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Abstract

We presenta joint probability model for
statisticalmachinetranslation,which au-
tomaticallylearnsword andphraseequv-
alentsfrom bilingual corpora. Transla-
tions producedwith parametergstimated
using the joint model are more accu-
ratethantranslationgproducedising|BM
Model 4.

1 Motivation

Most of the noisy-channel-b&sl models usedin

statisticalmachinetranslation(MT) (Brown et al.,

1993) are conditional probability models. In the
noisy-channeframeavork, eachsourcesentence in

a parallel corpusis assumedo “generate”a target
sentencd by meansof a stochastiqprocesswhose
parametersreestimatedisingtraditionalEM tech-
niques (Dempsteret al., 1977). The generatre

modelexplainshow sourcewords are mappedinto

talget words and how tamget words are re-ordered
to yield well-formed tamget sentences. A variety
of methodsare usedto accountfor the re-ordering
stage: word-basedBrown et al., 1993), template-
basedOchetal., 1999),andsyntax-basedYamada
and Knight, 2001), to namejust a few. Although

thesemodelsuse different generatre processeso

explain how translatedvordsarere-orderedn atar

getlanguageat thelexical level they arequite sim-

ilar; all thesemodelsassumehat sourcewordsare
individually translatednto targetwords?

Theindividual wordsmay containa non-eistentelement,
calledNULL.

William Wong
LanguagéNeaver Inc.
163911th St., Suite100A
SantaMonica,CA 90404
wwong@ anguageweaver . com

We suspecthat MT researcherbave sofar cho-
sento automaticallylearn translationlexicons de-
fined only over wordsfor primarily pragmaticrea-
sons. Large scalebilingual corporawith vocalu-
lariesin the rangeof hundredsof thousandsyield
very largetranslatioriexicons. Tuningthe probabil-
itiesassociatewvith thesdargelexiconsis adifficult
enoughtaskto deteronefrom trying to scaleup to
learningphrase-baseléxicons. Unfortunatelytrad-
ing spacerequirementsand efficiency for explana-
tory power oftenyields non-intuitive results.

Considerfor example theparallelcorpusof three
sentencepairsshavn in Figure 1. Intuitively, if we
allow ary Sourcewordsto be alignedto ary Tamget
words,the bestalignmentthatwe cancomeup with
is theonein Figure 1l.c. Sentencepair (S2, T2) of-
fersstrongevidencethat“b c¢” in languages means
the samething as“x” in languageT. On the basis
of this evidence,we expectthe systemto alsolearn
from sentencepair (S1, T1) that“a” in languageS
meanghesamethingas“y” in languag€l. Unfortu-
nately if oneworkswith translationrmodelsthatdo
not allow Target wordsto be alignedto morethan
oneSourcevord— asit isthecasen thelBM mod-
els(Brown et al., 1993)— it is impossibleto learn
thatthe phrase'b ¢” in languageS meanshe same
thing asword “x” in languageT. The IBM Model
4 (Brown etal., 1993),for example,corvemgesto the
word alignmentsshavn in Figurel.bandlearnsthe
translatiorprobabilitiesshawvn in Figurel.a? Since
in the IBM model one cannotlink a Target word
to morethana Sourceword, the training procedure

2Totrainthe|BM-4 model,we usedGiza(Al-Onaizanetal.,
1999).



Joint T-Table

IBM-4 T-Table IBM-4 Intuitive Joint
ply|a)=1 Sl:a b ¢ Sl:a b ¢ Sl:a b ¢ p(xy,abc)=0.3
= X 52‘/ p(x,bc)=0.34
pix|€) =1 T1:x T1: X T1: x -
p(z | b) =0.98 Xy Xy Xy p(y, a) =0.01
p(x | b) = 0.02 p(z, b) =0.33
S2:b ¢ S2:b ¢ S2:b ¢ Corresponding
/ ¥ ¥ Conditional Table
T2: x T2: x T2: x
p(xylabc)=1
p(x|bc)=1
S3: b S3:b S3:b py|a)=1
| pz|b)=1
T3:z T3:z T3:z
a) b) c) d) e)

Figurel: Alignmentsandprobability distributionsin IBM Model4 andour joint phrase-baseahodel.

yields unintuitive translationprobabilities. (Note
that anothergood word-forword modelis onethat
assignshigh probability to p(x | b) andp(z | b) and
low probabilityto p(x | ¢).)

In this paperwe describeatranslatiormodelthat
assumeshatlexical correspondencesanbe estab-
lishednot only at the word level, but at the phrase
level aswell. In constraswith mary previous ap-
proachegBrown etal., 1993;Ochetal., 1999; Ya-
madaandKnight, 2001),our modeldoesnot try to
capturehow Sourcesentencesanbe mappedinto
Tamget sentenceshut ratherhow Sourceand Tar
get sentencesan be generatedsimultaneously In
otherwords,in the style of Melamed(2001),we es-
timate a joint probability modelthat can be easily
maiginalizedin orderto yield conditionalprobabil-
ity modelsfor both source-to-tayet and target-to-
sourcemachinetranslationapplications. The main
differencebetweenour work andthat of Melamed
is that we learn joint probability modelsof trans-
lation equivalencenot only betweenwordsbut also
betweerphrasesandwe shav thatthesemodelscan
be usednot only for the extractionof bilingual lexi-
consbut alsofor theautomatidranslationof unseen
sentences.

In the rest of the paper we first describeour
model(Section2) andexplain how it canbe imple-
mented/traineqSection3). We briefly describea

decodingalgorithmthat works in conjunctionwith
our model(Section4) andevaluatethe performance
of atranslatiorsystenthatuseghejoint-probability
model(Section5). We endwith a discussiorof the
strengthsandweaknessegf our modelascompared
to othermodelsproposedn theliterature.

2 A Phrase-Based Joint Probability M odel

21 Moded 1

In developingourjoint probabilitymodel,we started
outwith avery simplegeneratie story We assume
thateachsentencgairin our corpusis generatedy
thefollowing stochastigrocess:

1. Generatea bagof concept<.

2. For eachconcepte; € C, generatea pair of
phrases(¢;, f;), accordingto the distribution
t(&, f;), whereé; and f; each contain at least
one word.

3. Orderthe phraseggeneratedn eachlanguage
soasto createtwo linearsequencesf phrases;
these sequencescorrespondto the sentence
pairsin abilingual corpus.

For simplicity, we initially assumehatthe bagof
conceptsandthe orderingof the generateghrases
are modeledby uniform distributions. We do not
assumethat ¢; is a hiddenvariable that generates



the pair (¢}, f;), but ratherthate; = (¢, f;). Un-
dertheseassumptionst follows thatthe probability
of generatinga sentencepair (E, F) usingconcepts
¢; € C is given by the productof all phrase-to-
phrasetranslationprobabilities [ ] ... t(e‘;-,f;) that
yield bagsof phraseshatcanbeorderedinearly so
asto obtainthe sentenceg& andF. For example,the
sentenceair“a b ¢” — “x y” canbe generatedis-
ing two concepts{“a b” : “y”) and(*c” : “X”); or
oneconcept(“*abc”: “x y"), becausén bothcases
the phrasesn eachlanguagecanbe arrangedn a
sequencéhatwould yield the original sentenceair.
However, the samesentencepair cannotbe gener
atedusingthe conceptg“a b” : “y”) and(“c” : “y”)
becaus¢hesequencéx y” cannotberecreatedrom
thetwo phrasesy” and“y”. Similarly, thepair can-
not be generatediusing concepts(“a ¢” : “x”) and
(“b” : "y") because¢he sequencéa b ¢’ cannotbe
createdby catenatinghe phrasesa c¢” and“b”.

We saythata setof concepts”' canbelinearized
into asentenceair (E, F) if E andF canbeobtained
by permutingthe phrase; and f; thatcharacterize
all conceptse; € C. We denotethis propertyus-
ing the predicateL(E, F, C'). Underthis model,the
probability of a given sentencepair (E, F) canthen
be obtainedby summingup over all possibleways
of generatingoagsof conceptsC' € C thatcanbe
linearizedto (E, F).

p(E,F) =

. | RGN

CeC|L(E,F,C) ¢€C

(1)

2.2 Mode 2

AlthoughModel 1 is fairly unsophisticatedye have
foundthatit producesn practicefairly goodalign-
ments. However, this modelis clearly unsuitedfor
translatingunseensentencessit imposesno con-
straintson the ordering of the phrasesassociated
with a given concept. In orderto accountfor this,
we modify slightly the generatre processn Model
1 so asto accountfor distortions. The generatie
storyof Model 2 is this:

1. Generatea bagof concept<.
2. Initialize E andF to emptysequences.

3. Randomlytake a conceptc; € C andgenerate
a pair of phraseqé;, f;), accordingto the dis-

tribution ¢(¢;, f;), whereé; and f; eachcontain
atleastoneword. Remwethene; from C.

4., Appendphraseﬁ attheendof F. Let k£ bethe
startpositionof f; in F.

5. Insertphraseg; at position!/ in E providedthat
no otherphraseoccupiesary of the positions
between andl+ | é; |, where| €; | givesthe
length of the phrasee;. We hencecreatethe
alignmentbetweenthe two phrasesf; andé;
with probability

k+| fil
I . @+ 16 1)/2),
p=k
whered(i, j) is aposition-basedlistortiondis-
tribution.
6. Repeasteps3 to 5 until C' is empty

In Model 2, the probabilityto generate sentence
pair (E, F) is given by formula (2), Wherepos(f_z“)
denoteghe positionof word % of phrasef; in sen-
tenceF andpos.,(€;) denoteshe positionin sen-
tenceE of the centerof massof phrasee;.

DO | JUCH AR

CeC|L(E,F,C) ¢€C

p(E,F) =

7 } (2)
d(pos(fF), posem ()]
k=1

Model 2 implementsan absoluteposition-based
distortionmodel,in the style of IBM Model 3. We
have tried mary types of distortion models. We
eventually settledfor the modeldiscussederebe-
causeit producesbettertranslationsduring decod-
ing. Sincethe numberof factorsinvolved in com-
putingthe probability of analignmentdoesnotvary
with thesizeof the Targetphrasesnto which Source
phrasesare translated,this model is not predis-
posedto producetranslationsthat are shorterthan
the Sourcesentencegivenasinput.

3 Training

Training the modelsdescribedn Section2 is com-
putationallychallenging.Sincethereis anexponen-
tial numberof alignmentsthat can generatea sen-
tencepair (E, F), it is clearthatwe cannotapplythe



1. Determ ne high-frequency n-
grans in the bilingual corpus.

2. Initialize the t-distribution
t abl e.

3. Apply EMtraining on the
Viterbi alignnents, while using
snoot hi ng.

4. Generate conditional nodel

probabilities.

Figure 2: Training algorithm for the phrase-based
joint probability model.

EM trainingalgorithmexhaustvely. To estimatehe
parameter®f our model,we applythe algorithmin
Figure 2, whosestepsare motivatedand described
below.

3.1 Determinehigh-frequency n-gramsin E
and F

If one assumedrom the outsetthat ary phrases
¢ € & andf; € F* canbe generatedrom acon-
cepte;, onewould needa supercomputein orderto
storein thememoryatablethatmodelsthet(é;, f;)
distribution. Sincewe don't have accesgo comput-
erswith unlimitedmemoryweinitially learnt distri-
butionentriesonly for thephraseshatoccuroftenin
thecorpusandfor unigrams.Then,throughsmooth-
ing, we learnt distribution entriesfor the phrases
thatoccurrarely aswell. In orderto be considered
in step2 of the algorithm, a phrasehasto occurat
leastfive timesin thecorpus.

3.2

Beforethe EM training procedurestarts,onehasno
ideawhat word/phrasepairsare likely to sharethe
samemeaning. In otherwords, all alignmentsthat
cangeneratasentenceair (E, F) canbeassumedo
have the sameprobability Undertheseconditions,
theevidencethatasentenceair (E, F) contrikutesto
thefactthat (¢}, f;) aregeneratedy the samecon-
cepte; is givenby thenumberof alignmentghatcan
be built between(E, F) that have a conceptc; that
is linked to phrase¢; in sentenceE and phrasef;
in sentencd- divided by the total numberof align-

Initialize the t-distribution table

mentsthat canbe built betweenthe two sentences.
Both thesenumberscanbe easilyapproximated.

Given a sentencee of [ words, thereare S(l, k)
waysin which the! wordscanbe partitionedinto &
non-emptysets/conceptsvhere S(l, k) is the Stir-
ling numberof secondkind.

k—1
st =50 (He-r @
1=0

TherearealsoS(m, k) waysin which them words
of a sentenceF can be partitioned into £ non-
empty sets. Given that ary words in E can be
mappedo ary wordsin F, it follows thatthereare

min(bm) 11 S(1, k) S(m, k) alignmentghatcanbe
built betweeniwo sentences$E, F) of lengthsl and
m, respectrely. Whena conceptc; generateswo
phrasegé;, f;) of lengtha andb, respectiely, there
areonly [ —a andm — b wordsleft to link. Hencejn
the absencef ary otherinformation,the probabil-
ity thatphraseg; and f; aregeneratedy the same
conceptle; is givenby formula(4).

min(=am=b) k1 §(1 — a, k) S(m — b, k)

. 4
E;n:zq(l,m) E'S(l, k) S(m, k) ?

Note that the fractional countsreturnedby equa-
tion (4) are only an approximationof the t distri-
bution that we are interestedin becausehe Stir-
ling numbersof the secondkind do notimposeary
restrictionon the words that are associatedvith a
given conceptbe consecutie. However, sincefor-
mula (4) overestimateshe numeratorand denomi-
natorequally theapproximatiorworkswell in prac-
tice.

In the secondstep of the algorithm, we apply
equation(4) to collect fractional countsfor all un-
igramandhigh-frequeng n-grampairsin the carte-
sian productdefinedover the phrasesn eachsen-
tencepair (E, F) in a corpus.We sumover all these
t-countsandwe normalizeto obtainaninitial joint
distribution ¢. This stepamountgo runningthe EM
algorithmfor one stepover all possiblealignments
in thecorpus.

3.3 EM training on Viterbi alignments

Givenanon-uniformt distribution, phrase-to-phrase
alignmentshave differentweightsandthereare no



othertricksonecanapplyto collectfractionalcounts
over all possiblealignmentsin polynomial time.

Startingwith step3 of thealgorithmin Figure2, for

eachsentencepair in a corpus,we greedilyproduce
an initial alignmentby linking togetherphrasesso
asto createconceptghat have high t probabilities.
We thenhillclimb towardsthe Viterbi alignmentof

highestprobability by breakingand meiging con-
cepts,swappingwordsbetweenconceptsandmov-

ing words acrossconcepts. We computethe prob-
abilities associatedvith all the alignmentswe gen-
erateduring the hillclimbing processand collect t

countsover all conceptsn thesealignments.

We apply this Viterbi-basedEM training proce-
durefor afew iterations.Thefirstiterationsestimate
thealignmentprobabilitiesusingModel 1. Therest
of theiterationsestimatethealignmentprobabilities
usingModel 2.

During training, we apply smoothingso we can
associat@eon-zerovaluesto phrase-pairghatdo not
occuroftenin thecorpus.

3.4 Derivation of conditional probability model

At the end of the training procedure,we take
maiginalsonthejoint probability distributionst and
d. This yields conditionalprobability distributions
t(fi | &) andd(posF | posE), which we usefor
decoding.

3.5 Discussion

Whenwe run the training proceduren Figure2 on
the corpusin Figurel, afterfour Model 1 iterations
we obtainthe alignmentan Figurel.d andthejoint
and conditional probability distributions shavn in
Figurel.e. At primafacie,theViterbi alignmentfor
thefirst sentenceair appearsncorrectbecauseave,
ashumanshave a naturaltendeng to build align-
mentsbetweerthe smallestphrasegpossible.How-
ever, notethatthechoicemadeby our modelis quite
reasonable.After all, in the absenceof additional
information, the model can either assumethat “a”
and"y” meanthe samething or thatphrasesa b ¢”
and“x y” meanthe samething. The modelchose
to give moreweightto the seconchypothesiswhile
preservingsomeprobability massfor thefirst one.
Also notethatalthoughthejoint distribution puts
the secondhypothesisat an adwantage,the condi-
tional distribution doesnot. The conditionaldistri-

butionin Figurel.eis consistentith our intuitions
thattell usthatit is reasonabldoth to translate*a
b ¢” into “x y”, aswell as“a” into “y”. Thecondi-
tional distribution mirrors perfectlyour intuitions.

4 Decoding

For decoding,we have implementeda greedypro-
cedure similar to that proposedby Germannet
al. (2001).Givena Foreignsentencd-, we first pro-
ducea glossof it by selectingphrasesn £* that
maximizethe probability p(E, F'). We thenitera-
tively hillclimb by modifying E andthe alignment
betweenE and F so as to maximize the formula
p(E)p(F | E). Wehillclimb by modifying anexist-
ing alignment/translatiothrougha setof operations
thatmodify locally thealigment/translatiotbuilt un-
til a giventime. Theseoperationsreplacethe En-
glish side of an alignmentwith phrasesof differ-
entprobabilities meigeandbreakexisting concepts,
and swap words acrossconcepts. The probability
p(E) is computedusing a simple trigram language
model that was trained using the CMU Language
Modeling Toolkit (Clarksonand Rosenfeld,1997).
The languagemodelis estimatedat the word (not
phrase)evel. Figure3 shavs the stepstaken by our
decoderin orderto find the translationof sentence
“ie vaismeartéterla.” Eachintermediateransla-
tion in Figure 3 is precededdy its probability and
succededy the operationthatchangest to yield a
translationof higherprobability

5 Evaluation

To evaluateour system,we trainedboth Giza (IBM
Model 4) (Al-Onaizanet al., 1999) and our joint
probability modelon a French-Englistparallelcor
pus of 100,000 sentencepairs from the Hansard
corpus. The sentencesn the corpuswere at most
20 words long. The English side had a total
of 1,073,480words (21,484 unique tokens). The
Frenchsidehada total of 1,177,143wvo0rds (28,132
uniquetokens).

We translatedb00 unseersentencesyhich were
uniformly distributedacrosdengthss, 8, 10,15, and
20. For eachgroup of 100 sentenceswe manu-
ally determinedhe numberof sentences¢ranslated
perfectlyby the IBM modeldecoderf Germanret
al. (2001)andthe decoderthat usesthe joint prob-



Model Percenperfecttranslations IBM Bleuscore
Sentencédength Sentencdength
6| 8 10| 15| 20 | Avg. 6 8 10 15 20 Avg.
IBM 36[26|35|11| 2 | 22 | 0.2076| 0.2040| 0.2414| 0.2248| 0.2011| 0.2158
Phrase-based43 | 37 | 33| 19| 6 | 28 || 0.2574| 0.2181| 0.2435| 0.2407| 0.2028| 0.2325

Tablel: Comparisorof IBM andPhrase-BasedpintProbabilityModelson atranslationtask.

je vais me arreter la .

128e-14 | / | | | \ changeWordTrans("vais", "want")
i . meto that.
je vais me arreter la .
7.50e-11 / / ‘ T ‘ \ FuseAndChangeTrans("la .", "there
iwant me to that .
je vais me arreter la .
2.97e-10 / / ‘ T y\ ChangeWordTrans("arreter”,"stop")

iwant me to there .

je vais me arreter la .
BEN

7.75e-10 K
i want me stop there .

FuseAndChange("je vais","let me")

je vais me arreter la .

1.09e-09 >< ‘ ‘
letme to stop there .

FuseAndChange("je vais me",
"i am going to")

je vais me arreter la .

9.460-08 W |

i am going to stop there .

Figure 3: Exampleof phrase-basedreedydecod-
ing.

ability model. We also evaluatedthe translations
automaticallyusingthe IBM-Bleu metric (Papineni
et al., 2002). Theresultsin Table1 shav thatthe

phrased-basddanslatiormodelproposedn thispa-

per significantlyoutperformdBM Model 4 on both

the subjectve andobjective metrics.

6 Discussion

6.1 Limitations

Themainshortcomingof the phrase-baseahodelin
this paperconcernsthe size of the t-table and the
costof the training procedurewe currently apply
To keepthe memoryrequirementsnanageableye
arbitrarily restrictedthe systemto learning phrase
translation®f atmostsix wordson eachside. Also,

the swap, break, and meige operationsused dur-
ing the Viterbi training are computationallyexpen-
sive. We arecurrentlyinvestigatinghe applicability
of dynamicprogrammingechniquedo increasehe
speeddf thetrainingprocedure.

Clearly there are languagepairs for which it
would be helpful to allow conceptdo berealizedas
non-contiguougphrases. The English word “not”,
for example, is often translatedinto two French
words, “ne” and “pas”. But “ne” and “pas” al-
most never occur in adjacentpositionsin French
texts. At theoutsetof thiswork, we attemptedo de-
velopatranslatiormodelthatenablesonceptdo be
mappednto non-contiguouphrases.But we were
notableto scaleandtrainit onlargeamountf data.
The modeldescribedn this papercannotlearnthat
the Englishword “not” corresponddo the French
words“ne” and“pas”. However, our modellearns
to dealwith negationby memorizinglongerphrase
translationequivalents, such as (“ne est pas”, “is
not”); (“est inadmissible”,“is not good enough”);
and(“ne estpasici”, “is nothere”).

6.2 Comparison with other work

A number of researcherdhave already gone be-
yond word-level translationsin various MT set-
tings. For example, Melamed (2001) usesword-
level alignmentsn orderto learntranslation®f non-
compositionalcompounds. Och and Ney (1999)
learn phrase-to-phrasenappingsinvolving word
classes,which they call “templates”, and exploit
themin astatisticaimachineranslatiorsystem And
Marcu (2001) extractsphrasetranslationsrom au-
tomatically aligned corporaand usesthemin con-
junctionwith a word-forword statisticaltranslation
system. However, noneof theseapproachedearn
simultaneoushthe translationof phrases/templates
and the translationof words. As a consequence,
thereis achancehatthelearningprocedurewill not
discorer phrase-leel patternghatoccuroftenin the



data.In ourapproachphrasesrenottreateddiffer-
ently from individual words,andasa consequence
thelikelihood of the EM algorithmconverging to a
betterlocal maximumis increased.

Working with phraseranslationghatarelearned
independentf a translationmodel can also affect
the decodemerformance.For example,in our pre-
vious work (Marcu, 2001), we have useda statis-
tical translationmemory of phrasedn conjunction
with a statisticaltranslationmodel (Brown et al.,
1993). The phrasesn thetranslationmemorywere
automaticallyextractedfrom the Viterbi alignments
producedby Giza (Al-Onaizanetal., 1999)andre-
usedin decoding.Thedecodedescribedn (Marcu,
2001) startsfrom a glossthat usesthe translations
in thetranslationmemoryandthentriesto improve
on the glosstranslationby modifying it incremen-
tally, in the style describedin Section4. How-
ever, becaus¢hedecodehill-climbs on aword-for
word translationrmodelprobability it oftendiscards
goodphrasatranslationsn favour of word-forword
translationsof higher probability The decoderin
Section4 doesnot have this problembecausdt hill-
climbs on translationmodel probabilitiesin which
phraseglay acrucialrole.
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