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Abstract statistical text classification methods for data anal-

We describe the use of a suite of highly flexible YSiS- Our more linguistic approach may be of as-
XML -basedNLP tools in a project for processing and Sistence Ine: see Craven and Kumlien (1999) for
interpreting text in the medical domain. The main discussion of methods foE from MEDLINE.

aim of the paper is to demonstrate the central role Our processing paradigm wsmL-based. As a
that XML mark-up andkML NLP tools have played Mark-up language foNLP tasks, XML is expres-

in the analysis process and to describe the resultarfive and flexible yet constrainable. Furthermore,
annotated corpus ofEDLINE abstracts. In addition there exista wide range aivL -based tools fonLP

to thexML tools, we have succeeded in integrating@PPlications which lend themselves to a modular,
a variety of nonxmL ‘off the shelf’ NLP tools into ~ Pipelined approach to processing whereby linguis-
our pipelines, so that their output is added into thelic knowledge is computed and added>as. an-
mark-up. We demonstrate the utility of the anno-notations in an incremental fashion. In processing
tations that result in two ways. First, we investigateMEDLINE abstracts we have built a number of such
how they can be used to improve parse coverage of @iP€lines using as key components the programs
hand-crafted grammar that generates logical formsdistributed with theLT TTT and LT xML toolsets
And second, we investigate how they contribute to(Grover et al., 2000; Thompson et al., 1997). We

automatic lexical semantic acquisition processes. have also successfully integrated momt public-
domain tools into our pipelines and incorporated

1 Introduction their output into thexmL mark-up using thet xmL

In this paper we describe our useaiL forananal- Programxmiperl (McKelvie, 2000).

ysis of medical language which involves a number In Section 2 we describe our use xfiL -based

of complex linguistic processing stages. The ulti-tokenisation tools_ and techn_lques and in Sections 3
mate aim of the project is to to acquire lexical se-and 4 we describe two different approaches to
mantic information fronMEDLINE through parsing, analysingMEDLINE data which are built on top of
however, a fundamental tenet of our approach is thaf'€ tokenisation. The first approach uses a hand-
higher-levelNLP activities benefit hugely from be- coded grammar to give complete syntactic and se-
ing based on a reliable and well-considerered initiafmantic analyses of sentences. The second approach
stage of tokenisation. This is particularly true for Performs a shallower statistically-based analysis
language tasks in the biomedical and other technicaihich yields ‘grammatical relations’ rather than
domains since general purpaser technology may full logical forms. This information about gram-
stumble at the first hurdle when confronted with Mmatical relations is used in a statistically-trained
character strings that represent specialised technfnodel which disambiguates the semantic relations
cal vocabulary. Once firm foundations are laid thenin Noun compounds headed by deverbal nominali-
one can achieve better performance from e.g. chursations. For this second approach we compare two
kers and parsers than might otherwise be the cas&eparate methods of shallow analysis which require
We show how well-founded tools, especiaiyL-  the use of two different part-of-speech taggers.
based ones, can enable a varietwoP components . .

to be bundled together in different ways to achieve? Fre-parsing of Medline Abstracts

different types of analysis. Note that in fields suchFor the work reported here, we have used the
as information extractionig) it is common to use OHSUMED corpus ofMEDLINE abstracts (Hersh et



<RECORD>

<ID>395</ID >

<MEDLINE-ID >8705247%/MEDLINE-ID >

<SOURCE>Clin Pediatr (Phila) 8703; 25(12):617<9SOURCE>

<MESH>

Adolescence; Alcoholic Intoxication/BL/*EP; Blood Glucose/AN; Canada; Child; Child, Preschool;
Electrolytes/BL; Female; Human; Hypoglycemia/ET,; Infant; Male; Retrospective Studies.
</MESH>

<TITLE>Ethyl alcohol ingestion in children. A 15-year revieWTITLE >

<PTYPE>JOURNAL ARTICLE</PTYPE>

<ABSTRACT>

<SENT><W P="DT' >A</W> <W P="JJ">retrospective:/\W>

<W P="NN’ LM="study’ >study/W> <W P="VBD’ LM="be’ >was</W>

<W P="VBN’ LM="conduct’ >conducte&/W> <W P="IN’ >by</W> <W P="NN’ LM="chart’ >chart/W>
<W P="NNS’ LM="review’ >reviews</W> <W P="IN" >of</W> <W P="CD’>27</W>

<W P='"NNS’ LM="patient’>patients</W> <W P="IN’ >with</W> <W P="JJ">documentee/W>
<W P="NN’ LM="ethanol’ >ethanok/W> <W P="NN’ LM="ingestion’ >ingestion</W><W P="">.</W>
<ISENT> <SENT> ... </SENT> <SENT> ... </SENT>

</ABSTRACT>

<AUTHOR>Leung AK.</AUTHOR>

</RECORD>

Figure 1: A sample from themL -marked-upoHSUMED Corpus

al., 1994) which contains 348,566 references takemegular expression language to identify patterns in-
from the years 1987-1991. Not every referenceside the character stringe¢bDATA) which are the
contains an abstract, thus the total number of abeontent of elements. For example, the following
stracts in the corpus is 233,443. The total number ofule for decimals such as “.25" is searching for a
words in those abstracts is 38,708,745 and the alsequence of twa elements where the first contains
stracts contain approximately 1,691,383 sentencethe string “.” as itsPCDATA content and the second
with an average length of 22.89 words. has been identified as a cardinal numbet'€D’,

By pre-parsing we mean identification of word e.g. any sequence of digits). When these snel-
tokens and sentence boundaries and other loweements are found, they are wrapped iw &lement
level processing tasks such as part-of-spe@ds(  with the attributec=‘cp’ (targ_sg). (Heres ele-
tagging and lemmatisation. These initial stages oiments encode character sequences, see below, and
processing form the foundation of owLpP work  w elements encode words.)
ywth MEDLINE abstracts and our methods are er_x- <RULE name="decimal" targ_sg="W[C="CDT’>
ible enough that the representation of pre-parsing <REL match="S/"[\]$"></REL>
can be easily tailored to suit the input needs of sub-  rg| match="s[c="CD"></REL>
sequent higher-level processors. We start by con- <RuLE>

verting theoOHSUMED corpus from its original for- o .
mat to anxmL format (see Figure 1). From this Subparts of a pipeline can be thought of as dis-

point on we pass the data through pipelines whicHinct modules so that pipelines can be configured to
are composed of calls to a variety ®fiL-based different tasks. A typical pipeline starts with a two-

tools from theLT TTT andLT XML toolsets. The
core program in our pipelines is the TTT program  <S C='UCA>A</S><S C='LCA™rterial</S>
fsgmatch a general purpose transducer which pro-<S C=WS> </S><S C=UCA>P</S>
cesses an input stream and rewrites it using rule§> C=LCA>a</S><S C=UCA>0</S>
provided in a hand-written grammar file, where thes> ¢=CD >2</S><S C=WS> </S>

. " <§ C=LCA>as</S><§ C='WS> </S>
rewrite usually takes the form of the addition of .q | cA>measured</s>

XML mark-up. Typically, fsgmatchrules specify Figure 2: Character Sequence (S) Mark-up
patterns over sequences>ofiL elements and use a




stage process to identify word tokens within ab-up asw elements; thesent option indicates that
stracts. First, sequences of characters are bundlestntences should be wrappedsasiT elements; the
into s (sequence) elements usifsgmatch Foreach -tag option is an instruction to outpwostags and
class of character a sequence of one or more inthe-pos _attr option indicates thatostags should
stances is identified and the type is recorded as thibe encoded as the value of the attribaten w ele-
value of the attribute (ucA=upper case alphabetic, ments. The finalesource.xml  names the resource
LcA=lower case alphabetiays=white space etc.). file thatltposis to use. Note that the tagset used
Figure 2 shows the stringrterial PaO2 as mea- by Itposis the Penn Treebank tagset (Marcus et al.,
suredmarked up fors elements (line breaks added 1994).
for formatting purposes). Every single character in-
cluding white space and newline is containedsin | jpcoum| perl \
elements which become building blocks for the nexty | tsgmatch -q "*TEXT" ohsumed.gr \
call to fsgmatchwhere words are identified. An al- 3. | fsgmatch -q "*/ABSTRACT" pretok.gr \
ternative approach would find words in a single stept. | fsgmatch "*ABSTRACT" tok.gr \
but our two-step method provides a cleaner set 06. | sgdelmarkup -q "*/8" \
word-level rules which are more easily modified and6. | Itpos -q "*RECORD" -gs "*/ABSTRACT" \
tailored to different purposes: modifiability is criti- -qw "*/W" -sent SENT \
cal since the definition of what is a word can differ tag -pos_atir P resource.xml \
from one subsequent processing step to another. | xmiperllemma.rule
q p g step

A pipeline which first identifies words and then
performs sentence boundary identification @t
tagging followed by lemmatisation is shown in Fig-
ure 3 (somewhat simplified and numbering adde
for ease of exposition). The Perl program in step
wraps the input inside arnML header and footer
as a first step towards conversionxsiL. Step 2
callsfsgmatchwith the grammar filehsumed.gto

Figure 3: Basic Tokenisation Pipeline

Mp to this point, each module in the pipeline has
1used one of theT TTT or LT XML programs which
are sensitive txmL structure. There are, however,
a large number of tools available from thep com-
munity which could profitably be used but which are

identify the fields of atToHSUMED entry and convert not XML -aware. W_e have _mtegrated some of these
tools into our pipelines using the XML program

them intoxmL mark-up: each abstract is put inside berl This i hich mak derl
arRECORDelement which contains sub-structure re-XM'PET IS IS & program which makes underly-
flecting e.g. author, titteMesH code and the ab- ing use of arxML parser so that rules defined In

stract itself. From this point on, all processing is di- a rule file can be directed at par.ticular parts of the
rected at the BSTRACT elements through the query XML tree-structure. The actions in the rules are de-
“ x| ABSTRACT'L. Steps 3 and 4 make calls fsg- fined using the full capablllltles of Perl. This gives
matchto identify s andw (word) elements as de- t_he potentla! for a much wider range of tra_nsforma—
scribed above and after this point, in step 5, ¢he tions of the input tha}ﬂsgmatcrallowg and, in par-
mark-up is discarded (using the TTT program ticular, we use Perl’s stream-handling capabilities

sgdelmarkupsince it has now served its purpose. to pass the conten'; OfML elements out to a non .
. . XML program, receive the result back and encode it
Step 6 contains a call to the other manTTT : S
i : back in thexmL mark-up. Step 7 of the pipeline in
program, ltpos (Mikheev, 1997), which performs Figure 3 shows a call tamlperl with the rule file
both sentence identification amibstagging. The 9 b

subguery s ) option picks OUBBSTRACTS as the lemma.rule . This rule file invokes Minnen et al.'s
query s ) op P ) (2000) morphalemmatiser: the®CDATA content of
elements withinRECORCs (-q option) that are to

be processed: thew option indicates that the in- each verbal or nominal element is passed to the

ut has already been segmented into words markel&mmatiser and the lemma that is returned is en-
P y 9 coded as the value of the attribute1. A sample

IThe query language that the TTT andLT xmL tools use ~ Of the output from the pipeline is shown in Figure 1.

is a specialise&kmL query language which pinpoints the part . .
of the xML tree-structure that is to be processed at that point3 Deep Grammatical Analysis
This query language pre-dates XPath and in expressiveness j .

constitutes a subset of XPath except that it also allows regula] s part of O_ur wo_rk with OHSUMED, we have
expressions over text content. Future plans include modifying?€€n attemptlng_to Improve the coverage of a h_and‘
out tools to allow for the use of XPath as a query language. ~ crafted, linguistically motivated grammar which




provides full-syntactic analysis paired with logical ambiguating’ role, filtering out entries for the word
forms. The grammar and parsing system we usevith different categories. If, on the other hand, the
is the wide-coverage grammar, morphological analword is not in the lexicon or it is not in the lexicon
yser and lexicon provided by the Alvey Natural Lan- with the relevant category, then a basic underspeci-
guage Tools ANLT) system (Carroll et al. 1991, fied entry for therostag is used as the lexical entry
Grover et al. 1993). Our first aim was to increasefor the word, thereby allowing the parse to proceed.
coverage up to a reasonable level so that parse rankor example, if the following partially tagged sen-
ing techniques could then be applied. tence is input to the parser, it is successfully parsed.

TheANLT grammar is a feature-based unification we studied _VBD the value _NN of
grammar based on thePsGformalism (Gazdar et transcutaneous _JJ carbon _NN dioxide _NN
al., 1985). In this framework, lexical entries carry  monitoring _NN during transport ~ _NN
a significant amount of information including sub-
categorisation information. Thus the practical pars
success of the grammar is significantly dependen
on the quality of the lexicon. TheNLT grammar
is distributed with a large lexicon and, while this
provides a core of commonly-occurring lexical en-
tries, there remains a significant problem of inade
quate lexical coverage. If we try to parselSUMED
sentences using theNLT lexicon and no other re-

Without the tags the parse would fail since the word
anscutaneouss not in theAaNLT lexicon. Further-

more, monitoringis present in the lexicon but as a
verb and not as a noun. For both these words, or-
dinary lexical look-up fails and the entries for the
tags have to be used instead. Note that the case
of monitoringwould be problematic for a strategy
where tagging is used only in case lexical look-up

sources, we achieve very poor results (2% coverag ils, since here it is incomplete rather than failed.

because most of the medical domain words are sim- h(ihlrr(ljp.lement_e;fuo[] ?:1 our wort{(ag pair dlook-upt
ply not in the lexicon and there is no ‘robustness’ MEMNOd IS SPEcilic 10 INANLT SyStém and USEs IS

strategy built intoANLT. Rather than pursue the morphological analysis component to treat tags as a

labour-intensive course of augmenting the Iexiconggﬁsl;'igi g]; t"’r‘]fiféxt'o;E%ﬁ;gﬂf&ggg\irpgﬁglEgg
with domain-specific lexical resources, we have de-" " . i
P ’ arides (2001) for further details.

veloped a solution which does not require that newf Another | di is th
lexicons be derived for each new domain type and nother impediment to parse coverage Is the
which has robustness built into the strategy. purPrevalence of technical expressions and formulae in

thermore, this solution does not preclude the use Olp|om|ed|(r:]al fa|r|]d cher technlcaﬂ Ianguag'e.h ]!:or ex(;

specialist lexical resources if these can be used t8MP e, the following sentence has a straightforwar

achieve further improvements in performance. ~ °OVerall syntactic structure but thenLt grammar
Our approach relies on the sophisticatesL does not contain specialist rules for handling ex-

T . _ ; ressions such &0+/-0.4 grams tensioand thus

based tokenisation ambstagging described in the b : J

i : 0 ' - the parse would fail.
previous section and it builds on this by combin- _ _ _
ing Postag information with the existingNLT lex- Control tissues displayed a reproducible response to
ical resources. We preservestag information for bethanechol stimulation at different calcium
content words (nouns, verbs, adjectives, adverbs) concentrations with an EDS0 of 0.4 mM calcium
since this is usually reliable and informative and and a peak response of 5.0+/-0.4 grams tension.

we dispose oPostags for function words (com- oyr response to issues like these is to place a fur-
pIer_n_en_tlzers, determiners, pgrtlcles, conjunctionsiher Jayer of processing in between the output of
auxiliaries, pronouns, etc.) since th@lLT hand-  the initial tokenisation pipeline in Figure 3 and the
written entries for these are more reliable and argnput to the parser. Since theNLT system is not
tuned to the needs of the grammar. Furthermoreyy _hased, we already usenlperlto convert sen-
unknown words are far more likely to be contenttences to thanLT input format of one sentence per
words, so knowledge of threostag will most often  jine with tags appended to words using an under-
be needed for content words. score. We can add a number of other processes at
Having retained content word tags, we use thenthis point to implement a strategy of usifggmatch
during lexical look-up in one of two ways. If the grammars to package up technical expressions so as
word exists in the lexicon with the same basic catto render them innocuous to the parser. Thus all
egory as theeostag then theeostag plays a ‘dis-  of the following ‘words’ have been identified using



fsgmatchrules and can be passed to the parser adescribe two distinct methods of shallow analy-
unanalysable units. The classification of these exsis from which we acquire frequency information
amples as nouns reflects a hypothesis that they camhich is used to predict lexical semantic relations
slot into the correct parse as noun phrases but thetia a particular kind of noun compound.

is room for experimentation since the conversion to

parser input format can rewrite the tag in any way. 4-1 The Task

<W P="NN’>P less than 0.004/W> The aim of the processing in this task is to pre-
<W P='NN’>166 +/- 77 mg/dk/W> dict the relationship between a deverbal nominalisa-
<W P="NN’'>2 to 5 cc/day/W> tion head and its modifier in noun-noun compounds
<W P='NN’'>2.5 mg i.v</W> such agube placementantibody responseain re-

In addition to these kinds of examples, we alsosponsehelicopter transportin these examples, the

package up other less technical expressions such fieaning of the head noun IS cIo_ser Fe'ated fo the
common multi-word words and spelled out num-méaning of the verb from which it derives and the
bers: relationship between this noun and its modifier can

e S typically be matched onto a relationship between
<W P="CD">thirty-five</W> — thirty-five_CD the verb and one of its arguments. For example,
<W P="CD’>Twenty one/W> Twenty~oneCD there is a correspondence between the compound
<W P='IN’>In order to</W> In~orderto_IN . : .

e L tube placemerdand the verb plus direct object string
<W P='3J3">in vitro</W> in~vitro_JJ .
place the tube When we interpret the compound
In order to measure the effectiveness of our atwe describe the role that the modifier plays in terms
tempts to improve coverage, we conducted an exef the argument position it would fill in the corre-
periment where we parsed 200 sentences taken aponding verbal construction:
random fromoHSUMED. We processed the sen-

. ) tube placement object
tences in three different ways and gathered parse antibgdy response Sujbject
success rates for each of the three methods. Ver- pain response to-object
sion 1 established a ‘no-intervention’ baseline by  helicopter transport by-object

using the initial pipeline in Figure 3 to identify . . i
words and sentences but otherwise discarding all We can m_fer thatubein tut_Je placemerﬂl!s th_e
other mark-up. Version 2 addressed the lexical ro-ObJeCt role in theplace relation by gathering in-

bustness issue by retainimgpstags to be used by stanc_es ftrr(:n; tEe corpus of th? vephactel a_nd %'.S' ¢
the grammar in the way outlined above. Version gcovering thatubeoccurs more frequently in objec

applied the full set of preprocessing techniques inposition than in other positions and that the object

cluding the packaging-up of formulaic and other Mterpretation is th:refore mocrje proﬁable. q
technical expressions. The parse results for these 10 INterpret such compounds in this way, we nee
runs are as follows: access to information about the verbs from which

the head nouns are derived. Specifically, for each
verb, we need counts of the frequency with which
it occurs with each noun in each of its argument
Parses 4 (2%) 32 (16%) 79 (39.5%) slots. Ultimately, in fact, in view of the sparse data
problem, we need to back off from specific noun in-
Even in Version 3, coverage is still not very high but stances to noun classes (see Section 4.4). The cur-
the difference between the three versions demorrent state-of-the-art inNLP provides a number of
strates that our approach has made significant inroutes to acquiring grammatical relations informa-
roads into the problem. Moreover, the increase irtion about verbs, and for our experiment we chose
coverage was achieved without any significant altwo methods in order to be able to compare the tech-
terations to the general-purpose grammar and theiques and assess their utility.

tokenisation of formulaic expressions was by no

Version1l Version2 \ersion 3

means comprehensive. 4.2 Chunking with Cass
. Our first method of acquiring verb grammatical re-
4 Shallow Analysis lations is that used by Lapata (2000) for a similar

In contrast to the full syntactic analysis experi-task on more general linguistic data. This method
ments described in the previous section, here weses Abney’s (1996) Cass chunker which uses the



finite-state cascade technique. A finite-state casfor Postags rather than words themselves. Thus it
cade is a sequence of non-recursive levels: phrasés strings of tags that are parsed rather than strings
at one level are built on phrases at the previouof words. The statistical part of the system is the
level without containing same level or higher-level parse ranking component where probabilities are as-
phrases. Two levels of particular importance aresociated with transitions in arrR parse table. The
chunksand simplex clauses A chunk is the non- grammar does not achieve full-coverage but on the
recursive core of intra-clausal constituents extendOHSUMED corpus we were able to obtain parses for
ing from the beginning of the constituent to its head,99.05% of sentences. The number of parses found
excluding post-head dependents (ixp, VP, PP),  per sentence ranges from zero into the thousands
whereas a simplex clause is a sequence of norbut the system returns the highest ranked parse ac-
recursive clauses (Abney, 1996). Cass recognizesording to the statistical ranking method. We do
chunks and simplex clauses using a regular expresiot have an accurate measure of how many of the
sion grammar without attempting to resolve attach-highest ranked parses are actually correct but even a
ment ambiguities. The parser comes with a largepartially incorrect parse may still yield useful gram-
scale grammar for English and a built-in tool that matical relations data.
extracts predicate-argument tuples out of the parse In recent developments (Carroll and Briscoe,
trees that Cass produces. Thus the tool identifie2001), thersG authors have developed an algorithm
subjects and objects as well ass without how- for mappingTSG parse trees to representations of
ever distinguishing arguments from adjuncts. Wegrammatical relations within the sentence in the fol-
consider verbs followed by the preposititny and  lowing format:
a head noun as instances of _verb-subject re_Iqtlonsrhese centres are efficiently trapped in proteins at low
Ou_r verb-object tuples also include pre_p_osr[!onedtemperaltu|res
objects even though these are not explicitly iden-(|ncsupj| |trap| [centre| [obj)
tified by Cass. We assume thets adjacent to the  (jiobj| [in| |trap| |protein]|)
verb and headed by either of the prepositiongo,  (Jdetmod|  _ |centre| [These])
for, with, on, at, from, of, into, through, upoare  (Imod| _ |trap| [efficiently])
prepositional objects. (laux| - [trap| [be])
The input to the process is the entipeisumep  (ncmodl - [temperature] [low])
corpus after it has been converted XeiL, to- (Incmod| [at| [trap] [temperaturef)
kenised, split into sentences amws tagged us- This format can easily be mapped to the same for-
ing Itpos as described in Section 2. The output of mat as described in Section 4.2 to give counts of the
this tokenisation is converted to Cass’s input formathumber of times a particular verb occurs with a par-
which is a nonxmL file with one word per line and ticular noun as its subject, object or prepositional
tags separated by tab. We achieve this conversioabject.
using xmlperl with a simple rule file. The output  As explained above, th&sc parses sequences
of Cass and the grammatical relations processor is @f tags, however it requires a different tagset from
list of each verb-argument pair in the corpus: that produced bytpos namely thecLAWS2 tagset
P (Garside, 1987). To prepare the corpus for parsing
manage :obj refibrillation . L .
respond :subj psoriasis with theTsGwe therefore ta_gg'ed it with Elworthy’s
access :to system (1994) tagger and since this is a neRH. tool we
usedxmlperl to invoke it and to incorporate its re-
sults back into thexmL mark-up. Sentences were
then prepared as input to te—this involved us-

. _ing xmlperlto replace words by their lemmas and to
Our second method of acquiring verb grammati-convert toanLT input format:

cal relations uses the statistical parser developed by .

Briscoe and Carroll (1993, 1997) which is an ex- nese-DD2 centre _NN2 be VBR efficiently _RR
tension of theaNLT grammar development system 18P -VVN in_Il protein  _NN2 at_Il low _JJ

which we used for our deep grammatical analysis as temperature  _NN2

reported in Section 3 above. The statistical parsefThe lemmas are needed in order that tis& out-
known as the Tag Sequence Gramntad), uses a puts them rather than inflected words in the gram-
hand-crafted grammar where the lexical entries arenatical relations output shown above.

4.3 Shallow Parsing with the Tag Sequence
Grammar



4.4 Compound Interpretation ministratior), OF (water deprivatiol, ON (knee op-
eratior), andTo (treatment respon¥eWe also in-
cluded the categoriesa (non applicable) for nom-
(ianalisations with relations other than the ones pre-
iscover () whether s possieto el redict o) 27 1S FTEETNG e sbceiegorsaton
semantic relations in nominalisation-headed com-

compounds that were wrongly identified as nomi-
pounds and (b) whether the two methods of COI'naIisations.

lecting frequency counts make any significant dif- We treated the interpretation of nhominalisations

ference to the process, as a classification task and experimented with dif-

To collect data for the experiment we needed 0oy features using the C4.5 decision tree learner
add to the mark-up already created by the basi¢n injan, 1993). Some of the features we took into
pipeline in Figure 3, (a) to mark up deverbal NOMi- 5004 nt were the context surrounding the candidate
nalisations with information about their verbal stem i ciisations (encoded as wordarstags), the
to give nominalisation-verb equivalences and (b) 19, mper of times a modifier was attested as an argu-

mark updcompoundj '?] or(cjje(rj tg Cé)llectbs?mple_s olment of the verb corresponding to the nominalised
two-word compounds headed by deverbal nominalpeay and the nominalisation affix of the deverbal
isations. For the first task we combined further usq, 5 (e.g.-ation -men). In the face of sparse

of the lemmatiser with the use of lexical resources y, jinguistic resources such as WordNet (Miller
In a first pass we used tieorphalemmatiser 10 onq charles, 1991) anduLs were used to recre-

find the v_erbal stem fofing nominalisations Sl.JC.h ate distributional evidence absent from our corpus.
asscreeningand then we looked up the remaining \ye ohtained several different classification models
nouns in a nominalisation lexicon which we created, g 5 rasult of using different marked-up versions of

by combining the nominalisation list which is pro- yne corpus, different parsers, and different linguistic
vided byuMLs (2000) with theNOoMLEX nominali- - yos5rces. Full details of the results are described

sation lexicon (MacLeod et al., 1998) As aresult of, 5.qver et al (2002); we only have space for a
these stages, most of the deverbal nominalisationg; . summary.here. 6ur best results achieved an

caln he n;]arkedb ulp with &STEM attribute WhoSe  5.cyracy of 73.6% (over a baseline of 58.5%) when
value Is the verbal stem: using the type of affixation of the deverbal head, the
<W P="NN’ LM="reaction’ VSTEM="react’>reaction</W> TsG, and WordNet for recreating missing frequen-
<W P="NN’ LM="growth’ VSTEM="grow’ >growth</W> cies.

<W P="NN’ LM="control' VSTEM="control’ >controk:/W>
<W P="NN’ LM="coding’ VSTEM="code’>coding</W>

Having collected two different sets of frequency
counts from the entir@HSUMED corpus for verbs

5 Conclusions

To mark up compounds we developedfagmatch  We have performed a number of differentp tasks
grammar for compounds of all lengths and kindson the oHSUMED corpus of MEDLINE abstracts
and we used this to process a subset of the first twganging from low-level tokenisation through shal-
years of the corpus. low parsing to deep syntactic and semantic analy-
We interpret nominalisations in the biomedical sis. We have usedML as our processing paradigm
domain using a machine learning approach whickand we believe that without the coxaiL tools the
combines syntactic, semantic, and contextual featask would have become extremely hard. Further-
tures. Using theLT XML program sggrep we more, we have built fully-automatic pipelines and
extracted all sentences containing two-word com$ave not resorted to hand-coding at any point so that
pounds headed by deverbal nominalisations an@ur output annotations are completely reproducable
from this we took a random sample of 1,000 nom-and our resources are reusable on new data. Our
inalisations. These were manually disambiguatedpproach of building a firm foundation of low-level
using the following categories which denote thetokenisation has proved invaluable for a variety of
argument relation between the deverbal head anbligher-level tasks.
its modifier: suBJ (age distributioly, oBJ (weight TheXxmL -annotatedbHSUMED corpus which has
loss), WITH (graft replacement FROM (blood elim-  resulted from our project will be useful for a num-
ination), AGAINST (seizure protectioy) FOR (non-  ber of different tasks in the biomedical domain. For
stress tedt IN (vessel obstructionBY (aerosol ad- this reason we are developing a web-site from which



many of our resources (including the pipelines In Proceedings of the Joint EACL-ACL Meeting
described in this paper) are availablétitp:/ (ACL-EACL 2001)

www.ltg.ed.ac.uk/disp/ . In addition, we pro- Claire Grover, Mirella Lapata and Alex Lascarides.
vide various marked-up and tokenised versions of 2002. A Comparison of Parsing Technologies for
OHSUMED, including the output of the parsers de- the Biomedical Domain. Submitted dournal of

scribed here. Natural Language Engineering
William Hersh, Chris Buckley, TJ Leone, and David
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