smex> element linked to a Web
service specializing in resolving personal
references.

Summary
In this paper, we describe the design philosophy
of SALT in using the existing Web architecture
for distributed multimodal dialog. SALT allows
flexible and powerful dialog management by
fully taking advantage of the well publicized
benefits of XML, such as separation of data from
presentation. In addition, XML extensibility
allows new functions to be introduced as needed
without sacrificing document portability. SALT
uses this mechanism to accommodate diverse
Web access devices and advanced dialog
management.

References
Sadek M.D., Bretier P., Panaget F. (1997) ARTIMIS:

Natural dialog meets rational agency. In Proc.
IJCAI-97, Japan.

Allen J.F. (1995) Natural language understanding, 2nd
Edition, Benjamin-Cummings, Redwood City, CA.

Cohen P.R, Morgan J., Pollack M.E (1989) Intentions
in communications, MIT Press, Cambridge MA.

SALT Forum (2002) Speech Application Language
Tags Specification, http://www.saltforum.org.

Wang K. (2000) Implementation of a multimodal
dialog system using extensible markup language, In
Proc. ICSLP-2000, Beijing China.

Aron B. (1991) Hyperspeech: navigation in
speech-only hypermedia, in Proc. Hypertext-91, San
Antonio TX.

Ly E., Schmandt C., Aron B. (1993) Speech
recognition architectures for multimedia
environments, in Proc. AVIOS-93, San Jose, CA.

Lau R., Flammia G., Pao C., Zue V. (1994)
Webgalaxy: Integrating spoken language and
hyptertext navigation, in Proc. EuroSpeech-97,
Rhodes, Greece.

Sneff S., Hurley E., Lau R., Pao C., Schmid P., Zue V.
(1998) Galaxy-II: A reference architecture for
conversational system development, in Proc.
ICSLP-98, Sydney Australia.

Rudnicky A., Xu W. (1999) An agenda-based dialog
management architecture for spoken language
systems, in Proc. ASRU-99, Keystone CO.

Lin B.-S, Wang H.-M, Lee L.-S (1999) A distributed
architecture for cooperative spoken dialog agents
with coherent dialog state and history, in Proc.
ASRU-99, Keystone CO.

Bradshaw J.M. (1996) Software Agents, AAAI/MIT
Press, Cambridge, MA.

Wang K (1998) An event driven dialog system, in
Proc. ICSLP-98, Sydney Australia.

Wang K (2001) Semantic modeling for dialog systems
in a pattern recognition framework, in Proc. ASRU
2001, Trento Italy.

Johnston M., Cohen P.R., McGee D., Oviatt S.L.,
Pittman J.A., Smith I (1997) Unification based
multimodal integration, in Proc. 35th ACL, Madrid
Spain.

Wang K (2001) Natural language enabled Web
applications, in Proc. 1st NLP and XML Workshop,
Tokyo, Japan.

	Table of Content
	Workshops
	Authors

