
An Analysis of the AskMSR Question-Answering System

Eric Brill, Susan Dumais and Michele Banko
Microsoft Research
One Microsoft Way

Redmond, Wa. 98052
{brill,sdumais,mbanko}@microsoft.com

Abstract

We describe the architecture of the
AskMSR question answering system and
systematically evaluate contributions of
different system components to accuracy.
The system differs from most question
answering systems in its dependency on
data redundancy rather than sophisticated
linguistic analyses of either questions or
candidate answers. Because a wrong an-
swer is often worse than no answer, we
also explore strategies for predicting
when the question answering system is
likely to give an incorrect answer.

1 Introduction

Question answering has recently received attention
from the information retrieval, information extrac-
tion, machine learning, and natural language proc-
essing communities (AAAI, 2002; ACL-ECL,
2002; Voorhees and Harman, 2000, 2001). The
goal of a question answering system is to retrieve
answers to questions rather than full documents or
best-matching passages, as most information re-
trieval systems currently do. The TREC Question
Answering Track, which has motivated much of
the recent work in the field, focuses on fact-based,
short-answer questions such as “Who killed Abra-
ham Lincoln?” or “How tall is Mount Everest?”
In this paper we describe our approach to short
answer tasks like these, although the techniques we
propose are more broadly applicable.

Most question answering systems use a va-
riety of linguistic resources to help in understand-

ing the user’s query and matching sections in
documents. The most common linguistic resources
include: part-of-speech tagging, parsing, named
entity extraction, semantic relations, dictionaries,
WordNet, etc. (e.g., Abney et al., 2000; Chen et al.
2000; Harabagiu et al., 2000; Hovy et al., 2000;
Pasca et al., 2001; Prager et al., 2000). We chose
instead to focus on the Web as a gigantic data re-
pository with tremendous redundancy that can be
exploited for question answering. We view our
approach as complimentary to more linguistic ap-
proaches, but have chosen to see how far we can
get initially by focusing on data per se as a key
resource available to drive our system design. Re-
cently, other researchers have also looked to the
web as a resource for question answering (Buch-
holtz, 2001; Clarke et al., 2001; Kwok et al.,
2001). These systems typically perform complex
parsing and entity extraction for both queries and
best matching Web pages, and maintain local
caches of pages or term weights. Our approach is
distinguished from these in its simplicity and effi-
ciency in the use of the Web as a large data re-
source.

Automatic QA from a single, small infor-
mation source is extremely challenging, since there
is likely to be only one answer in the source to any
user’s question. Given a source, such as the
TREC corpus, that contains only a relatively small
number of formulations of answers to a query, we
may be faced with the difficult task of mapping
questions to answers by way of uncovering com-
plex lexical, syntactic, or semantic relationships
between question string and answer string. The
need for anaphor resolution and synonymy, the
presence of alternate syntactic formulations and
indirect answers all make answer finding a poten-
tially challenging task. However, the greater the

 Association for Computational Linguistics.
 Language Processing (EMNLP), Philadelphia, July 2002, pp. 257-264.
 Proceedings of the Conference on Empirical Methods in Natural

Question Rewrite Query <Search Engine>

Collect Summaries,
Mine N-grams

Filter N-GramsTile N-Grams N-Best Answers

Where is the Louvre
Museum located?

“+the Louvre Museum +is located”
“+the Louvre Museum +is +in”
“+the Louvre Museum +is near”
“+the Louvre Museum +is”
Louvre AND Museum AND near

in Paris France 59%
museums 12%
hostels 10%

Figure 1. System Architecture

Question Rewrite Query <Search Engine>

Collect Summaries,
Mine N-grams

Filter N-GramsTile N-Grams N-Best Answers

Where is the Louvre
Museum located?

“+the Louvre Museum +is located”
“+the Louvre Museum +is +in”
“+the Louvre Museum +is near”
“+the Louvre Museum +is”
Louvre AND Museum AND near

in Paris France 59%
museums 12%
hostels 10%

Figure 1. System Architecture

answer redundancy in the source data collection,
the more likely it is that we can find an answer that
occurs in a simple relation to the question. There-
fore, the less likely it is that we will need to solve
the aforementioned difficulties facing natural lan-
guage processing systems.

In this paper, we describe the architecture of
the AskMSR Question Answering System and
evaluate contributions of different system compo-
nents to accuracy. Because a wrong answer is
often worse than no answer, we also explore
strategies for predicting when the question answer-
ing system is likely to give an incorrect answer.

2 System Architecture

As shown in Figure 1, the architecture of our sys-
tem can be described by four main steps: query-
reformulation, n-gram mining, filtering, and n-
gram tiling. In the remainder of this section, we
will briefly describe these components. A more
detailed description can be found in [Brill et al.,
2001].

2.1 Query Reformulation

Given a question, the system generates a number
of weighted rewrite strings which are likely sub-
strings of declarative answers to the question. For
example, “When was the paper clip invented?” is
rewritten as “The paper clip was invented”. We
then look through the collection of documents in
search of such patterns. Since many of these string
rewrites will result in no matching documents, we
also produce less precise rewrites that have a much

greater chance of finding matches. For each query,
we generate a rewrite which is a backoff to a sim-
ple ANDing of all of the non-stop words in the
query.

The rewrites generated by our system are
simple string-based manipulations. We do not use
a parser or part-of-speech tagger for query refor-
mulation, but do use a lexicon for a small percent-
age of rewrites, in order to determine the possible
parts-of-speech of a word as well as its morpho-
logical variants. Although we created the rewrite
rules and associated weights manually for the cur-
rent system, it may be possible to learn query-to-
answer reformulations and their weights (e.g.,
Agichtein et al., 2001; Radev et al., 2001).

2.2 N-Gram Mining
Once the set of query reformulations has been gen-
erated, each rewrite is formulated as a search en-
gine query and sent to a search engine from which
page summaries are collected and analyzed. From
the page summaries returned by the search engine,
n-grams are collected as possible answers to the
question. For reasons of efficiency, we use only
the page summaries returned by the engine and not
the full-text of the corresponding web page.

The returned summaries contain the query
terms, usually with a few words of surrounding
context. The summary text is processed in accor-
dance with the patterns specified by the rewrites.
Unigrams, bigrams and trigrams are extracted and
subsequently scored according to the weight of the
query rewrite that retrieved it. These scores are
summed across all summaries containing the n-

gram (which is the opposite of the usual inverse
document frequency component of docu-
ment/passage ranking schemes). We do not count
frequency of occurrence within a summary (the
usual tf component in ranking schemes). Thus, the
final score for an n-gram is based on the weights
associated with the rewrite rules that generated it
and the number of unique summaries in which it
occurred.

2.3 N-Gram Filtering
Next, the n-grams are filtered and reweighted ac-
cording to how well each candidate matches the
expected answer-type, as specified by a handful of
handwritten filters. The system uses filtering in
the following manner. First, the query is analyzed
and assigned one of seven question types, such as
who-question, what-question, or how-many-
question. Based on the query type that has been
assigned, the system determines what collection of
filters to apply to the set of potential answers found
during the collection of n-grams. The candidate n-
grams are analyzed for features relevant to the fil-
ters, and then rescored according to the presence of
such information.

A collection of 15 simple filters were devel-
oped based on human knowledge about question
types and the domain from which their answers can
be drawn. These filters used surface string fea-
tures, such as capitalization or the presence of dig-
its, and consisted of handcrafted regular expression
patterns.

2.4 N-Gram Tiling
Finally, we applied an answer tiling algorithm,
which both merges similar answers and assembles
longer answers from overlapping smaller answer
fragments. For example, "A B C" and "B C D" is
tiled into "A B C D." The algorithm proceeds
greedily from the top-scoring candidate - all sub-
sequent candidates (up to a certain cutoff) are
checked to see if they can be tiled with the current
candidate answer. If so, the higher scoring candi-
date is replaced with the longer tiled n-gram, and
the lower scoring candidate is removed. The algo-
rithm stops only when no n-grams can be further
tiled.

3 Experiments

For experimental evaluations we used the first 500
TREC-9 queries (201-700) (Voorhees and Harman,
2000). We used the patterns provided by NIST for
automatic scoring. A few patterns were slightly
modified to accommodate the fact that some of the
answer strings returned using the Web were not
available for judging in TREC-9. We did this in a
very conservative manner allowing for more spe-
cific correct answers (e.g., Edward J. Smith vs.
Edward Smith) but not more general ones (e.g.,
Smith vs. Edward Smith), and also allowing for
simple substitutions (e.g., 9 months vs. nine
months). There also are substantial time differ-
ences between the Web and TREC databases (e.g.,
the correct answer to Who is the president of Bo-
livia? changes over time), but we did not modify
the answer key to accommodate these time differ-
ences, because it would make comparison with
earlier TREC results impossible. These changes
influence the absolute scores somewhat but do not
change relative performance, which is our focus
here.

All runs are completely automatic, starting
with queries and generating a ranked list of 5 can-
didate answers. For the experiments reported in
this paper we used Google as a backend because it
provides query-relevant summaries that make our
n-gram mining efficient. Candidate answers are a
maximum of 50 bytes long, and typically much
shorter than that. We report the Mean Reciprocal
Rank (MRR) of the first correct answer, the Num-
ber of Questions Correctly Answered (NAns), and
the proportion of Questions Correctly Answered
(%Ans).

3.1 Basic System Performance
Using our current system with default settings we
obtain a MRR of 0.507 and answers 61% of the
queries correctly (Baseline, Table 1). The average
answer length was 12 bytes, so the system is re-
turning short answers, not passages. Although it
is impossible to compare our results precisely with
TREC-9 groups, this is very good performance and
would place us near the top of 50-byte runs for
TREC-9.

3.2 Contributions of Components
Table 1 summarizes the contributions of the differ-
ent system components to this overall perform-
ance. We report summary statistics as well as
percent change in performance when components
are removed (%Drop MRR).

Query Rewrites:
As described earlier, queries are transformed to
successively less precise formats, with a final
backoff to simply ANDing all the non-stop query
terms. More precise queries have higher weights
associated with them, so n-grams found in these
responses are given priority. If we set all the re-
write weights to be equal, MRR drops from 0.507
to 0.489, a drop of 3.6%. Another way of looking
at the importance of the query rewrites is to exam-
ine performance where the only rewrite the system
uses is the backoff AND query. Here the drop is
more substantial, down to 0.450 which represents a
drop of 11.2%.

Query rewrites are one way in which we
capitalize on the tremendous redundancy of data
on the web – that is, the occurrence of multiple
linguistic formulations of the same answers in-
creases the chances of being able to find an answer
that occurs within the context of a simple pattern
match with the query. Our simple rewrites help
compared to doing just AND matching. Soubbotin
and Soubbotin (2001) have used more specific
regular expression matching to good advantage and
we could certainly incorporate some of those ideas
as well.

MRR NAns %Ans
%Drop
MRR

Baseline 0.507 307 61.4% 0.0%
Query Rewrite:
 Same Weight All Rewrites 0.489 298 59.6% 3.6%
 AND-only query 0.450 281 56.2% 11.2%

Filter N-Gram:
 Base, NoFiltering 0.416 268 53.6% 17.9%
 AND, NoFiltering 0.338 226 45.2% 33.3%

Tile N-Gram:
 Base, NoTiling 0.435 277 55.4% 14.2%
 AND, NoTiling 0.397 251 50.2% 21.7%

Combinations:
 Base, NoTiling NoFiltering 0.319 233 46.6% 37.1%
 AND, NoTiling NoFiltering 0.266 191 38.2% 47.5%

Table 1. Componential analysis of the AskMSR QA system.

N-Gram Filtering:
Unigrams, bigrams and trigrams are extracted from
the (up to) 100 best-matching summaries for each
rewrite, and scored according the weight of the
query rewrite that retrieved them. The score as-
signed to an n-gram is a weighted sum across the
summaries containing the n-grams, where the
weights are those associated with the rewrite that
retrieved a particular summary. The best-scoring
n-grams are then filtered according to seven query
types. For example the filter for the query How
many dogs pull a sled in the Iditarod? prefers a
number, so candidate n-grams like dog race, run,
Alaskan, dog racing, many mush move down the
list and pool of 16 dogs (which is a correct answer)
moves up. Removing the filters decreases MRR
by 17.9% relative to baseline (down to 0.416). Our
simple n-gram filtering is the most important indi-
vidual component of the system.

N-Gram Tiling:
Finally, n-grams are tiled to create longer answer
strings. This is done in a simple greedy statistical
manner from the top of the list down. Not doing
this tiling decreases performance by 14.2% relative
to baseline (down to 0.435). The advantages
gained from tiling are two-fold. First, with tiling
substrings do not take up several answer slots, so
the three answer candidates: San, Francisco, and
San Francisco, are conflated into the single answer
candidate: San Francisco. In addition, longer an-
swers can never be found with only trigrams, e.g.,
light amplification by stimulted emission of radia-
tion can only be returned by tiling these shorter n-
grams into a longer string.

Combinations of Components:
Not surprisingly, removing all of our major com-
ponents except the n-gram accumulation (weighted
sum of occurrences of unigrams, bigrams and tri-
grams) results in substantially worse performance
than our full system, giving an MRR of 0.266, a
decrease of 47.5%. The simplest entirely statisti-
cal system with no linguistic knowledge or proc-
essing employed, would use only AND queries, do
no filtering, but do statistical tiling. This system
uses redundancy only in summing n-gram counts
across summaries. This system has MRR 0.338,
which is a 33% drop from the best version of our
system, with all components enabled. Note, how-
ever, that even with absolutely no linguistic proc-

essing, the performance attained is still very rea-
sonable performance on an absolute scale, and in
fact only one TREC-9 50-byte run achieved higher
accuracy than this.

To summarize, we find that all of our process-
ing components contribute to the overall accuracy
of the question-answering system. The precise
weights assigned to different query rewrites seems
relatively unimportant, but the rewrites themselves
do contribute considerably to overall accuracy.
N-gram tiling turns out to be extremely effective,
serving in a sense as a “poor man’s named-entity
recognizer”. Because of the effectiveness of our
tiling algorithm over large amounts of data, we do
not need to use any named entity recognition com-
ponents. The component that identifies what filters
to apply over the harvested n-grams, along with the
actual regular expression filters themselves, con-
tributes the most to overall performance.

4 Component Problems

Above we described how components contributed
to improving the performance of the system. In
this section we look at what components errors are
attributed to. In Table 2, we show the distribution
of error causes, looking at those questions for
which the system returned no correct answer in the
top five hypotheses.

Problem % of Errors
Units 23
Time 20
Assembly 16
Correct 14
Beyond Paradigm 12
Number Retrieval 5
Unknown Problem 5
Synonymy 2
Filters 2
Table 2. Error Attribution

The biggest error comes from not knowing

what units are likely to be in an answer given a
question (e.g. How fast can a Corvette go xxx
mph). Interestingly, 34% of our errors (Time and
Correct) are not really errors, but are due to time
problems or cases where the answer returned is
truly correct but not present in the TREC-9 answer
key. 16% of the failures come from the inability of

our n-gram tiling algorithm to build up the full
string necessary to provide a correct answer.

Number retrieval problems come from the fact
that we cannot query the search engine for a num-
ber without specifying the number. For example, a
good rewrite for the query How many islands does
Fiji have would be « Fiji has <NUM> islands »,
but we are unable to give this type of query to the
search engine. Only 12% of the failures we clas-
sify as being truly outside of the system’s current
paradigm, rather than something that is either al-
ready correct or fixable with minor system en-
hancements.

5 Knowing When We Don’t Know

Typically, when deploying a question answering
system, there is some cost associated with return-
ing incorrect answers to a user. Therefore, it is
important that a QA system has some idea as to
how likely an answer is to be correct, so it can
choose not to answer rather than answer incor-
rectly. In the TREC QA track, there is no distinc-
tion made in scoring between returning a wrong
answer to a question for which an answer exists
and returning no answer. However, to deploy a
real system, we need the capability of making a
trade-off between precision and recall, allowing
the system not to answer a subset of questions, in
hopes of attaining high accuracy for the questions
which it does answer.

Most question-answering systems use
hand-tuned weights that are often combined in an
ad-hoc fashion into a final score for an answer hy-
pothesis (Harabagiu et al., 2000; Hovy et al., 2000;
Prager et al., 2000; Soubbotin & Soubbotin, 2001;
Brill et. al., 2001). Is it still possible to induce a
useful precision-recall (ROC) curve when the sys-
tem is not outputting meaningful probabilities for
answers? We have explored this issue within the
AskMSR question-answering system.

Ideally, we would like to be able to deter-
mine the likelihood of answering correctly solely
from an analysis of the question. If we can deter-
mine we are unlikely to answer a question cor-
rectly, then we need not expend the time, cpu
cycles and network traffic necessary to try to an-
swer that question.

We built a decision tree to try to predict
whether the system will answer correctly, based on
a set of features extracted from the question string:

word unigrams and bigrams, sentence length
(QLEN), the number of capitalized words in the
sentence, the number of stop words in the sentence
(NUMSTOP), the ratio of the number of nonstop
words to stop words, and the length of longest
word (LONGWORD). We use a decision tree be-
cause we also wanted to use this as a diagnostic
tool to indicate what question types we need to put
further developmental efforts into. The decision
tree built from these features is shown in Figure 2.
The first split of the tree asks if the word “How”
appears in the question. Indeed, the system per-
forms worst on “How” question types. We do best
on short “Who” questions with a large number of
stop words.

Figure 2. Learning When We Don't Know -- Us-
ing Only Features from Query

We can induce an ROC curve from this

decision tree by sorting the leaf nodes from the
highest probability of being correct to the lowest.
Then we can gain precision at the expense of recall

by not answering questions in the leaf nodes that
have the highest probability of error. The result of
doing this can be seen in Figures 3 and 4, the line
labeled “Question Features”. The decision tree
was trained on Trec 9 data. Figure 3 shows the
results when applied to the same training data, and
Figure 4 shows the results when testing on Trec 10
data. As we can see, the decision tree overfits the
training data and does not generalize sufficiently to
give useful results on the Trec 10 (test) data.

Next, we explored how well answer cor-
rectness correlates with answer score in our sys-
tem. As discussed above, the final score assigned
to an answer candidate is a somewhat ad-hoc score
based upon the number of retrieved passages the n-
gram occurs in, the weight of the rewrite used to
retrieve each passage, what filters apply to the n-
gram, and the effects of merging n-grams in an-
swer tiling. In Table 3, we show the correlation
coefficient calculated between whether a correct
answer appears in the top 5 answers output by the
system and (a) the score of the system’s first
ranked answer and (b) the score of the first ranked
answer minus the score of the second ranked an-
swer. A correlation coefficient of 1 indicates
strong positive association, whereas a correlation
of –1 indicates strong negative association. We see
that there is indeed a correlation between the
scores output by the system and the answer accu-
racy, with the correlation being tighter when just
considering the score of the first answer.

 Correlation
Coefficient

Score #1 .363
Score #1 – Score #2 .270

Table 3 . Do answer scores correlate with correct-
ness?

Because a number of answers returned by

our system are correct but scored wrong according
to the TREC answer key because of time mis-
matches, we also looked at the correlation, limiting
ourselves to Trec 9 questions that were not time-
sensitive. Using this subset of questions, the corre-
lation coefficient between whether a correct an-
swer appears in the system’s top five answers, and
the score of the #1 answer, increases from .363 to
.401. In Figure 3 and 4, we show the ROC curve
induced by deciding when not to answer a question
based on the score of the first ranked answer (the

line labeled “score of #1 answer”). Note that the
score of the top ranked answer is a significantly
better predictor of accuracy than what we attain by
considering features of the question string, and
gives consistent results across two data sets.

Finally, we looked into whether other at-
tributes were indicative of the likelihood of answer
correctness. For every question, a set of snippets is
gathered. Some of these snippets come from AND
queries and others come from more refined exact
string match rewrites. In Table 4, we show MRR
as a function of the number of non-AND snippets
retrieved. For instance, when all of the snippets
come from AND queries, the resulting MRR was
found to be only .238. For questions with 100 to
400 snippets retrieved from exact string match re-
writes, the MRR was .628.

NumQ MRR
0 91 0.238
1 to 10 80 0.405
11 to 100 153 0.612
100 to 400 175 0.628

NumNon-AND
Passages

Table 4 . Accuracy vs. Number of Passages Re-
trieved From Non-AND Rewrites

We built a decision tree to predict whether

a correct answer appears in the top 5 answers,
based on all of the question-derived features de-
scribed earlier, the score of the number one rank-
ing answer, as well as a number of additional
features describing the state of the system in proc-
essing a particular query. Some of these features
include: the total number of matching passages
retrieved, the number of non-AND matching pas-
sages retrieved, whether a filter applied, and the
weight of the best rewrite rule for which matching
passages were found. We show the resulting deci-
sion tree in Figure 5, and resulting ROC curve con-
structed from this decision tree, in Figure 3 and 4
(the line labeled “All Features”). In this case, the
decision tree does give a useful ROC curve on the
test data (Figure 4), but does not outperform the
simple technique of using the ad hoc score of the
best answer returned by the system. Still, the deci-
sion tree has proved to be a useful diagnostic in
helping us understand the weaknesses of our sys-
tem.

ROC Curve for QA

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

0 0.5 1
Recall

Pr
ec

is
io

n

All Features

Score of #1
Answer
Question
Features

Figure 3. Three different precision/recall trade-
offs, trained on Trec 9 and tested on Trec 9.

Trec 10 ROC Curve

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1

0 0.5 1
Recall

Pr
ec

is
io

n

Score of #1
Answer
Question
Features
All Features

Figure 4. Three different precision/recall trade-
offs, trained on Trec 9 and tested on Trec 10.

6 Conclusions

We have presented a novel approach to question-
answering and carefully analyzed the contributions
of each major system component, as well as ana-
lyzing what factors account for the majority of er-
rors made by the AskMSR question answering
system. In addition, we have demonstrated an
approach to learning when the system is likely to
answer a question incorrectly, allowing us to reach
any desired rate of accuracy by not answering
some portion of questions. We are currently ex-
ploring whether these techniques can be extended
beyond short answer QA to more complex cases of
information access.

Figure 5. Learning When We Don't Know -- Us-
ing All Features

References
AAAI Spring Symposium Series Mining answers from

text and knowledge bases (2002).

S. Abney, M. Collins and A. Singhal (2000). Answer
extraction. In Proceedings of ANLP 2000.

ACL-EACL Workshop on Open-domain question an-
swering. (2002).

E. Agichtein, S. Lawrence and L. Gravano (2001).
Learning search engine specific query transforma-
tions for question answering. In Proceedings of
WWW10.

E. Brill, J. Lin, M. Banko, S. Dumais and A. Ng (2001).
Data-intensive question answering. In Proceedings
of the Tenth Text Retrieval Conference (TREC 2001).

S. Buchholz (2001). Using grammatical relations, an-
swer frequencies and the World Wide Web for TREC
question answering. To appear in Proceedings of
the Tenth Text REtrieval Conference (TREC 2001).

J. Chen, A. R. Diekema, M. D. Taffet, N. McCracken,
N. E. Ozgencil, O. Yilmazel, E. D. Liddy (2001).
Question answering: CNLP at the TREC-10 question
answering track. To appear in Proceedings of the
Tenth Text REtrieval Conference (TREC 2001).

C. Clarke, G. Cormack and T. Lyman (2001). Exploit-
ing redundancy in question answering. In Proceed-
ings of SIGIR’2001.

C. Clarke, G. Cormack and T. Lynam (2001). Web
reinforced question answering. To appear in Pro-
ceedings of the Tenth Text REtrieval Conference
(TREC 2001).

S. Harabagiu, D. Moldovan, M. Pasca, R. Mihalcea, M.
Surdeanu, R. Bunescu, R. Girju, V. Rus and P.
Morarescu (2000). FALCON: Boosting knowledge
for question answering. In Proceedings of the Ninth
Text REtrieval Conference (TREC-9).

E. Hovy, L. Gerber, U. Hermjakob, M. Junk and C. Lin
(2000). Question answering in Webclopedia. In
Proceedings of the Ninth Text REtrieval Conference
(TREC-9).

E. Hovy, U. Hermjakob and C. Lin (2001). The use of
external knowledge in factoid QA. To appear in
Proceedings of the Tenth Text REtrieval Conference
(TREC 2001).

C. Kwok, O. Etzioni and D. Weld (2001). Scaling ques-
tion answering to the Web. In Proceedings of
WWW’10.

M. A. Pasca and S. M. Harabagiu (2001). High per-
formance question/answering. In Proceedings of
SIGIR’2001.

J. Prager, E. Brown, A. Coden and D. Radev (2000).
Question answering by predictive annotation. In
Proceedings of SIGIR’2000.

D. R. Radev, H. Qi, Z. Zheng, S. Blair-Goldensohn, Z.
Zhang, W. Fan and J. Prager (2001). Mining the web
for answers to natural language questions. In ACM
CIKM 2001: Tenth International Conference on In-
formation and Knowledge Management.

M. M. Soubbotin and S. M. Soubbotin (2001). Patterns
and potential answer expressions as clues to the right
answers. To appear in Proceedings of the Tenth Text
REtrieval Conference (TREC 2001).

E. Voorhees and D. Harman, Eds. (2000). Proceedings
of the Ninth Text REtrieval Conference (TREC-9).

E. Voorhees and D. Harman, Eds. (2001). Proceedings
of the Tenth Text REtrieval Conference (TREC
2001).

