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Abstract

This paper presents the development of
a Named Entity (NE) recognition sys-
tem for the Italian broadcast news do-
main. A statistical model is introduced
based on a trigram language model de-
fined on words and NE classes. The
estimation of the NE model is carried
out with a very little list of 2,360 man-
ually tagged NEs and a large untagged
newspaper corpus. An iterative train-
ing procedure is applied which goes
through the estimation of simpler mod-
els, whose parameters are used to ini-
tialize the complete NE model. In
the end, NE recognition experiments
are reported, on broadcast news tran-
scripts generated by a speech recogni-
tion system.

1 Introduction

Named Entity (NE) recognition is the task of
spotting and classifying proper names and nu-
merical expressions inside written or spoken doc-
uments. Research on spoken NE recognition has
been mainly carried out on American English
Broadcast News (BN), within the framework
of DARPA-sponsored evaluations!, since 1998.
In the standard way, NE recognition in BN is
performed on transcripts generated by a speech
recognition system. In contrast to written docu-
ments, automatic transcripts may contain recog-
nition errors and disfluencies, typical of the spo-

"http://www.nist.gov/speech /tests/
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Language Processing (EVNLP),

ken language, and lack punctuation and capital-
ization. The presence of noise and the absence
of important textual clues in the source docu-
ment seem good reasons for approaching spoken
NE recognition with statistical or data-driven
methods.

This paper addresses the issue of developing,
from scratch, a NE recognition system for the
Italian BN domain. In particular, no tagged
training corpus will be used to accomplish this
task.

A trigram NE Language Model (LM) of words
and NE classes is bootstrapped by just exploit-
ing two relatively cheap written-language re-
sources: a 240M-word corpus of newspaper arti-
cles and a list of 2,360 NEs, which were manually
classified into possible NE classes.

In the NE LM, each class is modelled as a com-
bination of two probabilistic finite state LMs:
a template model and a bag-of-word model of
known entries of the class, both of which can
span more words. Training of the NE LM goes
through the estimation of simpler models, which
are then used to initialize the full model. Fi-
nally, the NE LM is adapted to work with
automatic transcripts by inhibiting the tem-
plate model, and by removing capitalization and
punctuation information from the model.
Section 2 describes the structure and parameters
of the NE LM, Sections 3 and 4 explain, respec-
tively, how NE recognition and parameter esti-
mation can be performed with the model. Sec-
tion 5 shows experimental results. Finally, Sec-
tions 6 and 7, respectively, contain some discus-
sion and conclusions about the here presented
approach.
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by set of words (either up-case or low-case) in the corpus

Vex

word vocabulary of the language model

T strings matched by the template

& = {loc, per,org, oth}

set of named entity categories

any string matched by the template, i.e. potential named entity
n-gram probabilities i.e. w(x,y,2) = Pr(z | zy)
template vs. list probability, e.g. A(loc) = Pr(< tmpl >|< loc >)

z,y,2 €EVUE words or named entity categories
e€éf named entity category

teT

I={n(z,y,2): z,y,2€ VUE}

A={X(e): e€ &}

T={r:1i1=1,...,4} template probabilities
E={e(t,e): teT,ect}

string-class distributions €(I1 Cairo, < loc >) = Pr(I1 Cairo | loc)

Table 1: List of often used symbols.

2 Statistical NE LM

The proposed NE LM generalizes an ordinary
trigram LM as follows. Trigram probabilities
are defined over a vocabulary V, including com-
mon words, and a set of NE categories £ =
{loc, per,org,oth}?. Moreover, a further class
oov (out-of-vocabulary) is defined to capture
words not belonging to V. In Figure 1, for
the sake of clarity, the Probabilistic Finite State
Network (PFSN) corresponding to a bigram NE
LM is shown. Notice that in all the here de-
picted networks, transitions or arches with prob-
abilities corresponding to parameters to be es-
timated are drawn with solid lines, while tran-
sitions with fixed probabilities are drawn with
dashed lines. Moreover, initial states or nodes
are in white colour, final states are in black
colour, and other states are in gray colour. La-
bels on transitions may either correspond to
strings to be matched with the input text, or
to names of other networks, e.g. <loc>. Tran-
sitions without label are called empty. As no
recursion will be used in the subsequent PFSNs,
the NE LM can be more properly defined as a
cascade of PFSNs.
Each NE class has associated a binary random
variable which switches between a bag-of-word
distribution of known-entries for that class, and
a distribution of generic NE templates. The PF-
SNs corresponding to the switch variable and
to the known-entry distribution are shown, for
class loc, in Figure 2.
Finally, generic NE templates are modelled with
’NE recognition is here limited to proper nouns of

type location, person, and organization, plus a filler
class for other types of proper nouns (cf. Section 5.2).

// P(W1/W1)

P(W1)

Figure 1: Network of a bigram NE LM.

regular expression covering almost all possible
ways of writing proper names. Let <Word> de-
note any up-case word, and <prep> any prepo-
sition that may occur before or between proper
names 3. Four sub-cases of the generic regular

expression:
(< prep >? < Word >)+

have been identified (see Figure 3), which corre-
spond to different lengths and formats of NEs.
In the resulting PFSN, see Figure 3, probabili-
ties associated to each case are tied among all
NE classes. For reason of brevity, PFSNs of

3A list of 38 preposition was defined for this purpose.
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Figure 2: Switch variable and bag-of-word

model for NE class loc.

words in V, and of labels <oov>, <Word>, and
<prep> are omitted.

Hence, the described model can be summarize
by a 4-tuple of parameters (II, A, T, E), defined
as follows (cf. definitions in Table 1):

e II. the set of trigram probabilities
m(7,y,2) = Pr(z | 7y), z,y,2 € VUE;

e A, the template vs. list probability associ-
ated to each NE class, A(e) € [0,1], e € &;

e T, the probabilities associated to the tem-
plates, ; € [0,1] i =1,2,3,4;

e F the probabilities of known-entries of each
class €(t,e) =Pr(t|e), te€T, ecé.

While probabilities in A, T, E are defined by
discrete probability schemes, those in II are
smoothed in order to cope with data sparse-
ness. Hence, the following interpolation scheme

coupled with an absolute discounting method
(Huang et al., 2001) is used:

Pr(z | zy) =

rep>
<tmpl-2>: O-E—p-

_<Wordz_

<tmpl-3>:0- ='===
P x V\__ <

<prepz_ . _<Wordxz +<prepz_, <Word>

<tmpl-4>:0-

Figure 3: NE class: template model.

which employs the following statistics computed
on the training sample: ¢(-), the event counts;
d(-), the number of different words observed af-
ter a specified bigram or unigram; N, the size of
the training sample.

3 NE Recognition

Given a text W, its probability can be computed
through the LM PFSN by taking into account
all possible paths (sequence of states) that ex-
actly span W, start from the initial state, and
end in one final state. It is easy to see that if
paths trace all the traversed sub-networks, they
correspond to parse trees, which indicate, at the
top level, eventually recognized NEs.

However, for the sake of NE recognition, one
is more interested in finding the most probable
parse tree T* for W, i.e.:

T = Pr(W, T 2

= arg, max  Pr(W.T) (2)

where T' (W) indicates the set of paths described
in the begin of this section. It can be shown

that the here represented NE LM is equivalent
to a cascade of hidden Markov models (HMMs)



(Huang et al., 2001) or of weighted finite state
acceptors (Pereira et al., 1994) and that the
most probable path for an input text can be effi-
ciently computed through a Viterbi-like decod-
ing algorithm (Brugnara and Federico, 1997).
Here, in particular, the decoding software used
for speech recognition is used by converting the
input front-end to a stream of ASCII charac-
ters, and by replacing acoustic models to single
state HMMs with delta distributions over sin-
gle ASCII characters. The NE LM is compiled
into a set of distinct PFSNs, corresponding to
the main trigram LM, the class related models,
etc. Significant memory savings are achieved by
exploiting a tree-based topology for the trigram
and bag-of-word models (Bertoldi et al., 2001;
Huang et al., 2001).

4 NE LM Training

Given a manually parsed corpus, Maximum
Likelihood (ML) estimation of the NE LM just
requires collecting sufficient statistics for its pa-
rameter sets. Otherwise, if just an untagged
text is available, training of the LM can be per-
formed by the Expectation-Maximization algo-
rithm (Dempster et al., 1977) or, more easily, by
the Viterbi training method, also known as seg-
mental K-means algorithm (Juang and Rabiner,
1990).

4.1 Viterbi training

Let M be an available estimate of the NE LM
and W an untagged text. A new estimate M
can be obtained by searching for the best parse
tree T, under M, and by computing, then, the
ML estimate M, under T' . This corresponds to
performing the two following steps:

1. T = arg mj@xlog Pr(T, W; M)

2. M = argmﬁxlogPr(T,W;M)

The following inequalities show that the above
procedure can be iteratively used to improve the
likelihood of the best parse tree:

max log Pr(T, W; M) >log Pr(T, W; M)

>log Pr(T, W; M)
=max log Pr(T, W; M) (3)

However, the above property does not tell if

the parameter transformation M — M indeed
converges to a fixed point. A tricky convergence
proof of the segmental K-means algorithm ap-
plied to HMMs can be found in (Juang and Ra-
biner, 1990), while bounds on the distance be-
tween HMM parameters estimated by EM and
Viterbi training are discussed in (Merhav and
Ephraim, 1991).
In this work, few iterations of Viterbi train-
ing were applied, as relative likelihood improve-
ments of the best interpretation drastically re-
duced after the first iteration. Figure 4 shows
how training is applied to the NE LM. Start-
ing from some model estimate M, the corpus
is tagged according to the most probable parse
tree T'. Hence, sufficient statistics are extracted
from the tagged corpus in order to estimate M.
In some cases, little supervision in terms of man-
ually checked NE lists is used to filter out unre-
liably tagged data.

4.2 Incremental training

Training of the NE LM goes through the defi-
nition and estimation of two simpler intermedi-
ate models, which are obtained by fixing some
of the parameters in (II, A,7, E). In particu-
lar, the notation (II, A = 0, E) indicates a list
model, as the switch parameters in A inhibit the
template part, while (II, A = 1,7) indicates a
template model, as the lists of known-entries are
inhibited *. Estimates of intermediate models
will be used to initialize the complete NE LM.

4.3 Intermediate model M

A list model (II, A = 0, FE) is estimated start-
ing from a supervised list of NE entries which
may also include ambiguous cases®. Initializa-
tion and estimation of distributions in I and F
are performed on a sub corpus made of sentences

“Not active parameters are just omitted from the no-
tation.

5See Section 5.2 for details.
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Figure 4: Viterbi training procedure.

not containing other potential NEs, but those
in the supervised list. Then, Viterbi training is
applied to annotate the whole corpus. This step
permits to improve the initial estimates of IT and
E.

4.4 Intermediate model M;

The template model (IT = Iy, A = 1,T) is es-
timated, with the probabilities in II fixed with
the final estimates of My, while T" are uniformly
initialized. This time, only a very small sample
of the corpus is needed because model M; just
requires estimating three free parameters.

4.5 Full model M,

The complete model (IT = Iy, A, T = T3, F) is
estimated, with F initialized with Ey, and with
each \(e) initialized with the ratio of the number
of new NEs, of type e, tagged by M1, to the total
number of NEs of type e tagged by M;. This
gives a rough estimate of the chance of finding
NEs of a given class which are not in the list of

known-entries. Training of this model permits
to significantly expand the support sets of the
distributions in F and to accordingly estimate
the switch probabilities A for each class. Ideally,
this means that new NEs can be discovered and
stored by the distributions in F.

4.6 Spoken NE model Mj

As model M» exploits capitalization information
in texts, for the template matching, it cannot
be directly applied to case-insensitive automatic
transcripts. Hence, the list model (IT = Iy, A =
0, E = E») is derived from My, by inhibiting the
template case and re-estimating II on the tagged
corpus used to estimate My, after removal of
punctuation and capitalization information. Fi-
nally, capitalization is also eliminated from the
entries in Fs.

5 Experimental results

5.1 Training and testing data

The training corpus is a 240M-word collection
of Ttalian newspapers spanning the period 1992-
1999, while the evaluation sets consists of two
broadcast news shows, of November 1999, with
a total duration of 40 minutes. To avoid time
overlap with testing data, only written resource
before October 1999 were considered for training
purposes.

Reference transcripts of the test set were manu-
ally produced and include punctuation and cap-
italization for a total of about 7,000 words and
322 tagged NEs. NE recognition performance
was computed with the scoring software of the
1999 TIE-ER DARPA evaluation. In particular,
the F-score was used which integrates agreement
between reference and hypothesis according to
type, content, extension of NEs.

Automatic transcripts were generated with the
ITC-irst broadcast news transcription system
in (Bertoldi et al., 2001), which features a
beam-search Viterbi decoder, context depen-
dent HMMs, and a 64K-word trigram LM. Two
recognition passes were applied on the news
shows, providing an average word error rate

(WER) of 19.8%.



5.2 List of supervised NEs

About 2,700 potential NEs were extracted from
the training data and manually classified accord-
ing to the annotation guidelines in (Chinchor et
al., 1999). In particular, the 2,673 most frequent
strings, matching template <tmpl-3> (see Fig-
ure 3) in the newspaper corpus, were included.
Moreover 30 proper names, which were found in
BNs manual transcripts, were added to the list
(e.g. television networks, news programs, etc.).
Among the collected strings, 2,360 were manu-
ally classified into one or more of the following
categories: location, organization, person, and
other. The filler category other which includes
proper names as events, products, etc. was not
taken into account for the sake of evaluation.
Notice that no temporal and numeric expres-
sion have been considered here. These entities
are in fact much less frequent than proper names
(Przybocki et al., 1999) and would hence require
a much larger test set for an experimental eval-
uation.

5.3 Model training

Before estimating M, the training corpus was
deterministically tagged according to the list of
supervised NEs. Next, single sentences in the
corpus which contain potential NEs not covered
by the supervised list were removed. After this
step, the training corpus was reduced to 125M
These data were used to estimate F,
while only the subset of sentences containing
univocally classified NEs were used to estimate
II. In particular, about 37M trigrams were used
to train the NE LM, which was then compiled
into a PFSN.

Next, one Viterbi iteration was carried out
which permitted to reduce the average number
of classes associated to NEs from 1.29 to 1.01,
and to augment the size of the training data for
parameters in IT by 10%. However, this training
step resulted in a limited impact in performance:
just 1% F-score relative improvement on the ref-
erence transcripts (see Table 3).

words.

The following model M; permits to estimate
probabilities of the template models. Interest-
ingly, combination of trigrams and templates

' May '99 vs. “(ear

Correlation Coefficient

0.74 1 1 1 1 1 1
1999 1998 1997 1996 1995 1994 1993 1992
Year

Figure 5: Correlation of NE frequencies across
eight years.

provided a much better starting point, i.e. 77.76
F-score (see Table 3). After one Viterbi training
iteration, the F-score improved by 2.8%. Given
that the same templates are shared among all
the NE classes, the M7 model gives an indirect
measure of the tagging accuracy by the trigram
LM component.

Parameter estimates resulting from models M,
and M are finally combined to initialize model
Ms. In other words, lists of known NEs and
templates can be exploited jointly. This initial-
ization achieves an F-score of 85.92, which cor-
responds to relative improvements of 7.5% and
19.7%, respectively, over the template model
(M) and the list model (Mp). Training of model
M; was carried out trough a single Viterbi iter-
ation using just the newspaper texts from Jan-
uary to October 1999. The rationale for this is
that relevant new NEs occur more likely around
the period of the test set. This is some way con-
firmed by Figure 5, which shows the correlation
coeflicient between relative frequencies of poten-
tial NEs found in May 1999 against those found
in 1999, 1998, ... ,1992.

After training, performance of My improved by
only 1.3%, but coverage by the NE lists signifi-
cantly increased (see Table 2).

5.4 Spoken NE Recognition

In Table 4, NE recognition experiments on au-
tomatic transcripts are reported for model My,



Eo B,

# wrd cov. F# wrd cov.
loc 662  75.42 25,752 96.61
org 608  62.66 19,605 84.00
per 1,132 44.19 48,109 84.50
all 2,122 59.94 70,261 89.75

Table 2: Size of the NE lists of model M, and
My and coverage statistics with respect to test
data.

Initial Final
My 71.10 T71.78
My 71776 79.94
M, 85.92 87.17

Table 3: F-scores of models My-Ms5 on the test
set, before and after training.

after removing punctuation and capitalization
information, and for model M3. Three differ-
ent settings of the BN transcription system were
considered in order to evaluate NE recognition
with different word error rates (namely reci,
rec2, and rec3). Moreover, as a reference, man-
ual transcripts without punctuation and capital-
ization (txt-i) were also used.

Results on the reference transcripts (txt-i)
show that the lack of punctuation and capi-
talization causes a 8.6% relative loss in perfor-
mance, i.e. F-score drops from 87.17 to 81.12.
This is mainly due to the increase in ambigu-
ity caused by common words which may also
occur in proper names. However, the incremen-
tal training procedure allowed for a significantly
improvement over the initial model My, i.e. a
20% F-score relative improvement, from 67.42
to 81.12.

Experiments on automatic transcripts with dif-
ferent WERs show relative decreases in perfor-
mance, with respect to txt-i, ranging between
10.4% and 13.0%, for WERs between 19.8% and
23.0%. The relative improvement between the
initial and final models, My and Ms3, is around
15-16% for all automatic transcripts. The rea-
son for the lower performance improvement may
be that M3 basically augments My with less fre-

txt-1  recl rec2 rec3
M, 67.42 62.95 61.96 61.34
M; 81.12 72.69 72.14 70.57
wer% 0.0 19.8  21.3  23.0

Table 4: F-score by models M3 and My on BN
transcripts with different WERs.

quent proper names which are probably more
difficult to recognize, given the statistical nature
of the speech recognizer.

6 Discussion

This section compares the here proposed NE LM
with the NE tagged LM, presented in (Gotoh et
al., 1999; Renals et al., 1999). The NE tagged
LM uses a different decomposition of the prob-
ability Pr(W,T'), which can be related to an or-
dinary class based trigram model, i.e.:

n
PI‘(VV, T) = H Pr(w,-,ti | ’lUi_Qti_Qwi_lti_l)
i=1

where T' now corresponds to a word-by-word
tagging of W with classes in €& U {ep}, with e
denoting the not-NE class. NE recognition with
this model can also be performed by Viterbi de-
coding. However, this requires estimating prob-
abilities in the space (V x (EU{eg}))3, in contrast
to the probability space (VUE)? used by the NE
LM.

Moreover, the cascade structure of the NE LM
can span longer dependencies, i.e. across words
and NE classes, than the NE tagged LM can
do. On the other side, the latter model is prob-
ably more flexible in the composition of NEs.
In other words, new NEs can be recognized by
concatenating known entries. The capability of
finding new NEs is, for what concerns the NE
LM, limited to the template model. Hence, a
possible improvement could be to replace the
current bag-of-word model in M3 with an n-
gram model, estimated on the entries currently
used in FE.

Interestingly, similar levels of performance are
reported in (Renals et al., 1999) when NE recog-
nition is carried out on clean, case-insensitive
texts and automatic transcripts (with 21%



WER), i.e. F-scores are 85.0 and 75.0, respec-
tively. Of course, a true comparison between the
two approaches should be perfomed on the same
language and data.

7 Conclusion

This paper presented a statistical language
model for NE recognition which was developed
for the Italian broadcast news domain. The
model integrates trigram statistics on words
and NE classes, with probabilistic finite state
language models. A bootstrap training tech-
nique is presented which permits to estimate the
model by means of very inexpensive language
resources: a large newspaper corpus and a few
thousand manually classified NEs.
Experimental results were provided for two au-
tomatically transcribed broadcast news shows.
Presented results are comparable with those ob-
tained, on similar conditions, by NE taggers for
American English broadcast news, which were
trained on much more supervised data.
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