
A Hybrid Approach to Natural Language Web Search

Jennifer Chu-Carroll, John Prager, Yael Ravin and Christian Cesar
IBM T.J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598, U.S.A.
{jencc,jprager,ravin,cesar}@us.ibm.com

Abstract

We describe a hybrid approach to improv-
ing search performance by providing a
natural language front end to a traditional
keyword-based search engine. The key
component of the system is iterative query
formulation and retrieval, in which one or
more queries are automatically formulated
from the user’s question, issued to the
search engine, and the results accumulated
to form the hit list. New queries are gener-
ated by relaxing previously-issued queries
using transformation rules, applied in an
order obtained by reinforcement learning.
This statistical component is augmented
by a knowledge-driven hub-page identi-
fier that retrieves a hub-page for the most
salient noun phrase in the question, if
possible. Evaluation on an unseen test
set over the www.ibm.com public web-
site with 1.3 million webpages shows that
both components make substantial contri-
bution to improving search performance,
achieving a combined 137% relative im-
provement in the number of questions cor-
rectly answered, compared to a baseline
of keyword queries consisting of two noun
phrases.

1 Introduction

Keyword-based search engines have been one of the
most highly utilized internet tools in recent years.
Nevertheless, search performance remains unsatis-
factory at most e-commerce sites (Hagen et al.,

2000). Librarians and search professionals have tra-
ditionally favored Boolean keyword search systems,
which, when successful, return a small set of rele-
vant hits. However, the success of these systems crit-
ically depends on the choice of the right keywords
and the appropriate Boolean operators. As the pop-
ulation of search engine users has grown beyond a
small dedicated search professional community and
as these new users are less familiar with the contents
they are searching, it has become harder for them to
formulate successful keyword queries. To improve
search performance, one can improve search engine
accuracy with respect to fixed keyword queries, or
provide the search engine withbetterqueries, those
more likely to retrieve good results. While there is
much on-going work in the IR community on the
former topic, we have taken the latter approach by
providing a natural language search interface and
automatically generating keyword queries that uti-
lize advanced search features typically unused by
end users. We believe that natural language ques-
tions are easier for users to construct than keyword
queries, thus shifting the burden of optimal query
formulation from the user to the system. Such ques-
tions also eliminate much of the ambiguity of key-
word queries that often leads to poor results. Fur-
thermore, the methodology we describe may be ap-
plied to different search engines with only minor
modification.

To transform natural language input into a search
query, the system must identify information perti-
nent for search and utilize it to formulate keyword
queries likely to retrieve relevant answers. We de-
scribe and evaluate a hybrid system, RISQUE, that
adopts an iterative approach to query formulation
and retrieval for search on the www.ibm.com pub-

 Association for Computational Linguistics.
 Language Processing (EMNLP), Philadelphia, July 2002, pp. 180-187.
 Proceedings of the Conference on Empirical Methods in Natural

lic website with 1.3 million webpages. RISQUE
may issue multiple queries per question, where a
new query is generated by relaxing a previously is-
sued query via transformation rule application, in
an order obtained by reinforcement learning. In ad-
dition, RISQUE identifies a hub-page for the most
salient noun phrase in the question, if possible,
utilizing traditional knowledge-driven mechanisms.
Evaluation on an unseen test set showed that both
the machine-learned and knowledge-driven compo-
nents made substantial contribution to improving
RISQUE’s performance, resulting in a combined
137% relative improvement in the number of ques-
tions correctly answered, compared to a baseline ob-
tained by queries consisting of two noun phrases
(2NP baseline).

2 Related Work

The popularity of natural language search is evi-
denced by the growing number of search engines,
such as AskJeeves, Electric Knowledge, and North-
ern Light,1 that offer such functionality. For most
sites, we were only able to perform a cursory ex-
amination of their proprietary techniques. Adopt-
ing a similar approach as FAQFinder (Hammond
et al., 1995), AskJeeves maintains a database of
questions and webpages that provide answers to
them. User questions are compared against those in
the database, and links to webpages for the closest
matches are returned. Similar to our approach, Elec-
tric Knowledge transforms a natural language ques-
tion into a series of increasingly more general key-
word queries (Bierner, 2001). However, their query
formulation process utilizes hard-crafted regular ex-
pressions, while we adopt a more general machine
learning approach for transformation rule applica-
tion.

Our work is also closely related to question an-
swering in the question analysis component (e.g.,
(Harabagui et al., 2001; Prager et al., 2000; Clarke
et al., 2001; Ittycheriah et al., 2001)). In partic-
ular, Harabagui et al.(2001) also iteratively refor-
mulate queries based partly on the search results.
However, their mechanism for query reformulation
is heuristic-based. We utilized machine learning to

1www.askjeeves.com, www.electricknowledge.com, and
www.northernlight.com, respectively.

optimize the query formulation process.

3 Data Analysis

To generate optimal keyword queries from natural
language questions, we first analyzed a set of 502
questions related to the purchasing and support of
ThinkPads (notebook computers) and their acces-
sories, such as“How do I set up hibernation for my
ThinkPad?” and “Show me all p3 laptops.” Our
analysis focused on three tasks. First, we attempted
to identify an exhaustive set ofcorrect webpagesfor
each question, where a correct webpage is one that
contains either an answer to the question or a hyper-
link to such a page. Second, we manually formu-
latedsuccessfulkeyword queries from the question,
i.e., queries which retrieved at least one correct web-
page. Third, we attempted to discover general pat-
terns in how the natural language questions may be
transformed into successful keyword queries.

Our analysis eliminated 110 questions for which
no correct webpage was found. Of the remaining
392 questions, we identified, on average, 4.37 cor-
rect webpages and 1.58 successful queries per ques-
tion. We found that the characteristics of success-
ful queries varied greatly. In the simplest case, a
successful query may contain all the content bear-
ing NPs in the question, such asthinkpad AND
“answering machine” for “Can I use my ThinkPad
as an answering machine?”2 In the vast majority
of cases, however, more complex transformations
were applied to the question to result in a successful
query. For instance, a successful query for “How do
I hook an external mouse to my laptop?”is (mouse
OR mice) AND thinkpad AND +url:support . In
this case, the head nounmousewas inflected,3 the
premodifierexternalwas dropped,hookwas deleted,
laptop was replaced bythinkpad, and a URL con-
straint was applied.

We observed that in our corpus, most success-
ful queries can be derived by applying one or
more transformation rules to the NPs and verbs
in the questions. Table 1 shows the manually in-

2Our search engine (www.alltheweb.com) accepts a con-
junction of terms (a word, quoted phrase, or disjunction of
words/phrases), and inclusion/exclusion of text strings in the
URL, such as+url:support .

3Many commercial search engines purposely do not inflect
search words to avoid overgeneralization of queries.

Rule Function
ConstrainURL Apply URL constraints
RelaxNP Relax phrase to conjunction of words
DropNP Remove least salient NP
DropModifier Remove premodifiers of nouns
DropVerb Remove verb
ApplySynonyms Add synonyms of NPs
Inflect Inflect head nouns and verb

Table 1: Query Transformation Rules

duced commonly-used transformation rules based
on our corpus analysis. Though the rules were quite
straightforward to identify, the order in which they
should be applied to yield optimal overall perfor-
mance was non-intuitive. In fact, the best order
we manually derived did not yield sufficient per-
formance improvement over our baseline (see Sec-
tion 7). We further hypothesize that the optimal rule
application sequence may be dependent on ques-
tion characteristics. For example,DropVerb may
be a higher priority rule forbuy questions than for
supportquestions, since the verbs indicative ofbuy
questions (typically“buy” or “sell”) are often ab-
sent in the target product pages. Therefore, we in-
vestigated a machine learning approach to automat-
ically obtain the optimal rule application sequence.

4 A Reinforcement Learning Approach to
Query Formulation

Our problem consists of obtaining an optimal strat-
egy for choosing transformation rules to generate
successful queries. A key feature of this problem is
that feedback during training is often delayed, i.e.,
the positive effect of applying a rule may not be ap-
parent until a successful query is constructed after
the application of other rules. Thus, we adopt a rein-
forcement learning approach to obtain this optimal
strategy.

4.1 Q Learning

We adopted the Q learning paradigm (Watkins,
1989; Mitchell, 1997) to model our problem as a set
of possiblestates, S, and a set ofactions, A, which
can be performed to alter the current state. While
in states ∈ S and performing actiona ∈ A, the
learner receives a rewardr(s, a), and advances to
states′ = δ(s, a).

To learn an optimal control strategy that maxi-

mizes the cumulative reward over time, an evalua-
tion functionQ(s, a) is defined as follows:

Q(s, a) ≡ r(s, a) + γ maxa′Q(δ(s, a), a′) (1)

In other words,Q(s, a) is the immediate reward,
r(s, a), plus the discounted maximum future reward
starting from the new stateδ(s, a).

The Q learning algorithm iteratively selects an ac-
tion and updateŝQ, an estimate ofQ, as follows:

Q̂n(s, a) ← (1− αn)Q̂n−1(s, a) + (2)

αn(r(s, a) + maxa′Q̂n−1(s′, a′))

wheres′ = δ(s, a) andαn is inversely proportional
to the number of times a state/action pair<s,a> has
been visited up to thenth iteration of the algorithm.4

Once the system learnŝQ, it can select from the
possible actions in statesbased onQ̂(s, ai).

4.2 Query Formulation Using Q Learning

To formulate our problem in the Q learning
paradigm, we represent a state as a 6-tuple,
<qtype, url constraint, np phrase, num nps,
num modifiers, num verbs>, where:

• qtype is buyor supportdepending on question
classification.

• url constraint is true or false, and determines
if manually predefined URL restrictions will be
applied in the query.

• np phrase is true or false, and determines
whether each NP will be searched for as a
phrase or a conjunction of words.

• num nps is an integer between 1 and 3, and
determines how many NPs will be included in
the query.

• num modifiers is an integer between 0 and 2,
and indicates the maximum number of premod-
ifiers in each NP.

• num verbs is 0 or 1, and determines if the verb
will be included in the query.

4Equation (2) modifies (1) by taking a decaying weighted
average of the current̂Q value and the new value to guarantee
convergence of̂Q in non-deterministic environments. We ex-
plain in the next section why our query formulation problem in
the Q learning framework is non-deterministic.

This representation is chosen based on the rules
identified in Section 3. The actions,A, include the
first 5 actions in Table 1, and the “undo” counterpart
for each action.5 Except forqtype, which remains
static for a question, each remaining element in the
tuple can be altered by one of the 5 pairs of actions
in a straightforward manner. The state,s, and the
question,q, generate a unique keyword query which
results in a hit list,h(s, q). The hit list is evaluated
for correctness, whose result is used to define the
reward function as follows:

r(s, a) =





1 if h(s′, q) contains at least one
correct webpage

0 if h(s′, q) has no correct page &
|h(s′, q)| < 10

−1 otherwise

wheres′ = δ(s, a). Note that our system operates in
a non-deterministic environment because the reward
is dependent not only ons anda, but also onq.6

Having definedS, A, δ, andr, Q̂ is determined by
applying the Q learning algorithm, using the update
function in (2), to our corpus of 392 questions. For
each question, an initial state is randomly selected
within the bounds of the question. The system then
iteratively selects and applies actions, and updates
Q̂ until a successful query is generated or the maxi-
mum number of iterations is reached (in our imple-
mentation, 15). The training algorithm iterates over
all questions in the training set and terminates when
Q̂ converges.

5 RISQUE: A Hybrid System for Natural
Language Search

5.1 System Overview

In addition to motivating machine learning based
query transformation as our central approach to nat-
ural language search, our analysis revealed the need
for several other key system components. As shown
in Figure 1, RISQUE adopts a hybrid architecture

5Morphological and synonym expansions are applied at the
outset, which was shown to result in better performance than
optional application of those rules.

6It is theoretically possible to encode pertinent information
in q in the state representation, thus making the environment
deterministic. However, data sparseness problems associated
with such a representation makes it impractical.

Hit List Accumulation

Ontology

Hub-Page Identifier

Natural Language Question

Question Pre-Processing

Top n Hits for Question

Question Understanding

NP Sequencing

and Retrieval

Query Formulation

Figure 1: RISQUE Architecture

that combines the utility of traditional knowledge-
based methods and statistical approaches. Given
a question, RISQUE first performs question analy-
sis by extracting pertinent information to be used in
query formulation, such as the NPs, VPs, and ques-
tion type, and then orders the NPs in terms of their
relative salience. This information is then used for
hit list construction by two modules. The first com-
ponent is thehub-page identifier, which retrieves, if
possible, a hub page for the most salient NP in the
question. The second component is the Q learning
based query formulation and retrieval module that
iteratively generates queries via transformation rule
application and issues them to the search engine.
The results from both processes are combined and
accumulated untiln distinct hits are retrieved.

In addition to the above components, RISQUE
employs an ontology for the ThinkPad domain,
which consists of 1) a hierarchy of about 500 do-
main objects, 2) nearly 400 instances of relation-
ships, such asisaandaccessory-of, between objects,
and 3) a synonym dictionary containing about 1000
synsets. The ontology was manually constructed
and took approximately 2 person-months for cov-
erage in the ThinkPad domain. It provides perti-
nent information to the question pre-processing and
query formulation modules, which we will describe
in the next sections.

5.2 Question Pre-Processing

5.2.1 Question Understanding

RISQUE’s question understanding component is
based primarily on a rule-driven parser in the slot
grammar framework (McCord, 1989). The result-
ing parse tree is first analyzed for NP/VP extrac-
tion. Each NP includes the head noun and up to
two premodifiers, which covers most NPs in our do-
main. The NPs are further processed by a named-
entity recognizer (Prager et al., 2000; Wacholder et
al., 1997), with reference to domain-specific proper
names in our ontology. Recognized compound
terms, such as“hard drive” , are treated as single en-
tities, rather than as head nouns (“drive”) with pre-
modifiers (“hard”). This prevents part of the com-
pound term from being dropped when theDropMod-
ifier transformation rule is applied.

The parse tree is also used to classify the question
asbuyor support. The classifier utilizes a set of rules
based on lexical and part-of-speech information. For
example,“how” tagged as a adverb (as in“How do
I ...”) suggests asupportquestion, while“buy/sell”
used as a verb indicates abuyquestion. These rules
were manually derived based on our training data.

5.2.2 NP Sequencing

Our analysis showed that when a successful query
is to contain fewer NPs than in the question, it is
not straightforward to determine which NPs to elim-
inate, as it requires both domain and content knowl-
edge. However, we observed that less salient NPs
are often removed first, where salience indicates the
importance of the term in the search process. The
relative salience of NPs in this context can, for the
most part, be determined based on the ontological
relationship between the NPs and knowledge about
the website organization. For instance, if A is an
accessory-ofB, then A is more salient than B since,
on our website, accessories typically have their own
webpages with significantly more information than
pages about, for instance, the ThinkPads with which
they are compatible.

Our NP sequencer utilizes a rule-based reasoning
mechanism to rank a set of NPs based on their rel-
ative salience, as determined by their relationship
in the ontology.7 Objects not present in the ontol-

7We are aware that factors involving deeper question under-

ogy are considered less important than those present.
This process produces a list of NPs ranked in de-
creasing order of salience.

5.3 Hub-Page Identifier

As with most websites, the ThinkPad pages on
www.ibm.com are organized hierarchically, with a
dozen or sohub-pagesthat serve as good starting
points for specific sub-topics, such as mobile acces-
sories and personal printers. However, since these
hub-pages are typically not content-rich, they often
do not receive high scores from the search engine
(over which we have no control). Thus, we devel-
oped a mechanism to explicitly retrieve these hub-
pages when appropriate, and to combine its results
with the outcome of the actual search process.

The hub-page identifier consists of a mapping
from a subset of the named entities in the ontology to
their corresponding hub-pages.8 For each question,
the hub-page identifier retrieves the hub-page for the
most salient NP, if possible, which is presented as
the first entry in the hit list.

5.4 Reinforcement Learning Based Query
Formulation

This main component of RISQUE iteratively formu-
lates queries, issues them to the search engine, and
accumulates the results to construct the hit list. The
query formulation process starts with the most con-
strained query, and each new query is a relaxation of
a previously issued query, obtained by applying one
or more transformation rules to the current query.
The transformation rules are applied in the order ob-
tained by the Q learning algorithm as described in
Section 4.2.

The initial state of the query formulation process
is as follows:url constraint andnp phraseare set
to true, while the other attributes are set to their re-
spective maximum values based on the outcome of
the question understanding process. This initial state
represents the most constrained query possible for
the given question, and allows for subsequent relax-
ation via the application of transformation rules.

standing come into play in determining relative salience. We
leave investigation of such features as future work.

8For reasons of robustness, we actually map a named entity
to manually selected keywords which, when issued to the search
engine, retrieves the desired hub-page as the first hit.

When a states, is visited, a query is generated
based ons and the question. The query terms
are instantiated based on the values ofnp phrase,
num nps, num modifiers, andnum verbs in s and
the question itself, while URL constraints may be
applied based onurl constraint andqtype. Finally,
synonyms expansion is applied based on the syn-
onym dictionary in the ontology, while morphologi-
cal expansion is performed on all NPs using a rule-
based inflection procedure.

After a query is issued, the search results are
incorporated into the hit list, and duplicate hits
are removed. A transformation ruleamax =
argmaxaQ̂(s, a) is applied to yield the new state.
Q̂(s, amax) is then decreased to remove it from fur-
ther consideration. This iterative process continues
until the hit list contains 10 or more elements.

6 Example

To illustrate RISQUE’s end-to-end operation, con-
sider the question“Do you sell a USB hub for a
ThinkPad?”

The question is classified as abuyquestion, given
presence of the verbsell. In addition, two NPs are
identified:

NP1: head = USB hub
NP2: head = ThinkPad

Note that“USB hub” is identified as a compound
noun by our named-entity recognizer. The NP se-
quencer determines that USB hub is more salient
than ThinkPad since the former is an accessory of
the latter.

The hub-page identifier finds the networking de-
vices hub-page forUSB hub, presented as the first
entry in the hit list in Figure 2, where correct web-
pages are boldfaced.

Next, RISQUE invokes its iterative query for-
mulation process to populate the remaining hit
list entries. The initial state is<qtype = buy,
url constraint = true, np phrase= true, num nps
= 2, num modifiers = 0, num verbs = 0>. This
state generates the query shown as “Query 2” in Fig-
ure 2, which results in 6 hits, of which 4 are correct.

RISQUE selects the optimal transformation rule
for the current state, which isReinstateModifier.
Since neither NP has any modifier, a second rule,
RelaxNPis attempted, which resulted in a new query

that did not retrieve any previously unseen hits.
Next, RISQUE selectsConstrainNPandRelaxURL,
resulting in the query shown as “Query 3” in Fig-
ure 2.9 Note that relaxing the URL constraint results
in retrieval of USB hub support pages.

7 Performance Evaluation and Analysis

We evaluated RISQUE’s performance on 102 ques-
tions in the ThinkPad domain previously unseen
to both RISQUE’s knowledge-based and statistical
components. The top 10 hits returned by RISQUE
for each question were manually evaluated for cor-
rectness as in Section 3. A 2NP baseline was ob-
tained by extracting up to two most salient NPs in
each question, searching for the conjunction of all
words in the NPs, and manually evaluating the 10
top hits returned.

We selected the 2NP baseline based on statistics
of keyword query logs on our website, which show
that 98.2% of all queries contain 4 keywords or less.
Furthermore, most three and four-word queries con-
tain two distinct noun phrases, such as “visualage for
java” and “application framework for e-business”.
Thus, we use the 2NP baseline as an approximation
of user keyword search performance for our natural
language questions.10

We compared RISQUE’s performance to the
baseline using three metrics:11

1. Total correct: number of questions for which
at least one correct webpage is retrieved.

2. Average correct: average number of correct
webpages retrieved per question.

3. Average rank: average rank of the first correct
webpage in the hit list.

The evaluation results are summarized in Table 2,
where the first and last rows show the 2NP base-
line and RISQUE’s performance, respectively. The

9A set of negative URL constraints is applied at all times to
best exclude parts of the website unrelated to ThinkPads.

10This is likely too high an estimate for current keyword
search performance, since the majority of user queries employ
only one noun phrase.

11We chose not to evaluate our results using the traditional
IR recall measure because for our task, it is often sufficient to
return one page that answers the question instead of attempting
to retrieve all relevant pages.

Question: Do you have a USB hub for a ThinkPad?
Query 1: hub-page identifier

1 Communications, Networking, Input/Output Devices ...

Query 2: (thinkpad thinkpads laptop laptops notebook notebooks) (“usb hub” “usb hubs”)
+url: (commerce accessories proven products thinkpad)
-url: research press rs6000 eserver ...

2 Mobile Accessories ...
3 4-Port Ultra-Mini USB Hub
4 ThinkPad TransNote Port Extender
5 Belkin ExpressBus 7-Port USB Hub
6 Portable Drive Bay 2000
7 Belkin BusStation 7 Port Modular USB Hub

Query 3: (thinkpad thinkpads laptop laptops notebook notebooks) (“usb hub” “usb hubs”)
-url: research press rs6000 eserver ...

8 Java technology for the universal serial bus
9 Multiport USB Hub - Printer compatibility list
10Multi-Port USB Hub - Overview

Figure 2: RISQUE Results for Sample Question

Total Average Average
Correct Correct Rank

2NPs 30 0.63 4.0
Fixed Order 45 1.24 2.71
RISQUE w/o
hub identifier 56 1.67 2.25
RISQUE 71 1.87 2.11

Table 2: RISQUE Evaluation Results

results show that RISQUE correctly answered 71
questions, a 137% relative improvement over the
baseline. Furthermore, the average number of cor-
rect answers found nearly tripled, while, on average,
the rank of the first correct answer improved from
4.0 to 2.11.

Table 2 further shows performance figures that
evaluate the individual contribution of RISQUE’s
two main components, the hub-page identifier and
the iterative query formulation module. Comparison
between the last two rows in Table 2 shows the effec-
tiveness of the hub-page identifier, which substan-
tially increased the number of questions correctly
answered, but resulted in only minor gain using the
other two performance metrics. To assess the effec-
tiveness of the query formulation module, we used
the best manually-derived rule application sequence
obtained in Section 3. We compared thesefixed or-
der performance figures to those forRISQUE w/o
hub identifierwhich shows that applying Q learning
to derive an optimal state-dependent rule application
order resulted in fairly substantial improvement us-

Maxq 10 5 3 2 1
RISQUE 5.07 4.47 2.89 1.98 1
RISQUE w/o hpi 4.26 3.86 2.80 1.93 1

Table 3: Average Queries Issued for SelectMaxqs

20

30

40

50

60

70

0 1 2 3 4 5 6

N
um

be
r

of
 Q

ue
st

io
ns

 A
ns

w
er

ed

Average Number of Queries Issued

RISQUE
RISQUE w/o hpi

2NP baseline

Figure 3: # Queries Issued vs. System Performance

ing all three metrics.
One of RISQUE’s parameters,maxq, specifies the

maximum number of distinct queries it can issue to
the search engine for each question. Table 3 shows
the average number of queries actually issued for
select values ofmaxq.12 Figure 3 shows how per-
formance degrades when fewer queries are issued
as a result of loweringmaxqfor both RISQUE and
RISQUE without the hub-page identifier. It shows
that, with the exception of RISQUE’s performance

12Maxq is 10 for the results in Table 2.

when only one query is issued,13 the number of
questions answered have a near-linear relationship
with the number of queries issued for both sys-
tems. Notice that without the hub-page identifier,
RISQUE’s performance when issuing an average of
1.93 queries per question is nearly the same as that
of the 2NP baseline, while it performs worse than
the baseline when issuing only one query per ques-
tion. This is because our iterative query formula-
tion process intentionally begins with the most con-
strained query, resulting in an empty hit list in many
cases.

8 Conclusions and Future Work

In this paper, we described and evaluated RISQUE,
a hybrid system for performing natural language
search on a large company public website. RISQUE
utilizes a two-pronged approach to generate hit lists
for answering natural language questions. On the
one hand, RISQUE employs a hub-page identi-
fier to retrieve, when possible, a hub-page for the
most salient NP in the question. On the other
hand, RISQUE adopts a statistical iterative query
formulation and retrieval mechanism that generates
new queries by applying transformation rules to
previously-issued queries. By employing these two
components in parallel, RISQUE takes advantages
of both knowledge-driven and machine learning ap-
proaches, and achieves an overall 137% relative im-
provement in the number of questions correctly an-
swered on an unseen test set, compared to a baseline
of 2NP keyword queries.

In our current work, we are focusing on expand-
ing system coverage to other domains. In particu-
lar, we plan to investigate semi-automatic methods
for extracting ontological knowledge from existing
webpages and databases.

Acknowledgments

We would like to thank Dave Ferrucci and Nanda
Kambhatla for helpful discussions, Ruchi Kalra and
Jerry Cwiklik for data preparation, Eric Brown and
the anonymous reviewers for helpful comments on
an earlier draft of this paper, as well as Mike Moran

13In most cases, this query is issued by the hub-page identi-
fier, which has a higher success rate than the queries generated
by the query formulation module.

and Alex Holt for providing technical assistance
with ibm.com search.

References

G. Bierner. 2001. Alternative phrases and natural lan-
guage information retrieval. InProc. 39th ACL, pages
58–65.

C. Clarke, G. Cormack, and T. Lynam. 2001. Exploit-
ing redundancy in question answering. InProc. 24th
SIGIR, pages 358–365.

P. Hagen, H. Manning, and Y. Paul. 2000. Must search
stink? The Forrester Report, June.

K. Hammond, R. Burke, C. Martin, and S. Lytinen. 1995.
Faq finder: A case-based approach to knowledge nav-
igation. In AAAI Spring Symposium on Information
Gathering in Heterogeneous Environments, pages 69–
73.

S. Harabagui, D. Moldovan, M. Pasca, R. Mihalcea,
M. Surdeanu, R. Bunescu, R. Girju, V. Rus, and
P. Morarescu. 2001. The role of lexico-semantic feed-
back in open-domain textual question-answering. In
Proc. 39th ACL, pages 274–281.

A. Ittycheriah, M. Franz, W-J. Zhu, and A. Ratnaparkhi.
2001. Question answering using maximum entropy
components. InProc. 2nd NAACL, pages 33–39.

M. McCord. 1989. Slot grammar: A system for simpler
construction of practical natural language grammars.
In Natural Language and Logic, pages 118–145.

T. Mitchell. 1997.Machine Learning. McGraw Hill.

J. Prager, E. Brown, A. Coden, and D. Radev. 2000.
Question-answering by predictive annotation. InProc.
23rd SIGIR, pages 184–191.

N. Wacholder, Y. Ravin, and M. Choi. 1997. Disam-
biguation of proper names in text. InProc. 5th ANLP.

C. Watkins. 1989. Learning from Delayed Rewards.
Ph.D. thesis, King’s College.

