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Abstract

Spontaneous human utterances in the
context of human-human and human-
machine dialogs are rampant with dys-
fluencies, and speech repairs. Further-
more, when recognized using a speech
recognizer, these utterances produce a
sequence of words with no identifica-
tion of clausal units. Such long strings
of words combined with speech errors
pose a difficult problem for spoken lan-
guage parsing and understanding. In
this paper, we address the issue of edit-
ing speech repairs as well as segment-
ing user utterances into clause units
with a view of parsing and understand-
ing spoken language utterances. We
present generative and discriminative
models for this task and present evalu-
ation results on the human-human con-
versations obtained from the Switch-
board corpus.

1 Introduction

Spoken language understanding in human-
computer dialog systems must accommodate the
characteristic features of human verbal com-
munications. Most notable of such features
are a) ungrammaticality b) presence of dysflu-
encies (Meteer and others, 1995) like repeats,
restarts, and explicit/implied repairs c) absence
of essential punctuation marks e.g. end of sen-
tence and comma separated enumerations d) un-
predictable word errors introduced by speech
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recognizers. These features make the word
strings resulting from recognition or transcrip-
tion of speech to be syntactically and semanti-
cally incoherent.

Current spoken dialog systems circumvent
these problems by not attempting to parse
the utterance but instead applying classifica-
tion techniques to classify the entire input di-
rectly into a limited number of actions that the
dialog system can perform. Such techniques
work well when there are small number of ac-
tions, such as in the case of call routing sys-
tems (Gorin et al., 1997). They do not scale
well for tasks that require very large number
of classes, e.g. problem-solving tasks, or when
fine-grained analysis of the user’s utterance is
needed. To develop deeper semantic represen-
tations of the utterances, we need to identify
speech repairs as well as segment the input ut-
terance into clauses — self-contained, syntactic
units embodying a single concept in the form of
a single subject-predicate set. In this paper, we
present generative and discriminative models for
the task of detecting sentence boundaries, iden-
tifying speech repairs and editing them out and
identifying coordinating conjunctions to break
the sentences into clausal units. Throughout
this paper we will refer to this as a clausifier.
We present some experiments on the human-
human conversations obtained from the Switch-
board corpus. The issue of parsing and under-
standing of the resulting clausal units requires
further research and will be addressed in a later
paper.

The task of identifying sentence boundaries,
speech repairs and dysfluencies have been a fo-



cus of spoken language parsing research for sev-
eral years (Bear et al., 1992; Seneff, 1992; Hee-
man, 1997; Ruland et al., 1998; Core and Schu-
bert, 1999). Most of the previous approaches
cope with dysfluencies and speech repairs in
the parser by providing ways for the parser to
skip over syntactically ill-formed parts of an
utterance. In more recent work (Stolcke and
Shriberg, 1996; Charniak and Johnson, 2001),
the problem of speech parsing is viewed as a
two step process. A preprocessing step is used
to identify speech repairs before parsing begins.
The approach we present in this paper, is simi-
lar to (Charniak and Johnson, 2001) with a few
differences. We do not constrain speech edits
and restarts to conform to a particular struc-
ture. Further, we also segment the utterance
into clauses which we believe would be easier
to interpret. Finally, we use plain word strings
with no punctuation marks since this is typically
the output of a speech recognizer.

The layout of the paper is as follows. In Sec-
tion 2, we will define the task and illustrate with
an example the encoding of the task that makes
it suitable for training models for annotation.
In Section 3, we discuss the two approaches for
clausification - n-gram approach and discrimina-
tive approach. The experiments and evaluation
results are presented in Section 4.

2 Task Definition

Clausifier takes as input the result of recognition
of a user’s utterance and generates clauses as its
output. The clausifier annotates its input with
tags that help in segmenting it into clauses. The
<s> tag is used to indicate sentence boundaries,
strings within [ and | are to be edited out and
strings between {c and } indicate coordinating
conjunctions. These tags are then interpreted to
retrieve the set of clauses. This interpretation
involves deleting the words within [ and | and
replacing <s> and the words enclosed within {c
and } with a line feed. An example!® illustrating
the input, the annotated output and the set of
clauses resulting from interpreting the output is

'$time_amount in this example is a named entity.

shown below. 2

Clausifier Input:

yes I got the bill and and eh I have
a question about I was surprised I
got a phone call with in I mean for
er $time_amount is what the the bill
said and you know you charged me eh
$time amount plus tax so eh ...
Clausifier annotated Output:

yes <s> I got the bill [ and | {c and
} [ eh ] I have a question <s> [ about
] I was surprised <s> I got a phone
call [ with in | [ I mean | for [ er |
$time_amount is what [ the | the bill
said {c and } [ you know | you charged
me [ eh | $time amount plus tax [ so eh ]

Clausifier parsed Output:

® yes

I got the bill

I have a question
e T was surprised

e I got a phone call for $time_amount
is what the bill said

e you charged me $time_amount plus tax

In order to train models for the clausifier,
we have encoded the sentence boundary, edit
and conjunction information as tags following
a word. If there is sentence boundary before
a word, it is tagged as ”"Segment”. Edit and
conjunction tags also contain span information;
<Edit1> is for edit of one word to the left,

2The example input is taken from a telephone con-
versation of a customer speaking to an operator. Due to
the unavailability of annotated data for this domain, we
report experimental results in this paper for the Switch-
board corpus.



<Edit2> is for edit of two words to the left and
so on. A similar encoding is used for coordi-
nating conjunctions. A word boundary that has
neither of these tags is tagged as "No Action”.?
Encoding the problem:

yes <s> I got the bill and <Editil1>
and <Conjl> eh <Editl> I have a
question <s> about <Editl> I was
surprised <s> I got a phone call

with in <Edit2> I mean <Edit2> for

er <Editl> $time_amount is what the
<Editl1> the bill said and <Conji1>

you know <Edit2> you charged me eh
<Edit1> $time_amount plus tax so eh
<Edit2> ...

3 Clausifier Method

The task of annotating the input can be viewed
as a tagging problem. Each word of the input
is tagged with one of a few tags that indicate
the type of annotation following the word. In
particular, we consider the presence of sentence
boundary tag <s> and its absence <nos> as
two possible tags to associate with each word.
We can then use an n-gram tagging model (sim-
ilar to (Church, 1988)) as shown in equation 1
to retrieve the best tag sequence for a given in-
put sentence. We follow the same notation as
in (Church, 1988).

P(T) = argmazr P(w;|t;) * P(ti|ti—1,ti—2) (1)

Such an n-gram based sentence boundary de-
tection method was presented in (Stolcke and
Shriberg, 1996) who also point out that the
advantage of m-gram based method is its nat-
ural integration within the language model of
the speech recognizer. However, increasing the
conditioning context in an n-gram increases the
number of parameters combinatorially and es-
timating these parameters reliably becomes an
issue. We present a discriminative classification
approach to clausifier which allows us to add
larger number of features, in contrast to the gen-
erative n-gram model.

3An alternate way of encoding is to use the “Inside-

Outside-Boundary” tags for each word as is typically
done for chunking of noun groups.

3.1 Classifier

We used a machine-learning tool called Boos-
texter, which is based on the boosting family
of algorithms first proposed in (Schapire, 1999).
The basic idea of boosting is to build a highly
accurate classifier by combining many ” weak” or
”simple” base classifiers, each one of which may
only be moderately accurate. To obtain these
base classifiers, it is assumed that a base learn-
ing algorithm is available that can be used as
a black-box subroutine. The collection of base
classifiers is iteratively constructed. On each it-
eration t, the base learner is used to generate
a base classifier h;. Besides supplying the base
learner with training data, the boosting algo-
rithm also provides a set of nonnegative weights
wy over the training examples. Intuitively, the
weights encode how important it is that h; cor-
rectly classifies each training example. Gener-
ally, the examples that were most often misclas-
sified by the preceding base classifiers will be
given the most weight so as to force the base
learner to focus on the "hardest” examples. As
described in (Schapire and Singer, 1999), Boos-
texter uses confidence rated classifiers h that,
rather than providing a binary decision of -1
or +1, output a real number h(z) whose sign
(-1 or +1) is interpreted as a prediction, and
whose magnitude |h(z)| is a measure of ”con-
fidence.” The output of the final classifier f is
f(z) = XL | hy(z), i.e. the sum of confidence of
all classifiers h;. The real-valued predictions of
the final classifier f can be converted into prob-
abilities by passing them through a logistic func-
tion; that is, we can regard the quantity

b
1+ e fl@)

as an estimate of the probability that x belongs
to class +1. In fact, the boosting procedure is
designed to minimize the negative conditional
log likelihood of the data under this model,
namely:

Z In(1 + e ¥if (@)

The extension of Boostexter to the multiclass
problem is described in (Schapire and Singer,



1999). With this extension Boostexter is able
to assign a weight to each class. In our ap-
plication we are interested in a single decision
at each word boundary and hence we select the
class with the highest weight. It has been our
experience that Boostexter does not overfit the
training data. Among others it is able to deal
with independent variables of type text, and is
ideally suited for our task. In order to deal with
text, Boostexter extracts ngrams (sparse and
connected) as features. For our applications we
only use unigram features.

Sequence of Words

Sentence Boundary
Detector

Sentences

Edit Detector

Edited Sentences

Conjunction Detector

Clauses

Figure 1: The architecture for the clausifier

Figure 1 shows the three different components
of the clausifier one each for the tasks of de-
tecting sentence boundaries, detecting speech
repairs and detect coordinating conjunctions.
We believe that this pipeline architecture which
makes annotations in three stages is more suited
than a single classifier that predicts all the anno-
tations in a single step. We justify this architec-
ture by observing that typically edits and speech
repairs do not go across sentence boundaries.

3.1.1 Features used in the classifier

All the classifiers are designed to classify a
word boundary into either a sentence boundary
tag, an edit tag or a conjunction tag. A set of
features of a word boundary are used as inde-
pendent variables. In our experiments we used
18 features listed in Table 1. The first four rows
consist of feature templates representing 12 fea-

tures for the left and right word and part-of-
speech contexts.

4 Experiments and Evaluation

In this section, we present the results of several
experiments for the baseline n-gram model for
sentence boundary detection and the classifier
models for detecting the three components of
the clausifier.

4.1 Data Preparation

For this work, we used the transcribed and an-
notated human-human conversations present in
the Switchboard corpus. Annotation scheme
for this data is described in (Meteer and oth-
ers, 1995). In this data, since sentences can
span over turns, we collapsed each side (side
A and side B) of a dialog as a single string of
words with turn markings. This resulted in to-
tal of 2242 annotated strings of words, each con-
taining all the utterances of one participant in
a dialog. We removed all annotations* except
for a) the sentence boundary b) turn bound-
ary c) explicit edits d) fillers e) discourse mark-
ers f) restarts and repairs g) coordinating con-
junctions. Restarts and repairs together with
fillers, explicit edits and discourse markers were
considered as edit tags. Some of the strings
that had complex nested restarts and repairs
were dropped from consideration. This left us
with 2115 annotated strings with approximately
660,000 words (excluding annotations). These
strings were randomly partitioned in two sets;
1923 strings (610,000 words) for training vari-
ous classifiers and 192 strings (58,686 words) for
testing them. All the results presented in this
paper are based on this training and test data.

4.2 Evaluation Metrics

We evaluate various models on the test set
and compare the resulting annotation against a
hand-annotated version of the test set. We re-
port recall and precision scores on each of the

“In the annotated data we found that in many cases
square brackets ([) and curly braces ({) were not bal-
anced. Ignoring such strings would not leave us with
enough data. We therefore wrote a heuristic program
that balanced such cases.



word_; | i € {1,2,3} words to the left. 'bos’ if there is no word
word; | i € {1,2,3} words to the right. ’eos’ if there is no word
pOS_; i € {1,2,3} parts of speech of three words to the left
POS; i € {1,2,3} parts of speech of three words to the right
wl 1 if word;=word_; otherwise 0

w2 # of words common in 2 left and 2 right words

w3 # of words common in 3 left and 3 right words

pl 1 if pos1=pos_1 otherwise 0

p2 # of pos common in 2 left and 2 right pos

p3 # of pos common in 3 left and 3 right pos

Table 1: Features used for the classifiers

individual tags as well as the total error rate
and the baseline error rate for each tagging task.
This baseline error rate is calculated by using a
classifier that assigns each example the tag that
occurs most frequently in the data.

Since we are eventually interested in parsing
and understanding the resulting clauses, we also
report recall and precision after each of the an-
notations are interpreted (i.e. after utterances
are split at sentence boundaries, after edits are
deleted and after utterances are split at con-
junctions.). These scores are reported under the
“Sentence” column of each model’s performance
table. Like other recall and precision numbers
sentence level recall indicates the proportion of
clauses in the input that are correctly identified
in the clausifier output, and precision indicates
the proportion of the output clauses that are in
the input.

4.3 N-gram model: Baseline Model

Table 2 shows the results of using a trigram
model, similar to (Stolcke and Shriberg, 1996)
for sentence boundary detection on the data de-
scribed above. In our experiments, instead of
using the true part-of-speech tags as was done
in (Stolcke and Shriberg, 1996), we used the
result of tagging from an n-gram part-of-speech
tagger (similar to (Church, 1988)). In addition
to providing recall and precision scores on the in-
dividual segmentation decision, we also provide
sentence level performance. Notice that segmen-
tation precision and recall of approximately 80%
and 52% turn into sentence level precision and
recall of 50% and 32% respectively. We also no-

ticed that including POS improves the perfor-
mance by approximately 1%.

4.4 Classifier Models

Training data for the classifiers was prepared by
labeling each word boundary with one of the
tags described in Section 2 and features shown
in Table 1. Apart from training individual clas-
sifiers for sentence boundary, edit and conjunc-
tion classification, we also trained a combined
classifier which performs all the three tasks in
one step and does not make any independence
assumptions as shown in Figure 1.

4.5 Combined Classifier

Table 3 shows the performance of a combined
classifier that predicts a combined tag for each
of the components. The tagset for the combined
classifier is the cross-product of the tagsets for
segmentation,edits and conjunctions. Since this
classifier makes all the decisions, the output of
this classifier can be directly used to generate
clauses from the input strings of words. As ex-
pected this classifier outperforms the N-gram
based classifier both at segmentation decision
level and at sentence level (compare column 8
and 9 of table 3 with column 3 and 4 of table 2
respectively).

4.6 Individual Classifiers

Tables 4,5,6 show the performance of the three
classifiers used in the cascade shown in Figure 1.
In these tables sentence level performances are
with respect to their own inputs and outputs.
Over all sentence level performance is shown in



No Segment Sentence
Action
Counts 57454 10284 10654
Recall (%) 98.13(98.02) 52.79(52.26) 32.55(31.53)
Precision (%) 92.07(91.98) 83.47(79.36)  50.94(49.29)
Total Error (%)  9.23(9.93)
Baseline Error (%) 15.18

Table 2: Segmentation Performance Using Trigram Model. Performance without part-of-speech

information is shown in parenthesis.

No Edit Edit Edit One Two  Segment Sentence
Action Omne Two Three Conj Conjs
Counts 51126 3704 895 130 2391 258 9756 10789
Recall(%) 96.41 69.68 49.94 8.46 79.26 48.06 77.95 51.2
Prec(%) 93.10 78.69 67.12 50.00 80.71 73.37 85.18 50.06
Total Error 9.38%
Baseline Error  25.22%

Table 3: Performance of a classifier that predicts a combined tag

Table 7. These tables show that cascaded clas-
sifiers are significantly more accurate at mak-
ing individual decisions which results in higher
recall and precision at sentence level (compare
column of table 7 with column 9 of table 3).

5 Sensitivity Analysis

In this section, we investigate the effect of vari-
ous features on the performance of the Segmen-
tation, Edit and Conjunction classifiers. Table 8
shows the results for each classifier using only
words, only parts-of-speech (POS) tags, words
and POS tags and words, POS tags combined
with the similarity measure. It is not surpris-
ing to note that using only POS tags to predict
sentence boundaries, edits and conjunctions re-
sults in a higher error rate compared to using
only words. Adding POS features to the words-
only model does not improve the performance of
these classifiers. This is to be expected since the
generalization provided by the POS tags is not
really needed for these tasks, as there are not
many unseen contexts even when using words
contextual features. However, we suspect su-
pertags (Bangalore and Joshi, 1999) can cap-
ture long-distance effects (eg. subcategorization

frame of preceding verb) which could improve
the segmentation performance.

It is however surprising to note that the sim-
ilarity features, which had been designed to
specifically capture patterns in speech repairs
does not contribute as much to the performance
(Words+POS+Similarity=3.5% as compared to
Words Only=3.9%). By separating discourse
markers (eg. you know, well, so), explicit edit
terms (eg. I mean, sorry, excuse me), and fillers
(eg. um, uh) from the set of Edit tags, we are
left only with restarts and repairs. We trained
a classifier for identifying only these tags and
the sensitivity results are shown in the fourth
column of Table 8. Note that the baseline per-
formance of Restarts and Repairs is much lower
than that of Edits indicating that it is an easier
task than identifying Edits. Incorporating the
similarity feature reduces the error rate for iden-
tifying restarts by 37% over a model which uses
only words. (Words+POS+Similarity=1.7% as
compared to Words Only=2.7%). This suggests
that an additional classifier to identify discourse
markers and explicit edit terms would be bene-
ficial.



No Action Segment Sentence
Counts 57980 10371 10561
Recall (%) 97.37 77.57 56.22
Precision (%)  96.04 84.07 60.83
Total Error 5.63%
Baseline Error 15.05%

Table 4: Performance of classifier for sentence boundary detection

No Edit Edit Edit Edit  Sentence
Action One Two Three Four
Counts 53936 4074 1042 125 58 10400
Recall(%) 99.09 76.12 62.57 9.60 1.72  81.58
Precision(%) 97.23 88.50 84.13 48.00 100.0 80.34

Total Error 3.48%
Baseline Error 9.02%

Table 5: Performance of the classifier to identify presence and the span of an edit.

No One Two Sentence
Action Conj Conj
Counts 49682 1997 121 10789
Recall (%) 99.70  91.69 88.43 95.13
Precision (%) 99.66  92.94 84.25 94.46
Total Error 0.64%
Baseline Error 4.10%

Table 6: Performance of a classifier to identify presence and the span of a conjunction.

Sentence Level

Counts
Recall (%)

Precision (%)

10789
53.87
55.85

Table 7: End to End Performance

Segment Edit Conjunction Restarts and Repairs
Baseline (%) 15.0 9.0 41 2.8
Words Only 5.6 3.9 0.6 2.7
Pos Only 9.9 7.3 1.6 2.8
Words+POS 5.6 39 0.6 2.7
Words+Pos+Similarity 5.6 3.5 0.6 1.7

Table 8: Sensitivity analysis of the features used for classification




6 Conclusions

In this paper, we have presented a clausifier
which would be used as a preprocessor in the
context of speech parsing and understanding
system. The clausifier contains three classifiers
that are trained to detect sentence boundaries,
speech repairs and coordinating conjunctions.
These models have been trained and tested on
Switchboard corpus and provide an end-to-end
recall and precision of 54% and 56% respec-
tively for the task of clause identification. We
have shown that classifier models clearly out-
perform the n-gram models, and that a com-
bined model does not perform as well as a model
that makes individual predictions. We believe
that the sentence level performance can be im-
proved further by improving the training data
quantity and quality. In the Switchboard cor-
pus we found that average turn length is 6, and
that the turn boundaries are very strong indi-
cator of the sentence boundaries. This makes
it hard for the classifier to learn other discrimi-
nating features. We plan to use this system to
iteratively annotate additional data with longer
turn lengths (customer-operator telephone con-
versations), manually correct it and retrain the
models described in this paper.
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