
Exploiting Headword Dependency and Predictive Clustering for
Language Modeling

Jianfeng Gao

Microsoft Research, Asia
Beijing, 100080, China
jfgao@microsoft.com

Hisami Suzuki
Microsoft Research

 Redmond WA 98052, USA
hisamis@microsoft.com

Yang Wen*
Department of Computer &

Information Sciences of
Tsinghua University, China

* This work was done while the author was visiting Microsoft Research Asia.

Abstract
This paper presents several practical ways
of incorporating linguistic structure into
language models. A headword detector is
first applied to detect the headword of each
phrase in a sentence. A permuted headword
trigram model (PHTM) is then generated
from the annotated corpus. Finally, PHTM
is extended to a cluster PHTM (C-PHTM)
by defining clusters for similar words in the
corpus. We evaluated the proposed models
on the realistic application of Japanese
Kana-Kanji conversion. Experiments show
that C-PHTM achieves 15% error rate
reduction over the word trigram model. This
demonstrates that the use of simple methods
such as the headword trigram and predictive
clustering can effectively capture long
distance word dependency, and
substantially outperform a word trigram
model.

1 Introduction
In spite of its deficiencies, trigram-based language
modeling still dominates the statistical language
modeling community, and is widely applied to tasks
such as speech recognition and Asian language text
input (Jelinek, 1990; Gao et al., 2002).

Word trigram models are deficient because they
can only capture local dependency relations, taking
no advantage of richer linguistic structure. Many
proposals have been made that try to incorporate
linguistic structure into language models (LMs), but
little improvement has been achieved so far in
realistic applications because (1) capturing longer

distance word dependency leads to higher-order
n-gram models, where the number of parameters is
usually too large to estimate; (2) capturing deeper
linguistic relations in a LM requires a large amount
of annotated training corpus and a decoder that
assigns linguistic structure, which are not always
available.

This paper presents several practical ways of
incorporating long distance word dependency and
linguistic structure into LMs. A headword detector
is first applied to detect the headwords in each
phrase in a sentence. A permuted headword trigram
model (PHTM) is then generated from the
annotated corpus. Finally, PHTM is extended to a
cluster model (C-PHTM), which clusters similar
words in the corpus.

Our models are motivated by three assumptions
about language: (1) Headwords depend on previous
headwords, as well as immediately preceding
words; (2) The order of headwords in a sentence can
freely change in some cases; and (3) Word clusters
help us make a more accurate estimate of the
probability of word strings. We evaluated the
proposed models on the realistic application of
Japanese Kana-Kanji conversion, which converts
phonetic Kana strings into proper Japanese
orthography. Results show that C-PHTM achieves a
15% error rate reduction over the word trigram
model. This demonstrates that the use of simple
methods can effectively capture long distance word
dependency, and substantially outperform the word
trigram model. Although the techniques in this
paper are described in the context of Japanese
Kana-Kanji conversion, we believe that they can be
extended to other languages and applications.

This paper is organized as follows. Sections 2
and 3 describe the techniques of using headword

 Association for Computational Linguistics.
 Language Processing (EMNLP), Philadelphia, July 2002, pp. 248-256.
 Proceedings of the Conference on Empirical Methods in Natural

dependency and clustering for language modeling.
Section 4 reviews related work. Section 5
introduces the evaluation methodology, and Section
6 presents the results of our main experiments.
Section 7 concludes our discussion.

2 Using Headwords
2.1 Motivation
Japanese linguists have traditionally distinguished
two types of words1, content words (jiritsugo) and
function words (fuzokugo), along with the notion of
the bunsetsu (phrase). Each bunsetsu typically
consists of one content word, called a headword in
this paper, and several function words. Figure 1
shows a Japanese example sentence and its English
translation2.

[治療+に][専念+して][全快+まで][十分+な][療養+に][努め+る]
[chiryou+ni] [sennen+shite] [zenkai+made]
[treatment+to][concentration+do][full-recovery+until]
[juubun+na] [ryouyou+ni] [tsutome+ru]
[enough+ADN] [rest+for] [try+PRES]
'(One) concentrates on the treatment and tries to rest
enough until full recovery'

Figure 1. A Japanese example sentence with
bunsetsu and headword tags

In Figure 1, we find that some headwords in the
sentence are expected to have a stronger
dependency relation with their preceding
headwords than with their immediately preceding
function words. For example, the three headwords
治療~専念~全快 (chiryou 'treatment' ~ sennen
'concentrate' ~ zenkai 'full recovery') form a trigram
with very strong semantic dependency. Therefore,
we can hypothesize (in the trigram context) that
headwords may be conditioned not only by the two
immediately preceding words, but also by two
previous headwords. This is our first assumption.

We also note that the order of headwords in a
sentence is flexible in some sense. From the

1 Or more correctly, morphemes. Strictly speaking, the
LMs discussed in this paper are morpheme-based models
rather than word-based, but we will not make this
distinction in this paper.
2 Square brackets demarcate the bunsetsu boundary, and
+ the morpheme boundary; the underlined words are the
headwords. ADN indicates an adnominal marker, and
PRES indicates a present tense marker.

example in Figure 1, we find that if 治療~専念~全快
(chiryou 'treatment' ~ sennen 'concentrate' ~ zenkai
'full recovery') is a meaningful trigram, then its
permutations (such as 全快~治療~専念 (zenkai 'full
recovery' ~ chiryou 'treatment' ~ sennen
'concentrate')) should also be meaningful, because
headword trigrams tend to capture an order-neutral
semantic dependency. This reflects a characteristic
of Japanese, in which arguments and modifiers of a
predicate can freely change their word order, a
phenomenon known as "scrambling" in linguistic
literature. We can then introduce our second
assumption: headwords in a trigram are permutable.
Note that the permutation of headwords should be
useful more generally beyond Japanese: for
example, in English, the book Mary bought and
Mary bought a book can be captured by the same
headword trigram (Mary ~ bought ~ book) if we
allow such permutations.

In this subsection, we have stated two
assumptions about the structure of Japanese that can
be exploited for language modeling. We now turn to
discuss how to incorporate these assumptions in
language modeling.

2.2 Permuted headword trigram model
(PHTM)

A trigram model predicts the next word wi by
estimating the conditional probability P(wi|wi-2wi-1),
assuming that the next word depends only on two
preceding words, wi-2 and wi-1. The PHTM is a
simple extension of the trigram model that
incorporates the dependencies between headwords.
If we assume that each word token can uniquely be
classified as a headword or a function word, the
PHTM can be considered as a cluster-based
language model with two clusters, headword H and
function word F. We can then define the conditional
probability of wi based on its history as the product
of the two factors: the probability of the category (H
or F), and the probability of wi given its category.
Let hi or fi be the actual headword or function word
in a sentence, and let Hi or Fi be the category of the
word wi. The PHTM can then be formulated as:

=Φ −))...(|(11 ii wwwP (1)
))...(|())...(|(1111 iiiii HwwwPwwHP −− Φ×Φ
))...(|())...(|(1111 iiiii FwwwPwwFP −− Φ×Φ+

where Φ is a function that maps the word history
(w1…wi-1) onto equivalence classes.

P(Hi|Φ(w1…wi-1)) and P(Fi|Φ(w1…wi-1)) are
category probabilities, and P(wi|Φ(w1…wi-1)Fi) is
the word probability given that the category of wi is
function word. For these three probabilities, we
used the standard trigram estimate (i.e., Φ(w1…wi-1)
= (wi-2wi-1)). The estimation of headword
probability is slightly more elaborate, reflecting the
two assumptions described in Section 2.1:

)|(())...(|(122111 iiiiiii HhhwPHwwwP −−− =Φ λλ (2)
))|()1(212 iiii HhhwP −−−+ λ

)|()1(121 iiii HwwwP −−−+ λ .

This estimate is an interpolated probability of three
probabilities: P(wi|hi-2hi-1Hi) and P(wi|hi-1hi-2Hi),
which are the headword trigram probability with or
without permutation, and P(wi|wi-2wi-1Hi), which is
the probability of wi given that it is a headword,
where hi-1 and hi-2 denote the two preceding
headwords, and λ1, λ2 ∈ [0,1] are the interpolation
weights optimized on held-out data.

The use of λ1 in Equation (2) is motivated by the
first assumption described in Section 2.1:
headwords are conditioned not only on two
immediately preceding words, but also on two
previous headwords. In practice, we estimated the
headword probability by interpolating the
conditional probability based on two previous
headwords P(wi|hi-2hi-1Hi) (and P(wi|hi-1hi-2Hi) with
permutation), and the conditional probability based
on two preceding words P(wi|wi-2wi-1Hi). If λ1 is
around zero, it indicates that this assumption does
not hold in real data. Note that we did not estimate
the conditional probability P(wi|wi-2wi-1hi-2hi-1Hi)
directly, because this is in the form of a 5-gram,
where the number of parameters are too large to
estimate.

The use of λ2 in Equation (2) comes from the
second assumption in Section 2.1: headword
trigrams are permutable. This assumption can be
formulated as a co-occurrence model for headword
prediction: that is, the probability of a headword is
determined by the occurrence of other headwords
within a window. However, in our experiments, we
instead used an interpolated probability
λ2×P(wi|hi-2hi-1Hi) + (1–λ2)×P(wi|hi-1hi-2Hi) for two
reasons. First, co-occurrence models do not predict
words from left to right, and are thus very difficult
to interpolate with trigram models for decoding.
Second, if we see n-gram models as one extreme
that predicts the next word based on a strictly

ordered word sequence, co-occurrence models go to
the other extreme of predicting the next word based
on a bag of previous words without taking word
order into account at all. We prefer models that lie
somewhere between the two extremes, and consider
word order in a more flexible way. In PHTM of
Equation (2), λ2 represents the impact of word order
on headword prediction. When λ2 = 1 (i.e., the
resulting model is a non-permuted headword
trigram model, referred to as HTM), it indicates that
the second assumption does not hold in real data.
When λ2 is around 0.5, it indicates that a headword
bag model is sufficient.

2.3 Model parameter estimation
Assume that all conditional probabilities in
Equation (1) are estimated using maximum
likelihood estimation (MLE). Then

)|(12 −− iii wwwP =

)|()|(1212 iiiiiii HwwwPwwHP −−−− , wi: headword













)|()|(1212 iiiiiii FwwwPwwFP −−−− , wi: function word

is a strict equality when each word token is uniquely
classified as a headword or a function word. This
can be trivially proven as follows. Let Ci represent
the category of wi (Hi or Fi in our case). We have

)|()|(1212 iiiiiii CwwwPwwCP −−−− ×

)(
)(

)(
)(

12

12

12

2

iii

iiii

ii

iiii

CwwP
wCwwP

wwP
CwwP

−−

−−

−−

−− ×=

)(
)(

12

12

−−

−−=
ii

iiii

wwP
wCwwP (3)

Since each word is uniquely assigned to a category,
P(Ci|wi)=1, and thus it follows that

)|()()(121212 iiiiiiiiiii wwwCPwwwPwCwwP −−−−−− ×=
)|()(12 iiiii wCPwwwP ×= −−

)(12 iii wwwP −−= . (4)

Substituting Equation (4) into Equation (3), we get

)|()|(1212 iiiiiii CwwwPwwCP −−−− ×

)|(
)(
)(

12
12

12
−−

−−

−− == iii
ii

iii wwwP
wwP

wwwP . (5)

Now, by separating the estimates of probabilities of
headwords and function words, Equation (1) can be
rewritten as:

P(wi|Φ(w1…wi-1))= (6)

)|()(|((122121 −−−− iiiiii hhwPwwHP λλ
))|()1(212 −−−+ iii hhwPλ
)|()1(121 −−−+ iii wwwPλ

wi: headword
)|(12 −− iii wwwP 













wi: function word

There are three probabilities to be estimated in
Equation (6): word trigram probability
P(wi|wi-2wi-1), headword trigram probability
P(wi|hi-2hi-1) and P(wi|hi-1hi-2) (where wi is a
headword), and category probability P(Hi|wi-2wi-1).

In order to deal with the data sparseness problem
of MLE, we used a backoff scheme (Katz, 1987) for
the parameter estimation. The backoff scheme
recursively estimates the probability of an unseen
n-gram by utilizing (n–1)-gram estimates. To keep
the model size manageable, we also removed all
n-grams with frequency less than 2.

In order to classify a word uniquely as H or F,
we needed a mapping table where each word in the
lexicon corresponds to a category. The table was
generated in the following manner. We first
assumed that the mapping from part-of-speech
(POS) to word category is fixed. The tag set we
used included 1,187 POS tags, of which 102 count
as headwords in our experiments. We then used a
POS-tagger to generate a POS-tagged corpus, from
which we generated the mapping table3. If a word
could be mapped to both H and F, we chose the
more frequent category in the corpus. Using this
mapping table, we achieved a 98.5% accuracy of
headword detection on the test data we used.

Through our experiments, we found that
P(Hi|wi-2wi-1) is a poor estimator of category
probability; in fact, the unigram estimate P(Hi)
achieved better results in our experiments as shown
in Section 6.1. Therefore, we also used the unigram
estimate for word category probability in our

3 Since the POS-tagger does not identify phrases, our
implementation does not identify precisely one
headword for a phrase, but identify multiple headwords
in the case of compounds.

experiments. The alternative model that uses the
unigram estimate is given below:

P(wi|Φ(w1…wi-1))= (7)

)|()(((1221 −− iiii hhwPHP λλ
))|()1(212 −−−+ iii hhwPλ
)|()1(121 −−−+ iii wwwPλ

wi: headword
)|(12 −− iii wwwP 













wi: function word

We will denote the models using trigram for
category probability estimation of Equation (6) as
T-PHTM, and the models using unigram for
category probability estimation of Equation (7) as
U-PHTM.

3 Using Clusters
3.1 Principle
Clustering techniques attempt to make use of
similarities between words to produce a better
estimate of the probability of word strings
(Goodman, 2001).

We have mentioned in Section 2.2 that the
headword trigram model can be thought of as a
cluster-based model with two clusters, the
headword and the function word. In this section, we
describe a method of clustering automatically
similar words and headwords. We followed the
techniques described in Goodman (2001) and Gao
et al. (2001), and performed experiments using
predictive clustering along with headword trigram
models.

3.2 Predictive clustering model
Consider a trigram probability P(w3|w1w2), where
w3 is the word to be predicted, called the predicted
word, and w1 and w2 are context words used to
predict w3, called the conditional words. Gao et al.
(2001) presents a thorough comparative study on
various clustering models for Asian languages,
concluding that a model that uses clusters for
predicted words, called the predictive clustering
model, performed the best in most cases.

Let iw be the cluster which word wi belongs to.
In this study, we performed word clustering for
words and headwords separately. As a result, we

have the following two predictive clustering models,
(8) for words and (9) for headwords:

)|()|()|(121212 iiiiiiiiii wwwwPwwwPwwwP −−−−−− ×= (8)

)|()|()|(121212 iiiiiiiiii whhwPhhwPhhwP −−−−−− ×=
wi: headword

(9)

Substituting Equations (8) and (9) into Equation (7),
we get the cluster-based PHTM of Equation (10),
referred to as C-PHTM.

P(wi|Φ(w1…wi-1))= (10)
)|()|()(((121221 iiiiiiii whhwPhhwPHP −−−− ×λλ

))|()|()1(21212 iiiiiii whhwPhhwP −−−− ×−+ λ
)|()|()1(12121 iiiiiii wwwwPwwwP −−−− ×−+ λ

wi: headword

)|()|(1212 iiiiiii wwwwPwwwP −−−− ×














wi: function word

3.3 Finding clusters: model estimation
In constructing clustering models, two factors were
considered: how to find optimal clusters, and the
optimal number of clusters.

The clusters were found automatically by
attempting to minimize perplexity (Brown et al.,
1992). In particular, for predictive clustering
models, we tried to minimize the perplexity of the
training data of)|()|(1 iiii wwPwwP ×− . Letting N be
the size of the training data, we have

∏
=

− ×
N

i
iiii wwPwwP

1
1)|()|(

∏
= −

− ×=
N

i i

ii

i

ii

WP
wwP

wP
wwP

1 1

1

)(
)(

)(
)(

∏
=

−

−

×=
N

i i

ii

i

ii

wP
wwP

wP
wwP

1

1

1)(
)(

)(
)(

∏
=

−
−

×=
N

i
ii

i

i wwP
wP
wP

1
1

1

)|(
)(

)(

Now,
)(

)(

1−i

i

wP
wP is independent of the clustering used.

Therefore, in order to select the best clusters, it is
sufficient to try to maximize ∏= −

N

i ii wwP
1 1)|(.

The clustering technique we used creates a
binary branching tree with words at the leaves. By
cutting the tree at a certain level, it is possible to

achieve a wide variety of different numbers of
clusters. For instance, if the tree is cut after the sixth
level, there will be roughly 26=64 clusters. In our
experiments, we always tried the numbers of
clusters that are the powers of 2. This seems to
produce numbers of clusters that are close enough
to optimal. In Equation (10), the optimal number of
clusters we used was 27.

4 Relation to Previous Work
Our LMs are similar to a number of existing ones.
One such model was proposed by ATR (Isotani and
Matsunaga, 1994), which we will refer to as ATR
model below. In ATR model, the probability of
each word in a sentence is determined by the
preceding content and function word pair. Isotani
and Matsunaga (1994) reported slightly better
results over word bigram models for Japanese
speech recognition. Geutner (1996) interpolated the
ATR model with word-based trigram models, and
reported very limited improvements over word
trigram models for German speech recognition.

One significant difference between the ATR
model and our own lies in the use of predictive
clustering. Another difference is that our models
use separate probability estimates for headwords
and function words, as shown in Equations (6) and
(7). In contrast, ATR models are conceptually more
similar to skipping models (Rosenfeld, 1994; Ney et
al., 1994; Siu and Ostendorf, 2000), where only one
probability estimate is applied for both content and
function words, and the word categories are used
only for the sake of finding the content and function
word pairs in the context.

Another model similar to ours is Jelinek (1990),
where the headwords of the two phrases
immediately preceding the word as well as the last
two words were used to compute a word
probability. The resulting model is similar to a
5-gram model. A sophisticated interpolation
formula had to be used since the number of
parameters is too large for direct estimation. Our
models are easier to learn because they use
trigrams. They also differ from Jelinek's model in
that they separately estimate the probability for
headwords and function words.

A significant number of sophisticated techniques
for language modeling have recently been proposed
in order to capture more linguistic structure from a
larger context. Unfortunately, most of them suffer

from either high computational cost or difficulty in
obtaining enough manually parsed corpora for
parameter estimation, which make it difficult to
apply them successfully to realistic applications.
For example, maximum entropy (ME) models
(Rosenfeld, 1994) provide a nice framework for
incorporating arbitrary knowledge sources, but
training and using ME models is computationally
extremely expensive.

Another interesting idea that exploits the use of
linguistic structure is structured language modeling
(SLM, Chelba and Jelinek, 2000). SLM uses a
statistical parser trained on an annotated corpus in
order to identify the headword of each constituent,
which are then used as conditioning words in the
trigram context. Though SLMs have been shown to
significantly improve the performance of the LM
measured in perplexity, they also pose practical
problems. First, the performance of SLM is
contingent on the amount and quality of
syntactically annotated training data, but such data
may not always be available. Second, SLMs are
very time-intensive, both in their training and use.

Charniak (2001) and Roark (2001) also present
language models based on syntactic dependency
structure, which use lexicalized PCFGs that sum
over the derivation probabilities. They both report
improvements in perplexity over Chelba and
Jelinek (2000) on the Wall Street Journal section of
the Penn Treebank data, suggesting that syntactic
structure can be further exploited for language
modeling. The kind of linguistic structure used in
our models is significantly more modest than that
provided by parser-based models, yet offers
practical benefits for realistic applications, as
shown in the next section.

5 Evaluation Methodology
The most common metric for evaluating a language
model is perplexity. Perplexity can be roughly
interpreted as the expected branching factor of the
test document when presented to a language model.
Perplexity is widely used due to its simplicity and
efficiency. However, the ultimate quality of a
language model must be measured by its effect on
the specific task to which it is applied, such as
speech recognition. Lower perplexities usually
result in lower error rates, but there are numerous
counterexamples to this in the literature.

In this study, we evaluated our language models
on the application of Japanese Kana-Kanji
conversion, which is the standard method of
inputting Japanese text by converting the text of
syllabary-based Kana string into the appropriate
combination of ideographic Kanji and Kana. This is
a similar problem to speech recognition, except that
it does not include acoustic ambiguity. Performance
on this task is generally measured in terms of the
character error rate (CER), which is the number of
characters wrongly converted from the phonetic
string divided by the number of characters in the
correct transcript. The role of the language model is
to select the word string (in a combination of Kanji
and Kana) with the highest probability among the
candidate strings that match the typed phonetic
(Kana) string. Current products make about 5-10%
errors in conversion of real data in a wide variety of
domains.

For our experiments, we used two newspaper
corpora: Nikkei and Yomiuri Newspapers. Both
corpora have been word-segmented. We built
language models from a 36-million-word subset of
the Nikkei Newspaper corpus. We performed
parameter optimization on a 100,000-word subset
of the Yomiuri Newspaper (held-out data). We
tested our models on another 100,000-word subset
of the Yomiuri Newspaper corpus. The lexicon we
used contains 167,107 entries.

In our experiments, we used the so-called
“N-best rescoring” method. In this method, a list of
hypotheses is generated by the baseline language
model (a word trigram model in this study4), which
is then rescored using a more sophisticated LM.
Due to the limited number of hypotheses in the
N-best list, the second pass may be constrained by
the first pass. In this study, we used the 100-best
list. The “oracle” CER (i.e., the CER among the
hypotheses with the minimum number of errors) is
presented in Table 1. This is the upper bound on
performance in our experiments. The performance
of the conversion using the baseline trigram model
is much better than the state-of-the-art performance
currently available in the marketplace. This may be
due to the large amount of training data we used,
and to the similarity between the training and the
test data. We also notice that the “oracle” CER is

4 For the detailed description of the baseline trigram
model, see Gao et al. (2002).

relatively high due to the high out-of-vocabulary
rate, which is 1.14%. Because we have only limited
room for improvement, the reported results of our
experiments in this study may be underestimated.

Baseline Trigram Oracle of 100-best

3.73% 1.51%

Table 1. CER results of baseline and 100-best list

6 Results and Discussion
6.1 Impact of headword dependency and

predictive clustering
We applied a series of language models proposed in
this paper to the Japanese Kana-Kanji conversion
task in order to test the effectiveness of our
techniques. The results are shown in Table 2. The
baseline result was obtained by using a
conventional word trigram model. HTM stands for
the headword trigram model of Equation (6) and (7)
without permutation (i.e., λ2=1), while PHTM is the
model with permutation. The T- and U-prefixes
refer to the models using trigram (Equation (6)) or
unigram (Equation (7)) estimate for word category
probability. The C-prefix, as in C-PHTM, refers to
PHTM with predictive clustering (Equation (10)).
For comparison, we also include in Table 2 the
results of using the predictive clustering model
without taking word category into account, referred
to as predictive clustering trigram model (PCTM).
In PCTM, the probability for all words is estimated
by)|()|(1212 iiiiiii wwwwPwwwP −−−− × .

Model λ1 λ 2 CER CER reduction

Baseline ---- ---- 3.73% ----

T-HTM 0.2 1 3.54% 5.1%

U-HTM 0.2 1 3.41% 8.6%

T-PTHM 0.2 0.7 3.53% 5.4%

U-PHTM 0.2 0.7 3.34% 10.5%

PCTM ---- ---- 3.44% 7.8%

C-HTM 0.3 1 3.23% 13.4%

C-PHTM 0.3 0.7 3.17% 15.0%

Table 2. Comparison of CER results

In Table 2, we find that for both PHTM and HTM,
models U-HTM and U-PHTM achieve better
performance than models T-HTM and T-PHTM.
Therefore, only models using unigram for category
probability estimation are used for further
experiments, including the models with predictive
clustering.

By comparing U-HTM with the baseline model,
we can see that the headword trigram contributes
greatly to the CER reduction: U-HTM
outperformed the baseline model by about 8.6% in
error rate reduction. HTM with headword
permutation (U-PHTM) achieves further
improvements of 10.5% CER reduction against the
baseline. The contribution of predictive clustering is
also very encouraging. Using predictive clustering
alone (PCTM), we reduced the error rate by 7.8%.

What is particularly noteworthy is that the
combination of both techniques leads to even larger
improvements: for both HTM and PHTM,
predictive clustering (C-HTM and C-PHTM) brings
consistent improvements over the models without
clustering, achieving the CER reduction of 13.4%
and 15.0% respectively against the baseline model,
or 4.8% and 4.5% against the models without
clustering.

In sum, considering the good performance of our
baseline system and the upper bound on
performance improvement due to the 100-best list
as shown in Table 1, the improvements we obtained
are very promising. These results demonstrate that
the simple method of using headword trigrams and
predictive clustering can be used to effectively
improve the performance of word trigram models.

6.2 Comparsion with other models
In this subsection, we present a comparison of our
models with some of the previously proposed
models, including the higher-order n-gram models,
skipping models, and the ATR models.

Higher-order n-gram models refer to those
n-gram models in which n>3. Although most of the
previous research showed little improvement,
Goodman (2001) showed recently that, with a large
amount of training data and sophisticated
smoothing techniques, higher-order n-gram models
could be superior to trigram models.

The headword trigram model proposed in this
paper can be thought of as a variation of a higher
order n-gram model, in that the headword trigrams

capture longer distance dependencies than trigram
models. In order to see how far the dependency goes
within our headword trigram models, we plotted the
distribution of headword trigrams (y-axis) against
the n of the word n-gram were it to be captured by
the word n-gram (x-axis) in Figure 2. For example,
given a word sequence w1w2w3w4w5w6, and if w1, w3
and w6 are headwords, then the headword trigram
P(w6|w3w1) spans the same distance as the word
6-gram model.

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

2.5E+07

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

N of n-gram

N
um

be
r o

f w
or

ds

 Figure 2. Distribution of headword trigrams
against the n of word n-gram

From Figure 2, we can see that approximately
95% of the headword trigrams can be captured by
the higher-order n-gram model with the value of n
smaller than 7. Based on this observation, we built
word n-gram models with the values of n=4, 5 and
6. For all n-gram models, we used the interpolated
modified absolute discount smoothing method (Gao
et al., 2001), which, in our experiments, achieved
the best performance among the state-of-the-art
smoothing techniques. Results showed that the
performance of the higher-order word n-gram
models becomes saturated quickly as n grows: the
best performance was achieved by the word 5-gram
model, with the CER of 3.71%. Following
Goodman (2001), we suspect that the poor
performance of these models is due to the data
sparseness problem.

Skipping models are an extension of an n-gram
model in that they predict words based on n
conditioning words, except that these conditioning
words may not be adjacent to the predicted word.
For instance, instead of computing P(wi|wi-2wi-1), a
skipping model might compute P(wi|wi-3wi-1) or
P(wi|wi-4wi-2). Goodman (2001) performed
experiments of interpolating various kinds of
higher-order n-gram skipping models, and obtained

a very limited gain. Our results confirm his results
and suggest that simply extending the context
window by brute-force can achieve little
improvement, while the use of even the most
modest form of structural information such as the
identification of headwords and automatic
clustering can help improve the performance.

We also compared our models with the trigram
version of the ATR models discussed in Section 4,
in which the probability of a word is conditioned by
the preceding content and function word pair. We
performed experiments using the ATR models as
described in Isotani and Matsunaga (1994). The
results show that the CER of the ATR model alone
is much higher than that of the baseline model, but
when interpolated with a word trigram model, the
CER is slightly reduced by 1.6% from 3.73% to
3.67%. These results are consistent with those
reported in previous work. The difference between
the ATR model and our models indicates that the
predictions of headwords and function words can
better be done separately, as they play different
semantic and syntactic roles capturing different
dependency structure.

6.3 Discussion
In order to better understand the effect of the
headword trigram, we have manually inspected the
actual improvements given by PHTM. As expected,
many of the improvements seem to be due to the use
of larger context: for example, the headword
trigram 消費 ~ 支出 ~ 減少 (shouhi 'consume' ~
shishutsu 'expense' ~ genshou 'decrease')
contributed to the correct conversion of the
phonetic string げんしょう genshou into 減少
genshou 'decrease' rather than 現 象 genshou
'phenomenon' in the context of 消費支出初めての減

少 shouhi shishutsu hajimete no genshou 'consumer
spending decreases for the first time'.

On the other hand, the use of headword trigrams
and predictive clustering is not without side effects.
The overall gain in CER was 15% as we have seen
above, but a closer inspection of the conversion
results reveals that while C-PHTM corrected the
conversion errors of the baseline model in 389
sentences (8%), it also introduced new conversion
errors in 201 sentences (4.1%). Among the newly
introduced errors, one type of error is particularly
worth noting: these are the errors where the
candidate conversion preferred by the HTM is

grammatically impossible or unlikely. For example,
米 国 に 侵 攻 で き る (beikoku-ni shinkou-dekiru,
USA-to invade-can 'can invade USA') was
misconverted as 米国に新興できる (beikoku-ni
shinkou-dekiru, USA-to new-can), even though 侵
攻 shinkou 'invade' is far more likely to be preceded
by the morpheme に ni 'to', and 新興 shinkou 'new'
practically does not precede できる dekiru 'can'.
The HTM does not take these function words into
account, leading to a grammatically impossible or
implausible conversion. Finding the types of errors
introduced by particular modeling assumptions in
this manner and addressing them individually will
be the next step for further improvements in the
conversion task.

7 Conclusion
We proposed and evaluated a new language model,
the permuted headword trigram model with
clustering (C-PHTM). We have shown that the
simple model that combines the predictive
clustering with a headword detector can effectively
capture structure in language. Experiments show
that the proposed model achieves an encouraging
15% CER reduction over a conventional word
trigram model in a Japanese Kana-Kanji conversion
system. We also compared C-PTHM to several
similar models, showing that our model has many
practical advantages, and achieves substantially
better performance.

One issue we did not address in this paper was
the language model size: the models that use HTM
are larger than the baseline model we compared the
performance with. Though we did not pursue the
issue of size reduction in this paper, there are many
known techniques that effectively reduce the model
size while minimizing the loss in performance. One
area of future work is therefore to reduce the model
size. Other areas include the application of the
proposed model to a wider variety of test corpora
and to related tasks.

Acknowledgements
We would like to thank Ciprian Chelba, Bill Dolan,
Joshua Goodman, Changning Huang, Hang Li and
Yoshiharu Sato for their comments on early
thoughts and drafts of the paper. We would also like
to thank Hiroaki Kanokogi, Noriko Ishibashi and
Miyuki Seki for their help in our experiments.

References
Brown, Peter F., Vincent J. Della Pietra, Peter V.

deSouza, Jennifer C. Lai, and Robert L. Mercer. 1992.
Class-Based N-gram Models of Natural Language.
Computational Linguistics, 18-4: 467-479.

Charniak, Eugene. 2001. Immediate-head parsing for
language models. In ACL/EACL 2001, pp.124-131.

Chelba, Ciprian and Frederick Jelinek. 2000. Structured
Language Modeling. Computer Speech and Language,
Vol. 14, No. 4. pp 283-332.

Gao, Jianfeng, Joshua T. Goodman and Jiangbo Miao.
2001. The use of clustering techniques for language
model – application to Asian language. Computational
Linguistics and Chinese Language Processing. Vol. 6,
No. 1, pp 27-60.

Gao, Jianfeng, Joshua Goodman, Mingjing Li and
Kai-Fu Lee. 2002. Toward a unified approach to
statistical language modeling for Chinese. ACM
Transactions on Asian Language Information
Processing, Vol. 1, No. 1, pp 3-33.

Geutner, Petra. 1996. Introducing linguistic constraints
into statistical language modeling. In International
Conference on Spoken Language Processing,
Philadelphia, USA. pp.402-405.

Goodman, Joshua T. 2001. A bit of progress in language
modeling. Computer Speech and Language. October,
2001, pp 403-434.

Goodman, Joshua T., and Jianfeng Gao. 2000. Language
model size reduction by pruning and clustering.
ICSLP-2000, Beijing.

Isotani, Ryosuke and Shoichi Matsunaga. 1994. A
stochastic language model for speech recognition
integrating local and global constraints. ICASSP-94,
pp. 5-8.

Jelinek, Frederick. 1990. Self-organized language
modeling for speech recognition. In A. Waibel and K.
F. Lee (eds.), Readings in Speech Recognition,
Morgan-Kaufmann, San Mateo, CA. pp. 450-506.

Katz, S. M. 1987. Estimation of probabilities from sparse
data for other language component of a speech
recognizer. IEEE transactions on Acoustics, Speech
and Signal Processing, 35(3): 400-401.

Ney, Hermann, Ute Essen and Reinhard Kneser. 1994.
On structuring probabilistic dependences in stochastic
language modeling. Computer Speech and Language,
8: 1-38.

Roark, Brian. 2001. Probabilistic top-down parsing and
language modeling. Computational Linguistics, 17-2:
1-28.

Rosenfeld, Ronald. 1994. Adaptive statistical language
modeling: a maximum entropy approach. Ph.D. thesis,
Carnegie Mellon University.

Siu, Manhung and Mari Ostendorf. 2000. Variable
n-grams and extensions for conversational speech
language modeling. IEEE Transactions on Speech and
Audio Processing, 8: 63-75.

