
XtraGen —
A Natural Language Generation System

Using XML- and Java-Technologies

Holger Stenzhorn
XtraMind Technologies GmbH

Stuhlsatzenhausweg 3
66123 Saarbr̈ucken, Germany

holger@xtramind.com

Abstract
In this paper we present XtraGen, a XML- and Java-
based software system for the flexible, real-time
generation of natural language that is easily inte-
grated and used in real-world applications. We de-
scribe its grammar formalism and implementation
in detail, depict the context of how the system was
evaluated and finally provide an outlook on future
work with the system.

1 Introduction
In this paper we present XtraGen, a recently de-
veloped software system for the flexible, real-time
generation of natural language that can be easily in-
tegrated into real-world, industrial application en-
vironments through its open XML- and Java-based
implementation and interfaces.

Our motivation for developing a completely new
generation system started when we made the same
observation as stated in the following quote:

There are thousands, if not millions, of
application programs in everyday use that
automatically generate texts; but proba-
bly fewer than ten of these programs use
the linguistic and knowledge-based tech-
niques that have been studied by the natu-
ral language generation community. (Re-
iter, 1995)

The goal of our company is to develop state-of-
the-art software and hence we wanted to change the
portrayed situation at least in our environment for
the applications we create.

Therefore we started to experiment with XSL
(World Wide Web Consortium, 2001) to generate
natural language as suggested in (Cawsey, 2000)
and (Wilcock, 2001). But we figured out fairly soon
that XSL did not satisfy our needs and desires be-
cause with this mechanism

• we were not able to appropriately handle the
issue of morphology,

• we could not parameterize the generation pro-
cess at the desired level and

• we had no possibility to generate alternatives
or recover from dead ends during generation
since XSL is lacking a backtracking mecha-
nism.

Therefore we decided to develop our own natural
language generation system that incorporates on the
one hand many ideas found in XSL but on the other
hand tries to give a solution the above described
problems.

2 Generation Grammars
2.1 Formalism
The grammar formalism conceived for the XtraGen
system has been developed from an application-
oriented point of view. This means that from our
standpoint real-world applications hardly ever re-
quire a full and complete linguistic coverage which
is striven for by linguistically motivated generation
systems. Therefore our formalism is based on ex-
tended templates that allow the inclusion of pre-
defined and dynamically retrieved text, constraint-
based inflection and a context-free selection mech-
anism. The development of this formalism was
strongly influenced by the ideas found in the (Lisp-
based) formalism of the TG/2 system (Busemann,
1996; Wein, 1996) and the YAG system (Chan-
narukul, 1999).

A template has the overall form as depicted in the
Backus-Naur Form in figure 2.1. Each part of the
template will be elaborated below.

2.2 Conditions
Conditions describe the exact circumstances under
which a certain template can be applied and its ac-
tions executed. There are two distinct basic types



<template id=" String"
category=" String">

<conditions>
Condition*

</conditions>
<parameters>

Parameter*
</parameters>
<actions>

Action+
</actions>
<constraints>

Constraint*
</constraints>

</template>

Figure 1: Overview of a XtraGen template in
Backus-Naur Form

of conditions: Simple-Conditions and Complex-
Conditions. They in turn are the supertypes for
more specific conditions:

Simple-Condition They form the actual tests that
are applied to the input structure. A set of com-
monly used conditions is already predefined
such as ones that test for equality or that test
whether certain information is existent in the
input structure. If there is a need for some very
specific conditional testing that cannot be re-
alized with the existing means a developer is
free to implement and add its own conditional
types.

Complex-Condition This type of condition makes
it possible to combine several conditions
into a more complex one. Three prede-
fined Complex-Conditions exist: the And-
Condition, the Or-Condition and the Not-
Condition. Additional Complex-Conditions
can also be added by providing an implemen-
tation for them.

2.3 Parameterization

Parameterization is an easy and flexible means to
guide and control the generation process with re-
gard to different linguistic preferences such as mat-
ters of style or rhetorical structures. Parameteriza-
tion works by introducing a preference mechanism
that provides the possibility of dynamically sorting
the application of templates according to a given set
of parameters.

<conditions>
<or>

<and>
<condition type="equal">

<get path="/recall"/>
<value>95</value>

</condition>
<condition type="less">

<get path="/accuracy"/>
<value>90</value>

</condition>
</and>
<not>

<condition type="exist">
<get path="/exception"/>

</condition>
</not>

</or>
</conditions>

Figure 2: Example of some complex interleaved
conditions

The way parametrization works in our system is
a two-step process:

Adding of parameters to templatesDuring the
design of a generation grammar the writer adds
one or more parameters to some templates as
in the example in figure 3.

Here the upper template is intended to be used
during the generation of text targeted at experts
and the lower one in case text is to be pro-
duced for novices (level is expert in one
template andnovice in the other). Both of
the templates are preferably used when a low
verbosity level is desired (verbosity is low
in both cases).

Setting of the parameters at runtime At runtime
the parameters corresponding to the ones de-
fined in the grammar are set to the desired val-
ues. To continue our example, we now set the
value of the parameterlevel to expert (see
figure 4) and hence the template in the upper
box would be selected.

The particularity of our system is that parame-
ters can be assigned a weight and thus a priority. In
our example we might want to give a higher prior-
ity to the parameterlevel than to the parameter
verbosity as shown in figure 5 This now sorts
the application of templates in a way that they are
first sorted according to their level of verbosity and



the result is further sorted according to the level of
expertise.

<template id="explainExpert"
category="explain">

<parameters>
<parameter name="level"

value="expert">
<parameter name="verbosity"

value="low">
</parameters>
...

</template>

<template id="explainNovice"
category="explain">

<parameters>
<parameter name="level"

value="novice">
<parameter name="verbosity"

value="low">
</parameters>
...

</template>

Figure 3: Example of using parameters on the level
of generation grammars

generator.addParameter("level",
"expert");

Figure 4: Example of using parameters on the level
of programming code

generator.addParameter("level",
"novice",
0.75);

generator.addParameter("verbosity",
"low",
0.5);

Figure 5: Example of using parameters with a
weight specified on the level of programming code

2.4 Actions
In the case that all conditions of a given template
have been tested successfully (see section 2.2) the
actions contained in the actions-part of the template
are executed.

There are four different types of actions that can
appear: String-Action, Getter-Action, Inflection-

Action and Selection-Action. The actual purpose of
each of them is quite different but all of them return
a result string when executed successfully.

String-Action This type of action simply returns a
statically specified string as a result — a so-
called canned text.

Getter-Action With a Getter-Action it is possible
to directly access and retrieve data from the en-
tered input structure. The syntax used for spec-
ifying the path to the data conforms to the syn-
tax of XPath (World Wide Web Consortium,
1999). There is no additional processing done
on the returned data.

<get path="/values/startTime"/>

Inflection-Action This action inflects a stem ac-
cording to the defined morphological con-
straints and returns the result.

The stem can be stated statically in the gram-
mar as in case (a) or can be dynamically re-
trieved from the input structure as in case (b).

The needed morphological constraints are fur-
nished by the constraints-part of the template
to which the given label provides a link (con-
fer to section 2.5 below for details).
(a) <inflect stem="bring"

label="X0"/>

(b) <inflect path="/action"
label="X0"/>

Selection-Action The Selection-Action can actu-
ally be seen as the most important of the
actions since it accounts for the context-free
backbone of the system.

It allows to select another template directly via
a specified identifier as in case (a) or via a
given category as in case (b). In the second
case several templates might have the given
category and hence backtracking might be in-
voked at his point. (see section 5.1)

(a) <select id="top"/>

(b) <select category="top"
optional="true"/>

Selections can also be declared optional as in
(b) which means that in case the selection of
the template fails no backtracking is invoked
and simply an empty string is returned.



2.5 Constraints and Morphology

The treatment of morphology is naturally one of
the major issues in the context of a complete nat-
ural language generation especially when working
with morphologically rich languages such as Ger-
man, Russian or Finnish. Therefore we took great
care to design and develop a morphological subsys-
tem that is powerful and flexible yet easy to under-
stand and use. The actual realization of the compo-
nent is based on a constraint-based inheritance algo-
rithm that follows the example of PATR-II (Shieber
et al., 1989).

In the (overly simplified) example in figure 6 one
can get a glimpse on how the morphology works:
There are two Selection-Actions, the first one la-
belledX0, the second one labelledX1. The given
constraint now tells that the attributenumber of X0
is the same as the attributenumber of X1 and sets
it dynamically to the value retrieved by the Getter-
Action.

<template ...>
<actions>

<select category="determiner"
label="X0"/>

<select category="noun"
label="X1"/>

</actions>
<constraint>

<place label="X0"
attribute="number"/>

<place label="X1"
attribute="number"/>

<get path="/categoryNumber"/>
</constraint>

</template>

Figure 6: Example of using constraints

2.6 Compilation

In order to be able to work with a generation gram-
mar the generation engine requires the grammar
(and its templates) to exist in the form of a Java ob-
ject. But since the original format of the grammar is
plain XML this format must be transformed through
a compilation process into the internally needed rep-
resentation. Our system is capable to perform such
a compilation in two different ways:

Just-in-time Compilation With this technique the
required templates are compiled from their

XML source into their corresponding Java ob-
jects at runtime of the generation engine, i.e.
during the actual generation process. This
type of compilation is advised only for smaller
grammars or during the development and test-
ing of a new grammar since the constant in-
terleaving of compilation on the one hand and
the actual generation process on the other leads
to some quite noticeable overhead. This over-
head is naturally not acceptable when XtraGen
is used in real-time applications.

Pre-Compilation This type of compilation allows
to compile the whole grammar before its actual
deployment during the generation process. The
pre-compilation of grammars can improve the
performance of the generator-engine tremen-
dously and is therefore to be preferred in most
situations. (The pre-compilation of generation
grammars is very similar to the Translets ap-
proach in XSL (Apache XML Project, 2002)
where XSL stylesheets are compiled in ad-
vance into Java objects.)

3 Input
In contrast to other generation systems that require
their input to adhere to some particular (and most
of the time proprietary) encoding format the core
engine of our system only demands its input to be a
valid XML structure.

The actual restrictions on the input are imposed
only at the level of the generation grammars in
terms of their access to the input (see section 2.4
on Getter-Actions and Inflection-Actions). This can
obviously lead to a severe drawback: In case that
either the generation grammar or the input structure
changes heavily there might emerge a complete mis-
match between the XPath specified in the actions
and the actual structure of the input.

Under circumstances when it is not feasible to
change either the input structure or the grammar, we
propose to introduce an additional mapping layer
between input and generator that is based on a XSL
stylesheet and that dynamically maps the input in
the way that is needed by the grammar.

4 Editor
We have stressed in the sections before that we be-
lieve our formalism to be powerful yet very straight-
forward to implement and use. But when develop-
ing larger grammars for real-world applications it
becomes quite a demanding, non-trivial task to keep



track of all the templates and especially of the rela-
tions between them (e.g. relations on the level of
morphological constraints) Common XML editors
are of no help at this point since they cannot show
such relations at all.

Therefore the development of egram, a Java-
based graphical editor for generation grammars is
on its way at the site of our cooperation partner
DFKI (German Research Center for Artificial Intel-
ligence). After the completion of its development
this tool will allow to comfortably edit all aspects of
generation grammars and templates. Among many
other things the editor will be able to depict the
whole generation grammar and process in a graphi-
cal tree format in which dependencies between tem-
plates are shown in an intuitive way.

5 Implementation

The realization and implementation of the XtraGen
system is based entirely on the two cornerstones
Java and XML.

XML was chosen because it has become the de-
facto standard language in many (if not most) sce-
narios where information transfer takes place. This
in turn is caused by its unique capabilities to encode
information in a way that is easy to read, process,
and generate (even for human beings as in the case
of our formalism).

Java was chosen because it provides many mech-
anism to bolster the productivity of a programmer
during the development of new software with such
things as an extensive programming interface or
automatic memory management for example. An
additional advantage of Java is the availability of
many free and readily usable open-source packages
that provide a host of diverse functionalities. The
most important ones in our project were the differ-
ent XML packages and in particular the XML parser
Xerces or the XSLT engine Xalan (Apache XML
Project, 2002).

5.1 Backtracking

During the generation process it is possible that two
different templates are applicable at the same time
(i.e. they have the same category and all of their
conditions are satisfied). Now if one of the tem-
plates is selected this leads to one of two different
results:

• The application of the template was success-
ful which means that all of its actions could

be successfully executed and a result was re-
turned.

• The application of the template failed because
the execution of one or more of its actions was
not successful.

But the failure of a template described above does
not mean that there exist no solution at all. There-
fore we backtrack to the point where the unsuccess-
ful template was selected and apply another tem-
plate. This procedure is repeated until there are no
more templates at this backtrack point.

The underlying implementation of the backtrack-
ing mechanism is quite elaborated since it has to
take several important issues into account, the most
important ones are:

Performance issuesWe implemented several dif-
ferent mechanisms that help to tremendously
enhance the performance during the backtrack-
ing phase such as the memorization of partial
solution.

Constraint issuesWe had to take great care of the
constraint inheritance mechanism during the
backtracking implementation so that an invo-
cation of backtracking does not lead to a mis-
guided percolation of constraints and hence a
corrupted morphology.

5.2 Programming Interface

So far we have talked about the deployment of Xtra-
Gen only on the level of generation grammars and
their XML-based formalism. Now we turn to the
description of the tasks that have to be undertaken
on the level of programming code to make the sys-
tem run.

The following shows the individual steps that are
be taken to generate some output with XtraGen:

Creating a new generator-engineThe very first
thing to do in order to get the whole system
running is to create a newGenerator object
which represents the core generation engine:
Generator generator =

new Generator();

By doing so one implicitly creates objects for
the internal subcomponents such as the already
mentioned morphological component and puts
them under the control of the generation en-
gine.



Setting the start-category or -id The generation
engine needs to know which template it should
start from. This is done by specifying either a
start-category as in case (a) or a start-identifier
as in case (b).

(a) generator.setStartCategory(
String category);

(b) generator.setStartId(String id);

Setting the grammar Without a generation gram-
mar it would naturally be impossible to gener-
ate any output at all. There are two different
possibilities to pass a grammar to the genera-
tion engine:

(a) generator.setGrammarDocument(
Document grammar);

(b) generator.setGrammar(
Grammar grammar);

In the first case aDocument object (World
Wide Web Consortium, 2000) that contains the
grammar in parsed XML-format is passed, in
the second case a pre-compiledGrammar ob-
ject is passed. (see section 2.6)

Setting the input In addition to the grammar the
generation engine needs an input structure to
generate from. This can be set as follows:

generator.setInputDocument(
Document input);

Again, the parameter passed is aDocument
object that contains the input in parsed XML
format. The input can be reassigned between
two calls to the generation engine.

Setting parameters In subsection 2.3 we talked
about the use of parameters to control and
guide the generation process. The way param-
eterization works is explained in detail there.
To set parameters at runtime one has to add the
following methods:

(a) generator.addParameter(
String name, String value);

(b) generator.addParameter(
String name, String value,

double weight);

This step is only needed if parameterization is
desired. Otherwise these methods can be omit-
ted and parameterization is turned automati-
cally off.

Run the generation processTo now actually start
the generation process and get some output,
one of the following calls can be used:
(a) String result =

generator.generate();

(b) Document result =
generator.generateDocument();

The difference between the two calls is that in
case (a) a simpleString containing the result is
returned whereas in the case (b) aDocument ob-
ject is passed back.

6 Evaluation
At the end of a software development phase any
newly created system must proof in an evaluation
phase whether it reaches its predefined goals. (Mel-
lish and Dale, 1998) This is especially true in an
industrial context with commercial applications as
in our case.

The context for the evaluation of XtraGen was
provided by X-Booster (Beauregard et al., 2002)
which is another project at our site that was con-
currently developed with our system. This system
is an optimized implementation of Slipper (Cohen
and Singer, 1999), a binary classifier that induces
rules via boosting and combines a set of those clas-
sifiers to solve multi-class problems. It was the goal
to successfully integrate XtraGen into this system.

The motivation behind this is based on the fact
that common classification systems are quite non-
transparent in regard to their inner workings. There-
fore it becomes rather difficult to understand how
and why certain classification decisions are made by
those systems.

We departed at exactly this point: XtraGen was to
be used to automatically generate texts that explain
the learning phase of the X-Booster and hence make
the classification more transparent. As an additional
“gadget” we wanted to create the explanations in all
the languages that are spoken at our company site:
English, German, French, Italian, Russian, Bulgar-
ian and Turkish.

6.1 Integration Tasks

As the very first task of the integration procedure we
needed to answer the question what to actually out-
put to the user and in which exact format this output
should be. We decided on producing a description
of the complete learning phase with two kinds of
output texts: One targeted at experts and one for



novice users. The format chosen for the final output
was HTML.

Now we needed to adapt the code of X-Booster
slightly to make the meta data about the learning
phase accessible from the outside. To do so we
wrote some small methods that simply returned in
XML format the meta data which were only stored
in internal variables up to this point.

The next step was to add to X-Booster’s own code
the code for calling the generation engine and for
transforming the result into the final output-format.
This was done as described in section 5.2.

Finally (and most importantly) the generation
grammars for the different languages were devel-
oped. This happened in the way that we first set-up
a prototypical grammar for English which we tested
extensively. Then in a second step the grammars for
the other languages were modelled according to this
exemplary one. For this we worked together with
different native-speaking colleagues that translated
the original English grammar into their language.

6.2 Sample Template and Output

Figure 7 below shows a small portion of the output
returned after running X-Booster together with the
integrated XtraGen on a given training set. This re-
sult was produced by using the English generation
grammar and the parameters set for producing texts
targeted at novice users.

The number of documents is 37, divided
into 2 different categories. The results have
been produced using 3 fold-cross-validation
which means that the data-set is divided into
1/3 test-set and 2/3 training-set.
The learner is trained on the training-data
only and evaluated on the test-set which
has not been presented before. We repeat
this process 3 times on non-intersecting test-
data.
The overall result is then computed finally
as the average of all performed tests. The
average accuracy reaches 100.0% which is
achieved by applying 5 rules.

Figure 7: Sample output from X-Booster

Figure 8 shows parts of the template that pro-
duced the second paragraph of this sample output.
The template is complete in the sense that all dif-
ferent aspects of a template are exposed and it is

only simplified in the respect that similar parts of
the template are left out.

<template id="foldNumberNovice"
category="foldNumber">

<conditions>
<and>

<condition type="exists"/>
<get path="/foldNumber"/>

</condition>
...

</and>
</conditions>
<parameters>

<parameter name="level"
value="novice"/>

...
</parameters>
<actions>

...
We repeat this process
<get path="/foldNumber"/>
<inflect stem="time"

label="X0"/>
...

</actions>
<constraints>

<constraint>
<place label="X0"

attribute="number"/>
<get path="/foldNumber"/>

</constraint>
...

</constraints>
</template>

Figure 8: Sample template from X-Booster

7 Outlook and Future Work
Because the above described evaluation proofed to
be quite successful it was decided to further deploy
XtraGen at our site and to integrate it into new prod-
ucts and projects. One of the first of these projects
is Mietta-II (Multilingual Information Environment
for Travel and Tourism Applications), an European
Commission funded industrial project with the goal
of developing a comprehensive web search and in-
formation portal that specializes on the tourism sec-
tor. (Additional application scenarios are already
envisaged for a possible later stage of the project.)
In this environment we will apply natural language
generation to produce texts and messages for vari-
ous types of media such as dynamically generated
web pages, paper leaflets, hand-held devices and



in particular cellular phones. For the last of those
media we are exploring the possibility of producing
voice-enabled output with a dedicated voice server
that is based on VoiceXML (World Wide Web Con-
sortium, 2002) or JSML (Sun Microsystems, 1999).
We are experimenting at the moment with the differ-
ent possible outputs and on how these outputs can
be encoded in a generation grammar enriched with
VoiceXML or JSML tags.

8 Conclusion
In this contribution we presented XtraGen, a real-
time, template-based natural language generation
system designed for real-world applications and
based on standard XML- and Java-technologies. We
described in detail the different aspects of its gen-
eration grammars with an emphasis on their for-
malism. Then we covered architectural and imple-
mentational issues of the system. After depicting
the evaluation done for XtraGen we concluded with
presenting a new project where the system is used
and where new ideas are experimented with.

Acknowledgements
We are grateful to Sven Schmeier, Huiyan Huang
and Oliver Plaehn for their collaboration on X-
Booster and the Mietta-II project and especially to
Stephan Busemann for many fruitful discussions on
TG/2. This work was carried out in the Mietta-II
project funded by the European Commission under
the Fifth Framework Programme IST-2000-30161.

References
Apache XML Project. 2002. Apache XML Project

Website.http://xml.apache.org/ , June.
St́ephane Beauregard, Huiyan Huang, Karsten Kon-

rad, and Sven Schmeier. 2002. Industrial-
Strength Text Classifiers. InProceedings of the
Fifth International Conference on Business Infor-
mation Systems (BIS2002), Poznán, Poland.

Stephan Busemann. 1996. Best-first surface re-
alization. In Proceedings of the 8th. Interna-
tional Workshop on Natural Language Genera-
tion (INLG ’96), pages 101–110, Herstmonceux,
England, June.

Alison Cawsey. 2000. Presenting tailored resource
descriptions: will XSLT do the job? InPro-
ceedings of the Ninth World-Wide Web confer-
ence (WWW9).

Songsak Channarukul. 1999. YAG: A Natural Lan-
guage Generator for Real-Time Systems. Mas-

ter’s thesis, Department of Electrical Engineering
and Computer Science, University of Wisconsin-
Milwaukee, December.

William W. Cohen and Yoram Singer. 1999. A
Simple, Fast, and Effective Rule Learner. InPro-
ceedings of the Annual Conference of the Ameri-
can Association for Artificial Intelligence (AAAI-
99), pages 335–342.

Chris Mellish and Robert Dale. 1998. Evaluation
in the Context of Natural Language Generation.
Computer Speech and Language, 12(1):349–373.

Ehud Reiter. 1995. NLG vs. Templates. InPro-
ceedings of the Fifth European Workshop on Nat-
ural Language Generation, pages 95–105, Lei-
den, The Netherlands, May. Faculty of Social and
Behavioural Sciences, University of Leiden.

Stuart M. Shieber, Gertjan van Noord, Robert C.
Moore, and Fernando C. N. Pereira. 1989. A
Semantic-Head-Driven Generation Algorithm for
Unification-Based Formalisms. InMeeting of the
Association for Computational Linguistics, pages
7–17.

Sun Microsystems. 1999. Java Speech API Markup
Language Specification . http://java.
sun.com/products/java-media/
speech/forDevelopers/JSML/ , October.

Michael Wein. 1996. Eine parametrisierbare
Generierungskomponente mit generischem
Backtracking. Diploma thesis, Department of
Computer Science, University of the Saarland,
Saarbr̈ucken.

Graham Wilcock. 2001. Pipelines, Templates and
Transformations: XML for Natural Language
Generation. InProceedings of the first NLP and
XML Workshop; Workshop session of the 6th Nat-
ural Language Processing Pacific Rim Sympo-
sium, Tokyo, November.

World Wide Web Consortium. 1999. XML Path
Language (XPath) Version 1.0.http://www.
w3.org/TR/xpath , November.

World Wide Web Consortium. 2000. Document
Object Model (DOM) Level 2 Core Specifica-
tion Version 1.0.http://www.w3.org/TR/
DOM-Level-2-Core/ , November.

World Wide Web Consortium. 2001. Extensible
Stylesheet Language (XSL) Version 1.0.http:
//www.w3.org/TR/xsl , October.

World Wide Web Consortium. 2002. Voice
Extensible Markup Language (VoiceXML)
Version 2.0. http://www.w3.org/TR/
voicexml20 , April.


	Table of Content
	Workshops
	Authors

