Proceedi ngs of the Conference on Enpirical
Language Processing (EVNLP),
Associ ation for Conputational

Met hods i n Natural
Phi | adel phia, July 2002, pp. 289-295.
Li ngui sti cs.

Processing Comparable Corpora With Bilingual Suffix Trees

Dragos Stefan Munteanu and Daniel Marcu
Information Sciences Institute
University of Southern California
4676 Admiralty Way, Suite 1001
Marina del Rey, CA 90292
{dragos, marcu}@isi.edu

Abstract

We introduce Bilingual Suffix Trees (BST), a
data structure that is suitable for exploiting
comparable corpora. We discuss algorithms
that use BSTs in order to create parallel cor-
pora and learn translations of unseen words
from comparable corpora. Starting with a small
bilingual dictionary that was derived automat-
ically from a corpus of 5.000 parallel sentences,
we have automatically extracted a corpus of
33.926 parallel phrases of size greater than 3,
and learned 9 new word translations from a
comparable corpus of 1.3M words (100.000 sen-
tences).

1 Introduction

Current research in statistical machine transla-
tion based on the work of Brown et al. (1993)
relies heavily on the existence of parallel corpora
for the estimation of translation model param-
eters. Unfortunately, such corpora are avail-
able only in limited amounts and cover only
specific genres (Canadian politics, Hong Kong
laws, etc). However, monolingual texts exist in
higher quantities and in many domains and lan-
guages. Methods for processing such resources
can therefore greatly benefit the field.

Previous work on processing non-parallel,
comparable corpora has focused mostly on
learning word-level translations. Some re-
searchers focused on discovering translations of
new words (Rapp, 1995; Rapp, 1999; Fung and
Yee, 1998; Diab and Finch, 2000). Others
worked on choosing between several translation
alternatives (Kikui, 1999; Koehn and Knight,
2000). In order to learn to discriminate between
several word senses, these approaches model the
contexts in which the words under consideration
occur.

The context is usually represented as co-
occurrence information. That is, for each word
of interest one counts the occurrences, in its
vicinity, of each element of a previously defined
set of “context words”. These counts define
the context vector of the words under consid-
eration. The common assumption in these ap-
proaches is that words which are translations
of each other will have similar context vectors.
The main differences between these approaches
lie in the choice of context words and in the def-
inition of similarity. For example, Rapp (1999)
and Fung and Yee (1998) use as context words
the entries from a small bilingual lexicon; Diab
and Finch (2000) use the top N most frequent
words in the corpus; and Kikui (1999) considers
only “content bearing words”.

The goal of our research goes beyond learning
word-level translations from comparable cor-
pora, as we not only learn translation of unseen
words but also build parallel corpora. Our ap-
proach to context processing is not limited to
co-occurrences but rather it takes into account
the full literal context. A high-level description
of our approach is shown in Figure 1.

Given a small bilingual lexicon and a com-
parable bilingual corpus we automatically con-
struct a bilingual suffix tree (BST). The BST
represents in linear space all substring align-
ments between the two corpora given in the in-
put. From this representation we extract phrase
and sentence alignments in order to produce a
parallel corpus. We also present an algorithm
that uses the BST in order to learn word trans-
lations of unknown words.

2 Bilingual Suffix Trees

2.1 Suffix Trees

A suffix tree is a data structure that stores in
linear space all suffixes of a given string. Such

Non-parallel

Small Source
i Target
Enmgual Language Lan%uage
exicon Corpus Corpus

Comparable Corpus
Alignment With
Bilingual Suffix Trees

- - W =—= W
— — W == W

W == W

Parallel Corpus Additional Dictionary

Entries

Figure 1: Schema of the Corpus Alignment Sys-
tem

succinct encoding exposes the internal struc-
ture of the string, providing efficient (usually
linear-time) solutions for many complex string
problems, such as exact and approximate string
matching, finding the longest common substring
of multiple strings, and string compression. Suf-
fix trees have originally been introduced by
Weiner (1973) but since then have been redis-
covered many times in the literature, under dif-
ferent names (Grossi and Italiano, 1993). A
thorough discussion of this data structure and
its applications is given by Gusfield (1997).
Formally, a suffix tree for a string S of length
N has the following properties (Gusfield, 1997):

e Each edge of the tree is labeled by a non-
empty substring of S.

e Each internal node other than the root has
at least 2 children.

e No two edges out of a node can have
edge-labels beginning with the same char-
acter /word.

e The key feature of the tree is that there
is a one-to-one correspondence between all
suffixes of S and paths in the tree from the
root to the leaves.

Figure 2 shows the suffix tree of string

XYZYXZY

Oy O
X X
z/ \z 2
y z
y %(Y X \$ y
7 z
y y
O O O O O
Figure 2: Suffix tree for string xyzyxzy
XyZyXZy.

Note that if a suffix of a string is also a prefix
of another suffix (as would be the case for suffix
zy of string xyzyxzy) we cannot build a proper
suffix tree for the string. The problem is that
the path corresponding to that suffix would not
end at a leaf, so the tree cannot have the last
property in the list above. To avoid this, we
always append to our strings an end-of-string
marker that appears nowhere else in the string,
which we denote by $. For clarity, our examples
only show the § marker when necessary.

Since we are interested only in sentence level
alignments, we divide each monolingual corpus
given as input into a set of sentences. We then
use a variant of suffix trees that works with
sets of strings, namely Generalized Suffix Trees
(GST). In a GST of a set of strings, each path
from the root to a leaf represents a suffix in
one or more strings from the set. A conceptu-
ally easy way to build such a tree is to start by
building a regular suffix tree for the first sen-
tence in the corpus, and then for each of the
other sentences to take their suffixes one by one
and add them to the tree (if they are not already
in it). Figure 3 shows the GST for a corpus of
two sentences. The numbers at the leaves of
the tree show which sentences contain the suffix
that ends there.

Building the suffix tree of a string takes time
and space linear in the length of the string.
(Ukkonen, 1995; Nelson, 1996). Building a GST
for a set of strings takes time and space linear
in the sum of the lengths of all strings in the
set (Gusfield, 1997).

lzyys

O
yZ ZX X
z z \$
y y
O O O o O O O O
0 0 0 0 01 1 0 0 1

Figure 3: The GST for strings {xyzyxzy, zxy}.

2.2 Bilingual Suffix Trees

A Bilingual Suffix Tree is the result of match-
ing a source language GST against a target
language GST. Two strings (i.e. sequences of
words) match if the corresponding words are
translations of each other according to a bilin-
gual lexicon. In order to perform the matching
operation, all paths that correspond to an ex-
haustive traversal of one of the trees (the source
tree) are traversed in the other (the target tree),
until a mismatch occurs. In the process, the tar-
get tree is augmented with information about
the alignments between its paths and those of
the source, thus becoming a bilingual suffix tree.
Figure 4 shows two corpora, a bilingual lexi-
con, and the corresponding BST. Edges drawn
with dotted lines mark ends of alignment paths
through the tree. Their labels are (unaligned)
continuations of the source language substrings
from the respective paths.

Since there is a one-to-one correspondence be-
tween the substrings in the text and the paths in
the suffix trees, the operation described above
will yield all pairs of substrings in the two cor-
pora given as input and discover all partial
monotone alighments defined by the lexicon.

If the lexicon is probabilistic, each matching
between two words will be weighted by the cor-
responding translation probability. The paths
in the resulting bilingual tree will also have
weights associated with them, defined as the
product of the matching probabilities of the
words along the path.

Our matching operation is similar to that de-
scribed by Bieganski et al. (1994), differing only
in the matching operator and the structure of
the resulting tree. Bieganski et. al match trees

Lexl con

Source Corpus Target Corpus

X=—a
dabcdach ;g;yxzy Yy<-a
y<=b

Z=—c

Zc
y:b

Figure 4: Bilingual Suffix Tree.

that are defined over the same alphabet, there-
fore two strings match only if they are identi-
cal. The result is another suffix tree over the
same alphabet, which encodes all the common
subsequences. In contrast, our trees are defined
over different alphabets, and the matching is
defined by the bilingual lexicon; in particular,
a given sequence in one tree can (and usually
does) match with several sequences from the
other tree, which increases the complexity of the
operation.

3 Extracting a parallel corpus from
a comparable one

BSTs are constructed to encode alignment in-
formation, therefore the extraction of parallel
phrases amounts to a simple depth-first traver-
sal of the tree. Figure 5 shows some alignments
we can extract from the BST in Figure 4, a por-
tion of which is shown in Figure 5.

As can be seen in Figure 4, there are three
types of edge labels in a BST: only target lan-
guage sequences (e.g. xzy), pairs of target and
source language sequences (y:b followed by z:c)
and only source language words (b or c). For
alignment extraction we are interested in edges
of the third type, because they mark ends of
alignments. Let e be an edge labeled only with
a source language word, originating from node
n. A path from the root to n will only tra-

Xa zZ:C

Figure 5: Example alignments

verse edges labeled with word pairs, defining
two aligned sequences. The fact that n has out-
going edge e indicates there is a mismatch on
the subsequent words of those two sequences.

Thus, in order to extract all aligned sub-
strings, we traverse the BST on edges labeled
with word pairs, and extract all paths that end
either at the leaves or at nodes that have out-
going edges labeled only with source language
words.

4 Learning translations

The heuristic by which we discover new word
translations is shown graphically in Figure 6
and explained below. Figure 6.i shows a branch
of the BST corresponding to the comparable
corpus in the same figure. The path defined
by the bold edges shows that sequences xyz
and abc are aligned, and diverge (i.e. have a
mismatch) at characters y and d respectively.
We take this as a weak indication that d and y
are translations of each other. This indication
would become stronger if, for example, the se-
quences following d and y in the two corpora
would also be aligned. One way to verify this
is to reverse both strings, build a BST for the
reversed corpora (a reverse BST), and look for
a common path that diverges at the same d and
y. Figure 6.ii shows the reverse BST, and in
bold, the path we are interested in. When d
and y are surrounded by aligned sequences, we
hypothesize that they are translations of each
other.

For a pair of words from the two corpora, we
use the terms right alignment and left alignment
to refer to the aligned sequences that precede
and respectively succeed the two words in each
corpus. The left and right alignments and the
two words delimited by them make up a con-

Reverse
‘yzxyzy* ‘bcadcbad

Forward

‘xyzyxz* ‘dabcdacb‘

Figure 6: Discovering new word translations

text alignment. For example, the left alignment
xyz-abc, the right alignment xzy-acb and the
words y and d in Figure 6.iii make up a context
alignment.

Given a comparable corpus, this procedure
will yield many context alignments which cor-
respond to incorrect translations, such as that
between the words canadien and previous:

tout canadien serieux
any previous serious

In order to filter out such cases, we use two
simple heuristics: length and word content.
Thus, for a context alignment to be wvalid, the
left and right context together must contain at
least 3 words, one of which must be an open-
class word. The translation candidate must also
be an open-class word.

The algorithm for learning translations of un-
known words, which we explained in this sec-
tion, is summarized in Figure 7. A major advan-
tage of our algorithm over previous approaches
is that we do not provide as input to the al-
gorithm a list of unknown words. Instead, we
automatically learn from the corpus both the
unknown words and their translation, upon dis-
covery of appropriate context alignments.

5 Experiment

We tested our system on an English-French
comparable corpus, of approximately 1.3 million

1. Build the forward and backward BSTs.

2. Traverse sach BET and extract left
and right alignments for every node
that represents a divergence

For each word pair from the divergence set:

a. create context alignments out of
appropriate left and right alignments

k. filter out invalid context alignments

c. extract valid translation candidates
from the context alignments

Figure 7: Algorithm for learning translations of
unknown words

words — 50.000 sentences for each language.
We obtained it by taking two non-parallel, non-
aligned segments from the Hansard corpus. We
also used GIZA! to automatically build a small
bilingual lexicon of 6.900 entries using 5.000 sen-
tences pairs (150.000 words for each language).
The parallel corpus was taken from the Proceed-
ings of the European Parliament (EuroParl).
Note that the parallel corpus belongs to a differ-
ent domain than the comparable corpus. Also,
the parallel corpus is extremely small. For low-
density languages, such a corpus can be built
manually.

When given as input the comparable corpus
described above and the bilingual lexicon of
6.900 entries, the algorithm described in Section
3 found 33.926 parallel sequences, with lengths
between 3 and 7 words (we do not report here
aligned sequences of less than 3 words). Out
of 100 randomly selected sequences, 95% were
judged to be correct. Some examples of the dis-
covered alignments are shown in Figure 8.

The system also found translations for 30
unknown French words. Of these, 9 are cor-
rect, which means a precision of 30%. Figure 9
shows some proposed translations and the con-
text alignments on which they are based.

For each of the two corpora, building the
monolingual GST took only 1.5 minutes. The
matching operation that yields the BST is the
most time-consuming: it lasted 38 hours for the
forward BST and 60 hours for the reverse BST.
The extractions of all parallel phrases and of
the translations took about 2 hours each. We
ran the experiments on a Linux system with a
Pentium 3 processor of 866 Mhz.

! http://www.clsp.jhu.edu/ws99/projects/mt/

méme temps . le gouvernement réduit le
Same time the government reduced the
mon avis , cCe est trés important
my opinion thi=s 1is VEerYy itmportant
et que nous Sonmes disposézs a prendre
and that we are prepared to take
; en fait B le

, in fact B the

P11 . le

P10 , the

par mes collégues et moi

hy my colleagues and myself

partout dans le monde

everywhere in the worlad

pression =sur le gouvernement

pressure on the OVerIment

e oe gui

that for which

Loutes les PErSONnes

all the people

doute B le

certainly the

Figure 8: Examples of parallel phrases

CORRECT

11 est communément accepté

it is commeniy accepted
subventions ont bien &té
subsidies have also been

1l est immensément important
it is particularly significant

communément = commenly
bien = also

immensément = particularly

THCORRECT

ces plaintes ont déja

these meetings have already

nouveaux renseilgrements sont disponibles
new wunits are available

ces exemptions ont &té

these documents have bheen

ces exemptions ont été

these laws have heen

plaintes - meetings
renseignements - units
exemptions - documents

exemptions - laws

Figure 9: Proposed translations

6 Discussion and Future Work

GST and BST construction
The most important limitation of our method
is that it can find and exploit only word align-
ments that are monotonic. This makes the
system applicable primarily on language pairs
which have similar word order, such as English-
French and English-Chinese.

A second, less severe limitation concerns the
scalability of the algorithms. The GST and BST
derivation algorithms that we implemented to

date are not the most efficient. For example,
Kurtz (1999) shows how to reduce space require-
ments of suffix trees. And Farach (1997) and
Andersson et al. (1999) present construction
algorithms which, for trees defined over large al-
phabets such as words, are more efficient than
Ukkonen’s algorithm (which we used in our im-
plementation). The matching operation can be
parallelized with linear speedup, since match-
ing of a pair of branches is independent of the
matching of any other pair. We plan to incor-
porate these improvements in future versions of
our system.

Learning new translations

The translation precision that we obtained
is lower than that reported in previous ap-
proaches. However, we attempted to solve a
much harder problem: our algorithm does not
take as input the list of unknown words, but
learns automatically from the corpus both the
unknown words and their translations. There-
fore our results depend both on the degree of
parallelism of the two corpora, and on their size.
We expect that as we scale the algorithm to pro-
cess corpora of billions of words, our precision
will improve.

As mentioned in section 4, our algorithm for
learning new translations yields many context
alignments, most of them corresponding to in-
correct translations. Filtering out these incor-
rect translations is an important part of the al-
gorithm. Our current filtering method, which is
based on the length and content of the context
alignment, is rather simple. The co-occurence
methods used in the previous approaches could
be of help here, by providing additional sources
of evidence about the translations defined by
our context alignments.

Bootstrapping

It is clear that our algorithm can bootstrap it-
self using the learned word translations. The
additional word alignments could allow us to
find more and longer parallel sequences, and
thus better context alignments out of which will
come yet more new translations. At the time of
submission we have not yet implemented this
bootstrapping procedure.

In general, we find BSTs to be an extremely
useful data structure that we believe will be of
great use to other natural language researchers

interested in aligning sequences defined over dif-
ferent alphabets.

References

A. Andersson, N.J. Larsson, and K. Swanson.
1999. Suffix trees on words. Algorithmica,
23(3), September.

Paul Bieganski, John Riedl, John Carlis, and
Ernest Retzel. 1994. Generalized suffix trees
for biological sequence data: Applications
and implementation. In Proceedings of the
27th Annual Hawaii International Conference
on System Sciences, volume 5, pages 35—44.
IEEE.

Peter F. Brown, Stephen A. Della Pietra, Vin-
cent J. Della Pietra, and Robert L. Mercer.
1993. The mathematics of machine transla-
tion: Parameter estimation. Computational
Linguistics, 19(2):263-311, June.

Mona Diab and Steve Finch. 2000. A statisti-
cal word-level translation model for compa-
rable corpora. In Proceedings of the Confer-
ence on Content-Based Multimedia Informa-
tion Access.

Martin Farach. 1997. Optimal suffix tree con-
struction with large alphabets. 88th Annual
Symposium on Foundations of Computer Sci-
ence, pages 137-143, October.

Pascale Fung and Lo Yuen Yee. 1998. An IR
approach for translating new words from non-
parallel, comparable texts. In ”Proceedings of
the Thirty-Sizth Annual Meeting of the Asso-
ciation for Computational Linguistics, pages
414-420.

Roberto Grossi and Giuseppe F. Italiano. 1993.
Suffix trees and their applications in string
algorithms. In Proc. 1st South American
Workshop on String Processing, pages 57-76,
September.

Dan Gusfield. 1997. Algorithms on Strings,
Trees, and Sequences. Cambridge University
Press, New York.

Genichiro Kikui. 1999. Resolving translation
ambiguity using non-parallel bilingual cor-
pora. In Proceedings of ACL99 Workshop on
Unsupervised Learning in Natural Language
Processing.

Philipp Koehn and Kevin Knight. 2000. Es-
timating word translation probabilities from
unrelated monolingual corpora using the EM
algorithm. In Proceedings of the National

Conference on Artificial Intelligence, pages
711-715.

Stefan Kurtz. 1999. Reducing the space re-
quirement of suffix trees. Software - Practice
and Ezperience, 29(13):1149-1171.

Mark Nelson. 1996. Fast string searching with
suffix trees. Dr. Dobb’s Journal, August.

Reinhard Rapp. 1995. Identifying word trans-
lation in non-parallel texts. In Proceedings of
the Conference of the Association for Com-
putational Linguistics, pages 320-322.

Reinhard Rapp. 1999. Automatic identification
of word translations from unrelated English
and German corpora. In Proceedings of the
Conference of the Association for Computa-
tional Linguistics, pages 519-526.

Esko Ukkonen. 1995. On-line construction
of suffix trees. Algorithmica, 14(3):249-260,
September.

P. Weiner. 1973. Linear pattern matching al-
gorithm. In Proc. 1} IEEE Symposium on
Switching and Automata Theory, pages 1-11.

