
User-Friendly Text Prediction for Translators

George Foster and Philippe Langlais and Guy Lapalme
RALI, Université de Montŕeal

{foster,felipe,lapalme}@iro.umontreal.ca

Abstract

Text prediction is a form of interactive
machine translation that is well suited to
skilled translators. In principle it can as-
sist in the production of a target text with
minimal disruption to a translator’s nor-
mal routine. However, recent evaluations
of a prototype prediction system showed
that it significantlydecreasedthe produc-
tivity of most translators who used it. In
this paper, we analyze the reasons for this
and propose a solution which consists in
seeking predictions that maximize the ex-
pected benefit to the translator, rather than
just trying to anticipate some amount of
upcoming text. Using a model of a “typ-
ical translator” constructed from data col-
lected in the evaluations of the prediction
prototype, we show that this approach has
the potential to turn text prediction into a
help rather than a hindrance to a translator.

1 Introduction

The idea of using text prediction as a tool for trans-
lators was first introduced by Church and Hovy as
one of many possible applications for “crummy”
machine translation technology (Church and Hovy,
1993). Text prediction can be seen as a form of in-
teractive MT that is well suited to skilled transla-
tors. Compared to the traditional form of IMT based
on Kay’s original work (Kay, 1973)—in which the
user’s role is to help disambiguate the source text—
prediction is less obtrusive and more natural, allow-
ing the translator to focus on and directly control the

contents of the target text. Predictions can benefit
a translator in several ways: by accelerating typing,
by suggesting translations, and by serving as an im-
plicit check against errors.

The first implementation of a predictive tool for
translators was described in (Foster et al., 1997), in
the form of a simple word-completion system based
on statistical models. Various enhancements to this
were carried out as part of the TransType project
(Langlais et al., 2000), including the addition of a re-
alistic user interface, better models, and the capabil-
ity of predicting multi-word lexical units. In the fi-
nal TransType prototype for English to French trans-
lation, the translator is presented with a short pop-
up menu of predictions after each character typed.
These may be incorporated into the text with a spe-
cial command or rejected by continuing to type nor-
mally.

Although TransType is capable of correctly antic-
ipating over 70% of the characters in a freely-typed
translation (within the domain of its training cor-
pus), this does not mean that users can translate in
70% less time when using the tool. In fact, in a trial
with skilled translators, the users’ rate of text pro-
ductiondeclinedby an average of 17% as a result
of using TransType (Langlais et al., 2002). There
are two main reasons for this. First, it takes time to
read the system’s proposals, so that in cases where
they are wrong or too short, the net effect will be to
slow the translator down. Second, translators do not
always act “rationally” when confronted with a pro-
posal; that is, they do not always accept correct pro-
posals and they occasionally accept incorrect ones.
Many of the former cases correspond to translators
simply ignoring proposals altogether, which is un-
derstandable behaviour given the first point.

 Association for Computational Linguistics.
 Language Processing (EMNLP), Philadelphia, July 2002, pp. 148-155.
 Proceedings of the Conference on Empirical Methods in Natural

This paper describes a new approach to text pre-
diction intended to address these problems. The
main idea is to make predictions that maximize the
expected benefit to the user in each context, rather
than systematically proposing a fixed amount of text
after each character typed. The expected benefit is
estimated from two components: a statistical trans-
lation model that gives the probability that a can-
didate prediction will be correct or incorrect, and a
user model that determines the benefit to the trans-
lator in either case. The user model takes into ac-
count the cost of reading a proposal, as well as the
random nature of the decision to accept it or not.
This approach can be characterized as making fewer
but better predictions: in general, predictions will
be longer in contexts where the translation model is
confident, shorter where it is less so, and absent in
contexts where it is very uncertain.

Other novel aspects of the work we describe here
are the use of a more accurate statistical translation
model than has previously been employed for text
prediction, and the use of a decoder to generate pre-
dictions of arbitrary length, rather than just single
words or lexicalized units as in the TransType pro-
totype. The translation model is based on the max-
imum entropy principle and is designed specifically
for this application.

To evaluate our approach to prediction, we simu-
lated the actions of a translator over a large corpus of
previously-translated text. The result is an increase
of over 10% in translator productivity when using
the predictive tool. This is a considerable improve-
ment over the -17% observed in the TransType trials.

2 The Text Prediction Task

In the basic prediction task, the input to the predictor
is a source sentences and a prefixh of its translation
(ie, the target text before the current cursor position);
the output is a proposed extensionx to h. Figure 1
gives an example. Unlike the TransType prototype,
which proposes a set of single-word (or single-unit)
suggestions, we assume that each prediction consists
of only a single proposal, but one that may span an
arbitrary number of words.

As described above, the goal of the predictor is
to find the prediction̂x that maximizes the expected

s: Let us return to serious matters.

t:

h︷ ︸︸ ︷
On va r

x∗︷ ︸︸ ︷
evenir aux choses sérieuses.

x: evenirà

Figure 1: Example of a prediction for English to
French translation.s is the source sentence,h is the
part of its translation that has already been typed,
x∗ is what the translator wants to type, andx is the
prediction.

benefit to the user:

x̂ = argmax
x

B(x,h, s), (1)

whereB(x,h, s) measures typing time saved. This
obviously depends on how much ofx is correct, and
how long it would take to edit it into the desired text.
A major simplifying assumption we make is that the
user edits only by erasing wrong characters from the
end of a proposal. Given a TransType-style interface
where acceptance places the cursor at the end of a
proposal, this is the most common editing method,
and it gives a conservative estimate of the cost at-
tainable by other methods. With this assumption,
the key determinant of edit cost is the length of the
correct prefix ofx, so the expected benefit can be
written as:

B(x,h, s) =
l∑

k=0

p(k|x,h, s)B(x,h, s, k), (2)

wherep(k|x,h, s) is the probability that exactlyk
characters from the beginning ofx will be correct,
l is the length ofx, andB(x,h, s, k) is the benefit
to the user given that the firstk characters ofx are
correct.

Equations (1) and (2) define three main problems:
estimating the prefix probabilitiesp(k|x,h, s), esti-
mating the user benefit functionB(x,h, s, k), and
searching for̂x. The following three sections de-
scribe our solutions to these.

3 Translation Model

The correct-prefix probabilitiesp(k|x,h, s) are
derived from a word-based statistical translation

model. The first step in the derivation is to con-
vert these into a form that deals explicitly with char-
acter strings. This is accomplished by noting that
p(k|x,h, s) is the probability that the firstk charac-
ters ofx are correctand that thek + 1th character
(if there is one) is incorrect. Fork < l:

p(k|x,h, s) = p(xk1|h, s)− p(xk+1
1 |h, s)

wherexk1 = x1 . . . xk. If k = l, p(k|x,h, s) =
p(x|h, s). Also,p(x0

1) ≡ 1.
The next step is to convert string probabilities

into word probabilities. To do this, we assume
that strings map one-to-one into token sequences, so
that:

p(xk1|h, s) ≈ p(v1, w2, . . . , wm−1, um|h, s),

wherev1 is a possibly-empty word suffix, eachwi is
a complete word, andum is a possibly empty word
prefix. For example, ifx in figure 1 wereevenir aux
choses, thenx14

1 would map tov1 = evenir, w2 =
aux, andu3 = cho. The one-to-one assumption is
reasonable given that entries in our lexicon contain
neither whitespace nor internal punctuation.

To model word-sequence probabilities, we apply
the chain rule:

p(v1, w2, . . . , wm−1, um|h, s) =

p(v1|h, s)
m−1∏
i=2

p(wi|h, v1, w
i−1
2 , s)×

p(um|h, v1, w
m−1
2 , s). (3)

The probabilities ofv1 andum can be expressed in
terms of word probabilities as follows. Lettingu1

be the prefix of the word that ends inv1 (eg, r in
figure 1),w1 = u1v1, andh = h′u1:

p(v1|h, s) = p(w1|h′, s)/
∑

w:w=u1v

p(w|h′, s),

where the sum is over all words that start withu1.
Similarly:

p(um|h′, wm−1
1 , s) =

∑
w:w=umv

p(w|h′, wm−1
1 , s). (4)

Thus all factors in (3) can be calculated from
probabilities of the formp(w|h, s) which give the

likelihood that a wordw will follow a previous se-
quence of wordsh in the translation ofs.1 This is
the family of distributions we have concentrated on
modeling.

Our model forp(w|h, s) is a log-linear combina-
tion of a trigram language model forp(w|h) and a
maximum-entropy translation model forp(w|s), de-
scribed in (Foster, 2000a; Foster, 2000b). The trans-
lation component is an analog of the IBM model 2
(Brown et al., 1993), with parameters that are op-
timized for use with the trigram. The combined
model is shown in (Foster, 2000a) to have signif-
icantly lower test corpus perplexity than the linear
combination of a trigram and IBM 2 used in the
TransType experiments (Langlais et al., 2002). Both
models supportO(mJV 3) Viterbi-style searches for
the most likely sequence ofm words that followsh,
whereJ is the number of tokens ins andV is the
size of the target-language vocabulary.

Compared to an equivalent noisy-channel combi-
nation of the formp(t)p(s|t), wheret is the tar-
get sentence, our model is faster but less accurate.
It is faster because the search problem for noisy-
channel models is NP-complete (Knight, 1999), and
even the fastest dynamic-programming heuristics
used in statistical MT (Niessen et al., 1998; Till-
mann and Ney, 2000), are polynomial inJ—for in-
stanceO(mJ4V 3) in (Tillmann and Ney, 2000). It
is less accurate because it ignores the alignment rela-
tion betweens andh, which is captured by even the
simplest noisy-channel models. Our model is there-
fore suitable for making predictions in real time, but
not for establishing complete translations unassisted
by a human.

3.1 Implementation

The most expensive part of the calculation in equa-
tion (3) is the sum in (4) over all words in the vo-
cabulary, which according to (2) must be carried out
for every character positionk in a given prediction
x. We reduce the cost of this by performing sums
only at the end of each sequence of complete tokens
in x (eg, afterrevenir andrevenir auxin the above
example). At these points, probabilities for all pos-
sible prefixes of the next word are calculated in a

1Here we ignore the distinction between previous words that
have been sanctioned by the translator and those that are hy-
pothesized as part of the current prediction.

single recursive pass over the vocabulary and stored
in a trie for later access.

In addition to the exact calculation, we also ex-
perimented with establishing exact probabilities via
p(w|h, s) only at the end of each token inx, and as-
suming that the probabilities of the intervening char-
acters vary linearly between these points. As a re-
sult of this assumption,p(k|x,h, s) = p(xk1|h, s)−
p(xk+1

1 |h, s) is constant for allk between the end of
one word and the next, and therefore can be factored
out of the sum in equation (2) between these points.

4 User Model

The purpose of the user model is to determine the
expected benefitB(x,h, s, k) to the translator of a
predictionx whose firstk characters match the text
that the translator wishes to type. This will depend
on whether the translator decides to accept or reject
the prediction, so the first step in our model is the
following expansion:

B(x,h, s, k) =
∑

a∈{0,1}

p(a|x,h, s, k)B(x,h, s, k, a),

wherep(a|x,h, s, k) is the probability that the trans-
lator accepts or rejectsx,B(x,h, s, k, a) is the ben-
efit they derive from doing so, anda is a random
variable that takes on the values 1 for acceptance and
0 for rejection. The first two quantities are the main
elements in the user model, and are described in fol-
lowing sections. The parameters of both were esti-
mated from data collected during the TransType trial
described in (Langlais et al., 2002), which involved
nine accomplished translators using a prototype pre-
diction tool for approximately half an hour each. In
all cases, estimates were made by pooling the data
for all nine translators.

4.1 Acceptance Probability

Ideally, a model forp(a|x,h, s, k) would take into
account whether the user actually reads the proposal
before accepting or rejecting it, eg:

p(a|x,h, s, k) =
∑

r∈{0,1}

p(a|r,x,h, s, k)p(r|x,h, s, k)

wherer is a boolean “read” variable. However, this
information is hard to extract reliably from the avail-
able data; and even if were obtainable, many of the

−60 −50 −40 −30 −20 −10 0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pr
ob

ab
ili

ty
 o

f a
cc

ep
tin

g

gain (length of correct prefix − length of incorrect suffix)

raw
smoothed
model

Figure 2: Probability that a prediction will be ac-
cepted versus its gain.

factors which influence whether a user is likely to
read a proposal—such as a record of how many pre-
vious predictions have been accepted—are not avail-
able to the predictor in our formulation. We thus
modelp(a|x,h, s, k) directly.

Our model is based on the assumption that the
probability of acceptingx depends only on what the
user stands to gain from it, defined according to the
editing scenario given in section 2 as the amount by
which the length of the correct prefix ofx exceeds
the length of the incorrect suffix:

p(a|x,h, s, k) ≈ p(a|2k − l),

wherek−(l−k) = 2k− l is called thegain. For in-
stance, the gain for the prediction in figure 1 would
be2× 7− 8 = 6. The strongest part of this assump-
tion is dropping the dependence onh, because there
is some evidence from the data that users are more
likely to accept at the beginnings of words. How-
ever, this does not appear to have a severe effect on
the quality of the model.

Figure 2 shows empirical estimates ofp(a =
1|2k− l) from the TransType data. There is a certain
amount of noise intrinsic to the estimation proce-
dure, since it is difficult to determinex∗, and there-
fore k, reliably from the data in some cases (when
the user is editing the text heavily). Nonetheless, it
is apparent from the plot that gain is a useful abstrac-

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

3500

4000
av

er
ag

e
tim

e
to

 a
cc

ep
t (

m
se

cs
)

length of proposal (chars)

raw
least−squares fit

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

3500

4000

av
er

ag
e

tim
e

to
 r

ej
ec

t (
m

se
cs

)

length of proposal (chars)

raw
least−squares fit

Figure 3: Time to read and accept or reject proposals versus their length

tion, because the empirical probability of acceptance
is very low when it is less than zero and rises rapidly
as it increases. This relatively clean separation sup-
ports the basic assumption in section 2 that benefit
depends onk.

The points labelledsmoothedin figure 2 were
obtained using a sliding-average smoother, and the
model curve was obtained using two-component
Gaussian mixtures to fit the smoothed empirical
likelihoodsp(gain|a = 0) andp(gain|a = 1). The
model probabilities are taken from the curve at in-
tegral values. As an example, the probability of ac-
cepting the prediction in figure 1 is about .25.

4.2 Benefit

The benefitB(x,h, s, k, a) is defined as the typing
time the translator saves by accepting or rejecting
a predictionx whose firstk characters are correct.
To determine this, we assume that the translator first
readsx, then, if he or she decides to accept, uses a
special command to place the cursor at the end ofx
and erases its lastl − k characters. Assuming inde-
pendence fromh, s as before, our model is:

B(x, k, a) =
{
−R1(x) + T (x, k)− E(x, k), a = 1
−R0(x), a = 0

whereRa(x) is the cost of readingx when it ul-
timately gets accepted (a= 1) or rejected (a= 0),
T (x, k) is the cost of manually typingxk1, and
E(x, k) is the edit cost of acceptingx and erasing
to the end of its firstk characters.

A natural unit forB(x, k, a) is the number of
keystrokes saved, so all elements of the above equa-
tion are converted to this measure. This is straight-
forward in the case ofT (x, k) andE(x, k), which
are estimated ask and l − k + 1 respectively—for
E(x, k), this corresponds to one keystroke for the
command to accept a prediction, and one to erase
each wrong character. This is likely to slightly un-
derestimate the true benefit, because it is usually
harder to typen characters than to erase them.

As in the previous section, read costs are inter-
preted as expected values with respect to the proba-
bility that the user actually does readx, eg, assuming
0 cost for not reading,R0(x) = p(r=1|x)R′0(x),
whereR′0(x) is the unknown true cost of reading
and rejectingx. To determineRa(x), we measured
the average elapsed time in the TransType data from
the point at which a proposal was displayed to the
point at which the next user action occurred—either
an acceptance or some other command signalling a
rejection. Times greater than 5 seconds were treated
as indicating that the translator was distracted and
were filtered out. As shown in figure 3, read times
are much higher for predictions that get accepted, re-
flecting both a more careful perusal by the translator
and the fact the rejected predictions are often simply
ignored.2 In both cases there is a weak linear rela-

2Here the number of characters read was assumed to include
the whole contents of the TransType menu in the case of rejec-
tions, and only the proposal that was ultimately accepted in the
case of acceptances.

tionship between the number of characters read and
the time taken to read them, so we used the least-
squares lines shown as our models. Both plots are
noisy and would benefit from a more sophisticated
psycholinguistic analysis, but they are plausible and
empirically-grounded first approximations.

To convert reading times to keystrokes for the
benefit function we calculated an average time per
keystroke (304 milliseconds) based on sections of
the trial where translators were rapidly typing and
when predictions werenot displayed. This gives an
upper bound for the per-keystroke cost of reading—
compare to, for instance, simply dividing the total
time required to produce a text by the number of
characters in it—and therefore results in a conser-
vative estimate of benefit.

To illustrate the complete user model, in the fig-
ure 1 example the benefit of accepting would be
7−2−4.2 = .8 keystrokes and the benefit of reject-
ing would be−.2 keystrokes. Combining these with
the acceptance probability of .25 gives an overall ex-
pected benefitB(x,h, s, k = 7) for this proposal of
0.05 keystrokes.

5 Search

Searching directly through all character stringsx
in order to findx̂ according to equation (1) would
be very expensive. The fact thatB(x,h, s) is non-
monotonic in the length ofx makes it difficult to or-
ganize efficient dynamic-programming search tech-
niques or use heuristics to prune partial hypotheses.
Because of this, we adopted a fairly radical search
strategy that involves first finding the most likely se-
quence of words of each length, then calculating the
benefit of each of these sequences to determine the
best proposal. The algorithm is:

1. For each lengthm = 1 . . .M , find the best
word sequence:

ŵm = argmax
w1:(w1=u1v), wm2

p(wm1 |h′, s),

whereu1 andh′ are as defined in section 3.

2. Convert eacĥwm to a corresponding character
stringx̂m.

3. Output x̂ = argmaxm B(x̂m,h, s), or the
empty string if all B(x̂m,h, s) are non-
positive.

M average time maximum time
1 0.0012 0.01
2 0.0038 0.23
3 0.0097 0.51
4 0.0184 0.55
5 0.0285 0.57

Table 1: Approximate times in seconds to generate
predictions of maximum word sequence lengthM ,
on a 1.2GHz processor, for the MEMD model.

In all experiments reported below,M was set to a
maximum of 5 to allow for convenient testing. Step
1 is carried out using a Viterbi beam search. To
speed this up, the search is limited to anactive vo-
cabularyof target words likely to appear in transla-
tions ofs, defined as the set of all words connected
by some word-pair feature in our translation model
to some word ins. Step 2 is a trivial deterministic
procedure that mainly involves deciding whether or
not to introduce blanks between adjacent words (eg
yes in the case ofla + vie, no in the case ofl’ +
an). This also removes the prefixu1 from the pro-
posal. Step 3 involves a straightforward evaluation
of m strings according to equation (2).

Table 1 shows empirical search timings for vari-
ous values ofM , for the MEMD model described
in the next section. Times for the linear model are
similar. Although the maximum times shown would
cause perceptible delays forM > 1, these occur
very rarely, and in practice typing is usually not no-
ticeably impeded when using the TransType inter-
face, even atM = 5.

6 Evaluation

We evaluated the predictor for English to French
translation on a section of the Canadian Hansard
corpus, after training the model on a chronologi-
cally earlier section. The test corpus consisted of
5,020 sentence pairs and approximately 100k words
in each language; details of the training corpus are
given in (Foster, 2000b).

To simulate a translator’s responses to predic-
tions, we relied on the user model, accepting prob-
abilistically according top(a|x,h, s, k), determin-
ing the associated benefit usingB(x,h, s, k, a), and
advancing the cursork characters in the case of an

config M
1 2 3 4 5

fixed -8.5 -0.4 -3.60 -11.6 -20.8
linear 6.1 9.40 8.8 8.1 7.8
exact 5.3 10.10 10.7 10.0 9.7
corr 5.8 10.7 12.0 12.5 12.6
best 7.9 17.90 24.5 27.7 29.2

fixed -11.5 -9.3 -15.1 -22.0 -28.2
exact 3.0 4.3 5.0 5.2 5.2
best 6.2 12.1 15.4 16.7 17.3

Table 2: Results for different predictor configura-
tions. Numbers give % reductions in keystrokes.

user M
1 2 3 4 5

superman 48.6 53.5 51.8 51.1 50.9
rational 11.7 17.8 17.2 16.4 16.1
real 5.3 10.10 10.7 10.0 9.7

Table 3: Results for different user simulations.
Numbers give % reductions in keystrokes.

acceptance, 1 otherwise. Herek was obtained by
comparingx to the knownx∗ from the test corpus.
It may seem artificial to measure performance ac-
cording to the objective function for the predictor,
but this is biased only to the extent that it misrepre-
sents an actual user’s characteristics. There are two
cases: either the user is a better candidate—types
more slowly, reacts more quickly and rationally—
than assumed by the model, or a worse one. The
predictor will not be optimized in either case, but
the simulation will only overestimate the benefit in
the second case. By being conservative in estimating
the parameters of the user model, we feel we have
minimized the number of translators who would fall
into this category, and thus can hope to obtain real-
istic lower bounds for the average benefit across all
translators.

Table 2 contains results for two different trans-
lation models. The top portion corresponds to the
MEMD2B maximum entropy model described in
(Foster, 2000a); the bottom portion corresponds to
the linear combination of a trigram and IBM 2 used
in the TransType experiments (Langlais et al., 2002).
Columns give the maximum permitted number of
words in predictions. Rows show different predic-

tor configurations:fixedignores the user model and
makes fixedM -word predictions;linearuses the lin-
ear character-probability estimates described in sec-
tion 3.1; exactuses the exact character-probability
calculation;corr is described below; andbestgives
an upper bound on performance by choosingm in
step 3 of the search algorithm so as to maximize
B(x,h, s, k) using the true value ofk.

Table 3 illustrates the effects of different compo-
nents of the user model by showing results for sim-
ulated users who read infinitely fast and accept only
predictions having positive benefit (superman); who
read normally but accept like superman (rational);
and who match the standard user model (real). For
each simulation, the predictor optimized benefits for
the corresponding user model.

Several conclusions can be drawn from these re-
sults. First, it is clear that estimating expected bene-
fit is a much better strategy than making fixed-word-
length proposals, since the latter causes an increase
in time for all values ofM . In general, making “ex-
act” estimates of string prefix probabilities works
better than a linear approximation, but the difference
is fairly small.

Second, the MEMD2B model significantly out-
performs the trigram+IBM2 combination, produc-
ing better results for every predictor configuration
tested. The figure of -11.5% in bold corresponds
to the TransType configuration, and corroborates the
validity of the simulation.3

Third, there are large drops in benefit due to read-
ing times and probabilistic acceptance. The biggest
cost is due to reading, which lowers the best possi-
ble keystroke reduction by almost 50% forM = 5.
Probabilistic acceptance causes a further drop of
about 15% forM = 5.

The main disappointment in these results is that
performance peaks atM = 3 rather than continu-
ing to improve as the predictor is allowed to con-
sider longer word sequences. Since the predictor
knowsB(x,h, s, k), the most likely cause for this
is that the estimates forp(ŵm|h, s) become worse
with increasingm. Significantly, performance lev-

3Although the drop observed with real users was greater at
about 20% (= 17% reduction in speed), there are many dif-
ferences between experimental setups that could account for
the discrepancy. For instance, part of the corpus used for the
TransType trials was drawn from a different domain, which
would adversely affect predictor performance.

els off at three words, just as the search loses di-
rect contact withh through the trigram. To correct
for this, we used modified probabilities of the form
λm p(ŵm|h, s), whereλm is a length-specific cor-
rection factor, tuned so as to optimize benefit on a
cross-validation corpus. The results are shown in the
corr row of table 2, for exact character-probability
estimates. In this case, performance improves with
M , reaching a maximum keystroke reduction of
12.6% atM = 5.

7 Conclusion and Future Work

We have described an approach to text prediction for
translators that is based on maximizing the benefit
to the translator according to an explicit user model
whose parameters were set from data collected in
user evaluations of an existing text prediction proto-
type. Using this approach, we demonstrate in sim-
ulated results that our current predictor can reduce
the time required for an average user to type a text
in the domain of our training corpus by over 10%.
We look forward to corroborating this result in tests
with real translators.

There are many ways to build on the work de-
scribed here. The statistical models which are
the backbone of the predictor could be improved
by making them adaptive—taking advantage of the
user’s input—and by adding features to capture the
alignment relation betweenh ands in such a way as
to preserve the efficient search properties. The user
model could also be made adaptive, and it could be
enriched in many other ways, for instance so as to
capture the propensity of translators to accept at the
beginnings of words.

We feel that the idea of creating explicit user mod-
els to guide the behaviour of interactive systems is
likely to have applications in areas of NLP apart
from translators’ tools. For one thing, most of the
approach described here carries over more or less
directly to monolingual text prediction, which is an
important tool for the handicapped (Carlberger et al.,
1997). Other possibilities include virtually any ap-
plication where a human and a machine communi-
cate through a language-rich interface.

References
Peter F. Brown, Stephen A. Della Pietra, Vincent Della J.

Pietra, and Robert L. Mercer. 1993. The mathematics
of Machine Translation: Parameter estimation.Com-
putational Linguistics, 19(2):263–312, June.

Alice Carlberger, Johan Carlberger, Tina Magnuson,
Sira E. Palazuelos-Cagigas, M. Sharon Hunnicutt, and
Santiago Aguilera Navarro. 1997. Profet, a new gen-
eration of word prediction: an evaluation study. In
Proceedings of the 2nd Workshop on NLP for Commu-
nication Aids, Madrid, Spain, July.

Kenneth W. Church and Eduard H. Hovy. 1993. Good
applications for crummy machine translation.Ma-
chine Translation, 8:239–258.

George Foster, Pierre Isabelle, and Pierre Plamondon.
1997. Target-text Mediated Interactive Machine
Translation.Machine Translation, 12:175–194.

George Foster. 2000a. Incorporating position infor-
mation into a Maximum Entropy / Minimum Di-
vergence translation model. InProceedings of the
4th Computational Natural Language Learning Work-
shop (CoNLL), Lisbon, Portugal, September. ACL
SigNLL.

George Foster. 2000b. A Maximum Entropy / Minimum
Divergence translation model. InProceedings of the
38th Annual Meeting of the Association for Computa-
tional Linguistics (ACL), Hong Kong, October.

Martin Kay. 1973. The MIND system. In R. Rustin,
editor,Natural Language Processing, pages 155–188.
Algorithmics Press, New York.

Kevin Knight. 1999. Decoding complexity in word-
replacement translation models.Computational Lin-
guistics, Squibs and Discussion, 25(4).

Philippe Langlais, George Foster, and Guy Lapalme.
2000. Unit completion for a computer-aided transla-
tion typing system.Machine Translation, 15(4):267–
294, December.

Philippe Langlais, Guy Lapalme, and Marie Loranger.
2002. TransType: From an idea to a system.Machine
Translation. To Appear.

S. Niessen, S. Vogel, H. Ney, and C. Tillmann. 1998.
A DP based search algorithm for statistical machine
translation. InProceedings of the 36th Annual Meet-
ing of the ACL and 17th COLING 1998, pages 960–
967, Montŕeal, Canada, August.

C. Tillmann and H. Ney. 2000. Word re-ordering and
DP-based search in statistical machine translation. In
Proceedings of the International Conference on Com-
putational Linguistics (COLING) 2000, Saarbrucken,
Luxembourg, Nancy, August.

