Generation of Word Graphs in Statistical Machine Translation

Nicola Ueffing and Franz Josef Och and Hermann Ney
Lehrstuhl fiir Informatik VI, Computer Science Department
RWTH Aachen - University of Technology
D-52056 Aachen, Germany
{ueffing,och,ney}@informatik.rwth-aachen.de

Abstract

Statistical machine translation systems
usually compute the single sentence
that has the highest probability ac-
cording to the models that are trained
on data. We describe a method for
constructing a word graph to repre-
sent alternative hypotheses in an effi-
cient way. The advantage is that these
hypotheses can be rescored using a re-
fined language or translation model.
Results are presented on the German-
English Verbmobil corpus.

1 Introduction

The goal of the statistical machine translation
process is the following: a given source string
fi = fi-..fj-.. f7 is to be translated into a
target string e{ =e1...¢;...er. Based on Bayes’
decision rule, we choose the string with the high-
est probability:

ef = argmax{Pr(el| 1)}
€1

= argmax {Pr(e{) - Pr(fi | 6{)}

The system is divided into three parts (cf. Fig-
ure 1): the translation model Pr(f{|el) —
consisting of the lexicon and the alignment
model — the language model of the target
language, Pr(e!), and the search denoted by
the arg maz operation. Among all possible tar-
get strings, we have to find the target string that

Proceedi ngs of the Conference on Enpirical
Language Processing (EVNLP),

Source Language Text

l Transformation l

J

f1
Global Search:

) 3l
Pr(file;)
maximize Pr(e;) - Pr(f; |e})

|
over e, Pr(el)
o—l Language Model |

Lexicon Model |

Alignment Model |

l Transformation l

Target Language Text

Figure 1: Architecture of a Statistical Transla-
tion System

maximizes the probability calculated from the
models that are trained on data.

The translation model Pr(f|el) is based on
dependencies between words of the source and
the target language, so-called alignments. An
alignment is a mapping j — ¢ = a; from source
position j to target position 7 = g, i.e. the tar-
get word e; is a translation of the source word f;.

An example of an alignment is given in Fig-
ure 2. The English word ‘about’ is aligned
to three German words, and the other English
words to exactly one. The German word ’am’
is aligned to the so-called empty word ej, be-
cause it has no translation in the English string.

Met hods in Natural
Phi | adel phia, July 2002, pp. 156-163.
Associ ation for Conputational Linguistics.

? 4 e e e e o - @
Friday L Y . .
about 1 . @ @ . e @ o
how 4 o

— — — 1+

wie sieht es am Freitag aus ?

Figure 2: Example of an Alignment

In statistical alignment models Pr(f{,a{|el),
the alignment af is introduced as a hidden vari-
able. The translation probability can then be
rewritten in the following way:

Pr(f{ |ef) ZPT

,ai | el)

Instead of summing over all possible alignments,
the search is performed using the so-called max-
imum approximation:

51

& = {,ai | el)

ZP’I‘

arg max Pr(el)
ei

= argmax{Pr(el) maXPT(fl,al \61)}

61 "'1

The search space consists of the set of all pos-
sible target language strings e! and all possible
alignments ay .

In this paper, we use the so-called Model 4
introduced by IBM in (Brown et al., 1993). Yet,
many of the results presented in the following
are also applicable to other alignment models.

2 Single Best Search

2.1

In (Och et al., 2001), a possible way to structure
the search space as a lattice is described. We use
the same structure here and thus will shortly
review the basic concepts of this search space
structure: every partial hypothesis consists of a
prefix of the target sentence and a corresponding
alignment. A partial hypothesis is extended by

Search Space

accounting for exactly one additional word of the
source sentence. The possible extensions are the
following;:

1. the source word f is translated by a word e
in the target language,

2. the source word f is translated by the
empty word ey,

3. the source word f is translated by a word e
in the target language, and a target lan-
guage word €’ without an equivalence in the
source sentence is inserted before e.

Every extension yields an extension score that
is computed by taking into account the proba-
bilities of the translation model. If a new word
in the target string is produced, the language
model score is considered as well.

We use a standard trigram language model,
so the relevant language model state of a node
in the search lattice consists of the current word
and the previous word. The translation model
state depends on the specific model dependen-
cies of Model 4 for the node, such as the source
sentence position translated last.

We perform a recombination of search hy-
potheses in order to keep the search space man-
ageable: every two hypotheses that can be dis-
tinguished by neither the language model state
nor the translation model state can be recom-
bined, i.e. only the hypothesis with the higher
probability of the two needs to be considered in
the subsequent search process.

2.2 Search Algorithm

The search is performed using a beam search
algorithm that focuses the search to the most
promising partial hypotheses and discards the
others. A description of this algorithm can be
found in (Tillmann and Ney, 2000) and (Till-
mann and Ney, 2002).

The discarding of hypotheses with low proba-
bility is called pruning. Two different types of
pruning are applied during search: threshold
and histogram pruning. For the threshold
pruning, the probability of the most likely par-
tial hypothesis is computed and all hypotheses

whose probability is below this value multiplied
with a threshold (lower than one) will not be re-
garded for further expansion. Histogram prun-
ing means that all but the M best hypotheses
are pruned for a fixed M.

For finding the most likely partial hypotheses,
first all hypotheses with the same set of covered
source sentence positions are compared. Af-
ter threshold and histogram pruning have been
applied, we also compare all hypotheses with
the same number of covered source sentence
positions and apply both pruning types again.
Those hypotheses that survive the pruning are
called the active hypotheses.

The word graph structure and the results pre-
sented here can easily be transferred to other
search algorithms, such as A* search.

3 Word Graphs

3.1 Motivation

It is widely accepted in the community that a
significant improvement in translation quality
will come from more sophisticated translation
and language models. For example, a language
model that goes beyond m-gram dependencies
could be used, but this would be difficult to in-
tegrate into the search process. As a step to-
wards the solution of this problem, we determine
not only the single best sentence hypothesis, but
also other complete sentences that the search al-
gorithm found but that were judged worse. We
can then apply rescoring with a refined model
to those hypotheses. One efficient way to store
the different alternatives is a word graph.

Word graphs have been successfully applied
in speech recognition, for the search process
(Ortmanns et al., 1997) and as an interface to
other systems (Oerder and Ney, 1993). (Knight
and Hatzivassiloglou, 1995) and (Langkilde and
Knight, 1998) propose the use of word graphs
for natural language generation. In this paper,
we are going to present a concept for the gen-
eration of word graphs in a machine translation
system.

3.2 Bookkeeping

During search, we keep a bookkeeping tree. It
is not necessary to keep all the information that
we need for the expansion of hypotheses during
search in this structure, thus we store only the
following;:

e the produced target word e,
e the covered source sentence position j,

e a backpointer to the preceding bookkeeping
entry.

After the search has finished, i.e. when all
source sentence positions have been translated,
we trace back the best sentence in the bookkeep-
ing tree.

To generate the N best hypotheses after
search, it is not sufficient to simply trace back
the complete hypotheses with the highest prob-
abilities in the bookkeeping, because those hy-
potheses have been recombined. Thus, many hy-
potheses with a high probability have not been
stored.

To overcome this problem, we enhance the
bookkeeping concept and generate a word graph
as described in Section 3.3.

3.3 Word Graph Structure

If we want to generate a word graph, we have to
store both alternatives in the bookkeeping when
two hypotheses are recombined. Thus, an entry
in the bookkeeping structure may have several
backpointers to different preceding entries. The
bookkeeping structure is no longer a tree but a
network where the source is the bookkeeping en-
try with zero covered source sentence positions
and the sink is a node accounting for complete
hypotheses (see Figure 3). This leads us to the
concept of word graph nodes and edges contain-
ing the following information:

e node
— the last covered source sentence posi-
tion j,
e edge

— the target word e,

— the probabilities according to the dif-
ferent models: the language model and
the translation submodels,

— the backpointer to the preceding book-
keeping entry.

After the pruning in beam search, all hypothe-
ses that are no longer active do not have to
be kept in the bookkeeping structure. Thus,
we can perform garbage collection and re-
move all those bookkeeping entries that cannot
be reached from the backpointers of the active
hypotheses. This reduces the size of the book-
keeping structure significantly.

An example of a word graph can be seen in
Figure 3. To keep the presentation simple, we
chose an example without reordering of sentence
positions. The words on the edges are the pro-
duced target words, and the bitvectors in the
nodes show the covered source sentence posi-
tions. If an edge is labeled with two words, this
means that the first English word has no equiva-
lence in the source sentence, like ‘just’ and "have’
in Figure 3. The reference translation 'what did
you say 7’ is contained in the graph, but it has
a slightly lower probability than the sentence
'what do you say ?7’, which is then chosen by
the single best search.

The recombination of hypotheses can be seen
in the nodes with two or more incoming edges:
those hypotheses have been recombined, be-
cause they were indistinguishable by translation
and language model state.

4 Pruning and Rescoring

4.1 Word Graph Pruning

To study the effect of the word graph size on the
translation quality, we produce a conservatively
large word graph. Then we apply word graph
pruning with a threshold ¢ < 1 and study the
change of graph error rate (see Section 5). The
pruning is based on the beam search concept
also used in the single best search: we determine
the probability of the best sentence hypothesis
in the word graph. All hypotheses in the graph
which probability is lower than this maximum
probability multiplied with the pruning thresh-
old are discarded.

If the pruning threshold t is zero, the word
graph is not pruned at all, and if ¢t = 1, we retain
only the sentence with maximum probability.

4.2 Word Graph Rescoring

In single best search, a standard trigram lan-
guage model is used. Search with a bigram lan-
guage model is much faster, but it yields a lower
translation quality. Therefore, we apply a two-
pass approach as it was widely used in speech
recognition in the past (Ortmanns et al., 1997).
This method combines both advantages in the
following way: a word graph is constructed using
a bigram language model and is then rescored
with a trigram language model. The rescoring
algorithm is based on dynamic programming; a
description can be found in (Ortmanns et al.,
1997).

The results of the comparison of the one-pass
and the two-pass search are given in Section 5.

4.3 Extraction of N-best Lists

We use A* search for finding the N best sen-
tences in a word graph: starting in the root of
the graph, we successively expand the sentence
hypotheses. The probability of the partial hy-
pothesis is obtained by multiplying the proba-
bilities of the edges expanded for this sentence.
As rest cost estimation, we use the probabilities
determined in a backward pass as follows: for
each node in the graph, we calculate the proba-
bility of a best path from this node to the goal
node, i.e. the highest probability for completing
a partial hypothesis. This rest cost estimation
is perfect because it takes the exact probability
as heuristic, i.e. the probability of the partial
hypothesis multiplied with the rest cost estima-
tion yields the actual probability of the com-
plete hypothesis. Thus, the N best hypothesis
are extracted from the graph without additional
overhead of finding sentences with a lower prob-
ability.

Of course, the hypotheses must not be recom-
bined during this search. We have to keep every
partial hypothesis in the priority queue in order
to determine the N best sentences. Otherwise,
we might lose one of them by recombination.

/)
. y

did
//
100000, do—~(11000Q
are you
N
110000
y

you

-
dq/”44§§§p
_—
100000
~—~
are™=(1100007" you

what

000000

.\

how

said \

|
I

0 1 2
Cc

ardinality of coverage vector

Figure 3: Example of a Word Graph for the German Input Sentence ‘was hast du gesagt?’
Reference Translation: 'what did you say?’

The details of the algorithm are given in Ta-
ble 1.

5 Experimental Results

5.1 Corpus and Evaluation

We performed experiments on the German-
English Verbmobil corpus. This is a speech
translation task in the domain of appointment
scheduling and travel planning. The corpus
statistics are given in Table 2. The difficulty of
this task is that it contains spontaneous speech
and thus the syntactic structure of the sentences
is far less restricted than in written language.

For evaluation, we use the following error cri-
teria:

e WER (word error rate):
The word error rate is based on the Lev-
enstein distance. It is computed as the
minimum number of substitution, insertion
and deletion operations that have to be per-
formed to convert the generated string into
the reference string.

¢ mWER (multi-reference word error rate):
Often there exist many possible correct
translations of a sentence. The WER com-
pares the produced translation only to one
given reference which might be insufficient
due to variance in syntax. Thus, we built
a set of reference translations for each test
sentence. For each translation hypothesis,
the Levenstein distance to the most similar
reference sentence is calculated. This yields
a more reliable error measure and is a lower

bound of the WER.

e SSER (subjective sentence error rate):

For a more detailed analysis, subjective
judgments by test persons are necessary.
Each translated sentence was judged by a
human examiner according to an error scale
from 0.0 to 1.0. A score of 0.0 means that
the translation is semantically and syntac-
tically correct, a score of 0.5 means that a
sentence is semantically correct but syntac-
tically wrong and a score of 1.0 means that
the sentence is semantically wrong.

Table 1: Algorithm for the Extraction of an N-best List from a Word Graph

input: word graph G

initialization: set N’ = {goal node of G} , Npew = 0

while N is non-empty do

for each node n in N do

for each incoming edge (s,n) do

costs(s) = costs(n) + edgecosts((s,n))

insert s into Npew

N :Nnewa Nnew =0

perform A* search with costs(n) as rest cost estimation

Table 2: Training and Test Corpus Statistics

German ‘ English

Training Sentences 58073

Words 519523 | 549921

Words without Punctuation Marks | 418979 | 453632
Vocabulary Size 7911 4648

Singletons 3453 1699
Test Sentences 251

Words 2627 2866

Bigram/Trigram Perplexity - 39.3/30.7

e GER (graph error rate):
The graph error rate is computed by deter-
mining that sentence in the word graph that
has the minimum Levenstein distance to a
given reference. Thus, it is a lower bound
for the word error rate and gives a measure-
ment of what can be achieved by rescoring
with more complex models.
The calculation of the graph error rate
is performed by a dynamic programming
based algorithm. Its space complexity is the
number of graph nodes times the length of
the reference translation.

5.2 Effect of Word Graph Pruning

In our experiments, we varied the word graph
pruning threshold in order to obtain word
graphs of different densities, i.e. different num-

bers of hypotheses. The word graph density is
computed as the total number of word graph
edges divided by the number of reference sen-
tence words — analogously to the word graph
density in speech recognition.

The effect of pruning on the graph error rate
is shown in Table 3. The value of the pruning
threshold is given as the negative logarithm of
the probability. Thus, £ = 0 refers to pruning
everything but the best hypothesis.

Figure 4 shows the change in graph error rate
in relation to the average graph density. We see
that for graph densities up to 200, the graph er-
ror rate significantly changes if the graph is en-
larged. The saturation point of the GER lies at
13% and is reached for an average graph density
about 1000 which relates to a pruning threshold
of 20.

Table 4: Length of N-best List and the Effect on the Word Error Rate

N 1 5 10 20 50 100 200 500 | 1000 | 1500 | 2000
WER || 41.07 | 33.96 | 31.31 | 29.33 | 26.72 | 24.97 | 23.27 | 21.56 | 20.24 | 19.64 | 19.30
40 Table 3: Graph Density and Graph Error Rate
35 for Various Pruning Thresholds
g 0 Pruning Graph
g’ o5 [Threshold ¢ | Density | GER
5 20| 1.0 2.26 | 34.52
= *
o 5l T, 2.0 4.38 29.78
g e e r— 3.0 8.37 25.60
(@2}
07 4.0 15.91 | 23.06
5r 5.0 29.79 | 20.76
0 - 7.0 88.02 | 17.69
0 100 200 300 400 500 600 700 800 900 1000 10.0 287.05 14.56
average graph density 12.0 44451 | 13.72
Figure 4: Effect of the Average Graph Density 15.0 710.61 | 1341
on the GER 20.0 1060.39 | 13.13
50.0 1282.54 | 13.10
100.0 1282.57 | 13.10

5.3 Error Rates for N-best Lists

We studied the relation of the length of an N-
best list extracted from the word graph to the
translation quality of the hypotheses contained
in it. For each sentence in the N-best list, we
computed the word error rate and determined
the minimum over the list. Table 4 shows the
results. We see that the error rate decreases sig-
nificantly for growing length of the list. For N
larger than 1000, there is no significant change
in WER even if N is doubled. From this, we con-
clude that rescoring on word graphs has to be
preferred to rescoring on N-best lists, because
a word graph leaves more room for improve-
ment: the GER decreases down to 13%, and
even graphs with a density below 100 contain
better hypotheses than a 2000-best list.

5.4 Effect of Trigram Rescoring

To investigate the effect of a one-pass search ver-
sus language model rescoring, we performed a
single best search with a trigram language model
and constructed a word graph with a bigram
language model. The graph was then rescored

using a trigram language model. Table 5 shows
the error rates and the computation time for the
two approaches. The time given for the two-pass
search is the time needed for the word graph
construction plus the time needed for trigram
rescoring. The two-pass search is around 3.5
times faster than the one-pass search.

In order to make the results comparable, we
applied the same pruning for the integrated tri-
gram search and the word graph construction
with the bigram. The WER and mWER for
the two-pass approach are slightly higher than
those for the integrated search. This is due to
the fact that the bigram search misses some of
the good translations that are found by the tri-
gram search. This can be compensated by con-
structing a larger word graph. The subjective
sentence error rate even slightly decreases for
the two-pass search. The degradation in WER
and mWER is not significant.

Table 5: Error Rates [%] and CPU Time for One-Pass and Two-Pass Search

Integrated Bigram Search +
Trigram Search | Trigram Rescoring
Error Rates WER 41.41 42.70
mWER 36.46 37.26
SSER 36.90 35.54
CPU Time sec./sentence 10.75 2.774+0.19

6 Conclusion

We have presented a concept for constructing
word graphs for statistical machine translation
by extending the single best search algorithm.
Experiments have shown that the graph error
rate significantly decreases for rising word graph
densities. The quality of the hypotheses con-
tained in a word graph is better than of those in
an N-best list. This indicates that word graph
rescoring can yield a significant gain in transla-
tion quality. For the future, we plan the applica-
tion of refined translation and language models
for rescoring on word graphs.

References

Peter F. Brown, Stephen A. Della Pietra, Vincent J.
Della Pietra, and Robert L. Mercer. 1993. The
mathematics of statistical machine translation:
Parameter estimation. Computational Linguis-
tics, 19(2):263-311.

Kevin Knight and Vasileios Hatzivassiloglou. 1995.
Two-level, many-paths generation. In Proceedings
of the Conference of the Association for Compu-
tational Linguistics, pages 252-260, Cambridge,
MA, June.

Irene Langkilde and Kevin Knight. 1998. The prac-
tical value of n-grams in generation. In Proceed-
ings of the International Natural Language Gener-
ation Workshop, pages 248255, Ontario, Canada,
August.

Franz J. Och, Nicola Ueffing, and Hermann Ney.
2001. An efficient A* search algorithm for sta-
tistical machine translation. In ACL-EACL-2001:
39th Annual Meeting of the Association for Com-
putational Linguistics - joint with EACL 2001:
Proceedings of the Workshop on Data-Driven Ma-
chine Translation, pages 55—62, Toulouse, France,
July.

Martin Oerder and Hermann Ney. 1993. Word
graphs: An efficient interface between continous
speech recognition and language understanding.
In IEEFE International Conference on Acoustics,

Speech and Signal Processing, volume 2, pages
119-122, Minneapolis, MN, April.

Stefan Ortmanns, Hermann Ney, and Xavier Aubert.
1997. A word graph algorithm for large vocab-
ulary continuous speech recognition. Computer,
Speech and Language, 11(1):43-72, January.

Christoph Tillmann and Hermann Ney. 2000. Word
re-ordering and DP-based search in statistical ma-
chine translation. In COLING ’00: The 18th Int.
Conf. on Computational Linguistics, pages 850—
856, Saarbriicken, Germany, July.

Christoph Tillmann and Hermann Ney. 2002. Word
re-ordering and DP beam search for statistical
machine translation. to appear in Computational
Linguistics.

